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Discrete-to-continuum modeling of weakly interacting incommensurate chains
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In this paper we use a formal discrete-to-continuum procedure to derive a continuum variational model for
two chains of atoms with slightly incommensurate lattices. The chains represent a cross section of a three-
dimensional system consisting of a graphene sheet suspended over a substrate. The continuum model recovers
both qualitatively and quantitatively the behavior observed in the corresponding discrete model. The numerical
solutions for both models demonstrate the presence of large commensurate regions separated by localized
incommensurate domain walls.
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I. INTRODUCTION

A graphene sheet is a single-atom-thick sheet of car-
bon atoms arranged in a hexagonal lattice. Graphene has
exceptional physical properties and yields insights into the
fundamental physics of two-dimensional materials. These
facts have motivated an extensive effort to model and simulate
graphene and other related carbon nanostructures.

The study in this paper is motivated by discrete-to-
continuum modeling that describes the deformation of a
graphene sheet suspended over a substrate. For a suspended
graphene sheet, the positions of the atoms on the sheet are
determined by the strong bonded interactions between nearest
neighbors on the sheet and by the weak nonbonded interactions
with nearby atoms on the substrate. A mismatch between
the geometries of the hexagonal lattice of graphene and the
substrate lattice can induce strain in the sheet. This strain
can be relaxed by both in-plane and out-of-plane atomic-scale
displacements of the atoms on the sheet.

Insight into the response of graphene to this lattice
mismatch can be obtained within the framework of the clas-
sical Frenkel-Kontorova theory [1]. For slightly mismatched
one-dimensional lattices, this theory predicts relatively large
commensurate regions separated by localized incommensurate
regions. Hence we expect for suspended graphene that the
local adjustments of atoms on the sheet may create large
domains where the two lattices are commensurate and the
interlayer energy is minimized. At the same time, there should
be localized incommensurate regions, or domain walls, where
strain may be relaxed by out-of-plane displacement.

Commensurate regions separated by domain walls have
been observed in simulations of relaxed moiré patterns in
graphene sheets [2,3]. When two lattices with different lattice
geometries or the same geometry but different orientations
are stacked, a larger periodic pattern, called a moiré pattern,
emerges. These moiré patterns are a strictly visual effect.
However, if the atoms on one or both of the lattices are
then relaxed to accommodate the mismatch between the
lattices, additional patterns can occur. In Ref. [2], the authors
study these relaxed moiré patterns by simulating interacting,
identical graphene lattices where one lattice is slightly rotated
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with respect to the other. In Ref. [3], the authors report on
similar simulations for a slightly rotated graphene lattice
interacting with a hexagonal boron nitride substrate, which
also has the structure of a hexagonal lattice with a slightly
larger lattice constant than that of graphene. In both papers,
simulations predict a two-dimensional pattern of wrinkles
intersecting at small misfit regions, called hot spots, exhibiting
large out-of-plane displacements. The wrinkles separate large
flat domains of commensurate regions.

For the model we develop in this paper, the starting point
is a pair of parallel curves that “carry” atoms. The lower
curve models a rigid substrate and its atoms are fixed at a
prescribed spacing. The upper curve models a graphene sheet
and the atoms on the upper curve can displace. The equilibrium
spacing between the atoms on the upper curve is also
prescribed. The two lattices are mismatched if the interatomic
spacing between the atoms on the lower curve does not equal
the equilibrium spacing between atoms on the upper curve.

We start with a discrete description of the stretching and
bending energies of the atoms on the upper curve and the
weak interaction energy between the atoms on the upper and
lower curves, respectively. From this we attain a continuum
description when a small parameter, representing the ratio of
the typical spacing between the curves to the length of the
curves, is small but not equal to zero. The minimizers of this
continuum energy represent equilibrium configurations of the
upper curve.

The continuum energy that we obtain has a Ginzburg-
Landau-type structure with the elastic contribution that cor-
responds to the classical Föppl–von Kármán energy [4]. A
number of recent studies have considered related problems
of wrinkling of thin elastic sheets that are, e.g., bonded to
a compliant substrate with a large compressive misfit [5–7],
pulled down by the force of gravity [8], or are floating on a
fluid [9–11].

The different aspect of the continuum energy derived in the
present work is the potential describing the weak interactions
between the curves. Although a continuum description, the
weak energy retains information about the local mismatch
between the original discrete lattices. The presence of lattice
mismatch constitutes the principal difference between the
adhesion forces that are associated with the weak interactions
between the lattices and the forces that are usually considered
in the standard problem for a thin film bonded to an adhesive
substrate. The wrinkling patterns in a typical adhesion problem
develop primarily due to the misfit strains. On the other hand,
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the wrinkles observed in incommensurate lattices appear not
only because of the mismatch in strains, but also in order to
accommodate the difference between the number of atoms on
the two chains while maximizing the regions of registry. For
example, it does not make a difference whether the deformable
chain has one more or one fewer atom than the rigid chain per
period; in both cases, a single wrinkle will appear wherever
there is an extra atom or a vacancy on the deformable chain.
The out-of-plane deflection at this position occurs because the
equilibrium distances between the chains are different if the
chains are in registry or out of registry.

From our total continuum energy we derive the Euler-
Lagrange equations, which are then solved numerically. We
present some basic comparisons between discrete simulations
and the predictions of our continuum model. For curves cor-
responding to slightly mismatched chains, our model predicts
large commensurate regions separated by domain walls, or
wrinkles, formed by localized out-of-plane ridges. The spacing
of these domain walls can be determined by the need to
accommodate a certain number of extra atoms on the upper
curve. Qualitatively, our solutions exhibit a pattern of wrinkles
similar to the predictions of the atomistic simulations in [2].

The discrete-to-continuum modeling in this paper is anal-
ogous to the approach taken in [12], in which the authors
derive a continuum theory of multiwalled carbon nanotubes by
upscaling an atomistic model. The atomistic model includes
a bending energy related to strong covalent bonds between
atoms in the same wall and an interaction energy between
the atoms in adjacent walls. Numerical solutions using the
continuum model that results from upscaling show that, for
sufficiently large radii, the cross section of a double-walled
nanotube polygonizes. In this setting, the straight sections of
the polygonal cross section are commensurate regions. The
corners of the polygon are the domain walls and are analogous
to the localized ridges predicted by the model developed in this
paper. A discrete model, similar to the one considered in this
paper, was recently used in [13] to demonstrate numerically
that the spontaneous atomic-scale relaxation of free-standing
systems of incommensurate van der Waals bilayers leads to a
simultaneous long-range rippling of the bilayer system.

This paper is organized as follows. In Sec. II we formulate
a discrete energy of the system of a graphene sheet over a
substrate. In Sec. III we derive a continuum energy that keeps
track of the mismatch of the spacing between the atoms on each
curve. Section IV includes numerical results that compare the
atomistic model with the continuum model. We also show
how the different parameters give rise to different material
deformations. We summarize in Sec. V.

II. ATOMISTIC MODEL

For simplicity, here we model the formation of isolated
wrinkles in a graphene layer supported by a substrate within
the framework of a one-dimensional model. Note that a
similar description can be readily developed for graphene
bilayers (cf. [12]).

Suppose that we have a discrete system that consists of two
chains of atoms Ĉ1 and Ĉ2 that are L units long. The atoms on
the bottom chain Ĉ1 are spaced h1 apart and cannot move. This
chain describes a rigid substrate. The atoms on the top chain Ĉ2

C0
1

h1

C0
2,s (s,σ ), 0 ≤ s ≤ L

h2
σ

C1

C2,s (s + u(s),σ + v(s)), 0 ≤ s ≤ L

FIG. 1. Reference (top) and deformed (bottom) configurations of
the system of two chains in dimensional coordinates.

can move. This chain represents a deformable graphene layer
that is nearly inextensible and has a finite resistance to bending.
Each atom on the top chain interacts with its two nearest
neighbors via a strong bond potential, represented here by
a stiff linear spring such that the equilibrium spacing between
the atoms on Ĉ2 is h2. The resistance to bending is modeled by
torsional springs between adjacent bonds. Further, all atoms
on the first chain are assumed to interact with all atoms on the
second chain via interatomic van der Waals potential. In what
follows we will refer to Ĉ1 as the rigid chain and to Ĉ2 as the
deformable chain.

We assume that, in the reference configuration (Fig. 1,
top), the chains are parallel and separated by a distance σ .
Here σ is equal to the equilibrium distance between two
atoms interacting via the van der Waals forces. Note that
this reference configuration is not in equilibrium. If the ratio
between σ and the equilibrium bond length h1 is large enough,
from the point of view of an atom on Ĉ2, its van der Waals
interaction with all atoms on Ĉ1 can be represented by an
interaction with the curve representing Ĉ1 with a uniform
atomic density [14]. In equilibrium, the curves Ĉ1 and Ĉ2 are
then given by the two straight parallel lines. The distance
between these lines should be slightly smaller than σ in
order to accommodate attractive forces from more distant
atoms. This approximation, however, ignores possible registry
effects that are significant in determining the shape of the
deformable chain Ĉ2. In fact, the only situation in which the
two straight parallel chains would correspond to an equilibrium
configuration is when h1 = h2. Indeed, in this case, all atoms
on Ĉ2 would occupy the positions above the midpoints between
the atoms on Ĉ1 and the system would be in global registry.

Here we are concerned with the situation when h1 �= h2, but
|h1 − h2|/h1 � 1. Under these assumptions, global registry
cannot be achieved in an undeformed configuration because
the distance between midpoints of neighboring intervals in
Ĉ1 is not equal to h2. It follows that in order to achieve
equilibrium, the deformable chain would have to adjust by
some combination of bending and stretching.

Let the current positions of the N2 atoms on the deformable
chain be given by the vectors {q1, . . . ,qN2} ⊂ R2. For every
i = 1, . . . ,N2 − 1, we represent the bond between the atom
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i and the atom i + 1 by the vector bi = qi+1 − qi . Then the
total energy of the system is given by

E(q1, . . . ,qN2 ) = Es(q1, . . . ,qN2 ) + Eb(q1, . . . ,qN2 )

+Ew(q1, . . . ,qN2 ),

where the stretching energy is defined by a harmonic potential

Es(q1, . . . ,qN2 ) =
N2−1∑
i=1

ks

2

(‖bi‖ − h2

h2

)2

, (1)

with ks being the spring constant. The bending between the
adjacent links of the chain is penalized by introducing torsional
springs connecting these links and therefore the associated
bending energy is given by

Eb(q1, . . . ,qN2 ) =
N2−2∑
i=1

kb

2
(θi+1 − θi)

2, (2)

where kb is the torsional constant and θi is the angle between
the ith link and the x axis defined by

qi+1 − qi = ‖bi‖(cos(θi), sin(θi))

for every i = 1, . . . ,N2 − 1. Assuming that |θi+1 − θi | � 1
for all i = 1, . . . ,N2 − 1, in the following we will consider
the expression

Eb(q1, . . . ,qN2 ) = kb

N2−1∑
i=2

‖bi‖‖bi−1‖ − bi · bi−1

‖bi‖‖bi−1‖ (3)

for the bending energy that is equivalent to (2) to leading order.
The energy of the weak van der Waals interaction between

Ĉ1 and Ĉ2 is defined by

Ew(q1, . . . ,qN2 ) = ω

N2∑
i=1

N1∑
j=1

g

(‖pj − qi‖
σ

)
, (4)

where g is a given weak pairwise interaction potential and pj =
(pj ,0) ∈ R2, j = 1, . . . ,N1, are the positions of the atoms on
the rigid chain. The parameters σ and ω define the equilibrium
interatomic distance and the strength of the potential energy
(4), respectively. In what follows, we assume that g is the
classical Lennard-Jones 12-6 potential given by

g(r) = r−12 − 2r−6.

III. CONTINUUM MODEL

As a first step in formally deriving a continuum model,
we assume that the chains of atoms are embedded in two
sufficiently smooth curves C1 and C2. (See Fig. 1, top). Hence,
the lower curve C1 is straight and rigid, while the upper curve
C2 can deform. We denote these two curves in the reference
configuration by C0

1 and C0
2 . We assume that

C0
1 = {(s,0) : s ∈ [0,L]}, C0

2 = {(s,σ ) : s ∈ [0,L]}. (5)

Letting hi , i = 1,2, denote the equilibrium spacing for the
atoms on C0

i , we assume that the atoms on C0
i are a distance

hi apart. Note that we do not assume that the system of two
chains is stress-free in the reference configuration.

FIG. 2. Reference (top) and deformed (bottom) configurations of
the system of two chains in nondimensional coordinates.

We let (u(s),v(s)) be the displacement of the point (s,σ ) on
C0

2 . Hence the deformed curve C2 is given by

{(s + u(s),σ + v(s)) : s ∈ [0,L]}. (6)

In particular, an atom at the point (si,σ ) on C0
2 is displaced to

the point (si + u(si),σ + v(si)). (See Fig. 1, bottom).
We assume that σ � L, i.e., that the spacing between the

chains is much less than the length of the chains. To exploit
this, we introduce the rescalings

t = s

L
, ξ̄ = u

L
, η̄ = v

L
, Ē = E

ω
(7)

and the nondimensional parameters

ε = σ

L
, δ1 = h1

σ
, δ2 = h2

σ
,

γe = ks

ωδ2
, γb = kbδ2

ω
. (8)

We obtain with a slight abuse of notation that

C1 = {(t,0) : t ∈ [0,1]},
(9)

C2 = {(t + ξ̄ (t),ε + η̄(t)) : t ∈ [0,1]}.
We assume that δi = O(1), i = 1,2, i.e., the distance between
the atoms within each chain is comparable to the distance
between the chains (and hence both are much smaller than
the length of the chains). Furthermore, in order to observe the
registry effects on a macroscale, we assume that

δ2 − δ1 = O(ε), (10)

so that the mismatch between the equilibrium spacings of the
two chains is small.

We assume that ξ̄ = εξ and η̄ = εη, so C2 is parametrized
by


(t) = (t + εξ (t),ε + εη(t)) with t ∈ [0,1]. (11)

(See Fig. 2). These scalings for the displacements are appro-
priate for small deformations considered here and eventually
will lead to expressions for the strains similar to those for
Föppl–von Kármán theory.

In the rescaled coordinates, the atoms in C0
2 are located at the

points q0
i = (ti ,ε), where ti = εδ2i for i = 1, . . . ,N2. The ith

atom is then displaced to the point qi = (ti + εξ (ti),ε + εη(ti))
for every i = 1, . . . ,N2.
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A. Elastic energy contribution

We now take advantage of the fact that ε � 1. By using the
Taylor expansions of ξ (ti) and η(ti) in ε, the bond bi between
the atom i and the atom i + 1 can be expressed in the form

bi = ε(δ2 + ξ (ti+1) − ξ (ti),η(ti+1) − η(ti))

= εδ2

(
1 + εξ ′(ti) + δ2ε

2

2
ξ ′′(ti) + δ2

2ε
3

6
ξ ′′′(ti), εη′(ti)

+δ2ε
2

2
η′′(ti) + δ2

2ε
3

6
η′′′(ti)

)
+ o(ε3). (12)

Substituting these expansions into the expressions (1) and (3)
for the stretching and bending energies, respectively, we can
redefine both energies in terms of values of ξ and η at ti , where
i = 1, . . . ,N2 − 1. Preserving the notation for the energies, we
have that

Ēs[ξ,η] = γeδ2ε
2

2

N2−1∑
i=1

[(
ξ ′(ti) + ε

2
{[η′(ti)]

2 + δ2ξ
′′(ti)}

)2

−ε2

3
{3[ξ ′(ti)η′(ti)]

2 − 3δ2ξ
′(ti)η′(ti)η′′(ti)

−δ2
2ξ

′(ti)ξ ′′′(ti)}
]

+ o(N2ε
4) (13)

and

Ēb[ξ,η] = γbδ2ε
4

2

N2−1∑
i=2

[η′′(ti)]
2 + o(N2ε

4). (14)

Here the number of terms in the expansion of Ēs is chosen
so as to match the power of ε in the lowest-order term in the
expansion of Ēb.

We now recall that C0
2 has a unit length in nondimensional

coordinates and that the spacing between the atoms is equal to
εδ2 � 1. Hence, the number of atoms in C0

2 is approximately
1
ε

and therefore

Ēs[ξ,η] ∼ γeε

2

∫ 1

0

[(
ξ ′(t) + ε

2
{[η′(t)]2 + δ2ξ

′′(t)}
)2

−ε2

3
{3[ξ ′(t)η′(t)]2 − 3δ2ξ

′(t)η′(t)η′′(t)

−δ2
2ξ

′(t)ξ ′′′(t)}
]
dt =: Eε

s [ξ,η] (15)

and

Ēb[ξ,η] ∼ γbε
3

2

∫ 1

0
[η′′(t)]2

dt =: Eε
b [ξ,η]. (16)

From now on, we assume that the admissible functions
ξ and η satisfy periodic boundary conditions, i.e., ξ (0) =
ξ (1), η(0) = η(1), ξ ′(0) = ξ ′(1), η′(0) = η′(1), etc. With this
assumption, after integrating by parts, the stretching energy in
(15) can be written as

Eε
s [ξ,η] = γeε

2

∫ 1

0

[(
ξ ′(t) + ε

2
[η′(t)]2

)2

− ε2[ξ ′(t)η′(t)]2

−ε2δ2
2

12
[ξ ′′(t)]2

]
dt. (17)

C1p−1 p0

C0
2

ki = offset between lattices

q0
i

εδ1

C2

εξ

εη

ε

qi

FIG. 3. Finding dij .

Here the term {ξ ′(t) + ε
2 [η′(t)]2}2

is a one-dimensional version
of the Föppl–von Kármán energy describing large deflections
of thin flat plates. Note that the remaining higher-order
nonlinear elastic terms coupling the vertical and horizontal
components of deformation are nonpositive and thus problem-
atic from the point of view of establishing the existence of a
solution to the corresponding variational problem. In Sec. III C
we argue that neglecting these terms should not affect the
global behavior of a minimizer of the full continuum energy.

B. van der Waals energy contribution

We now discuss the contribution to the energy from the van
der Waals interactions, that is, the continuum version of (4),
which has the form of

Eε
w[ξ,η] = 1

ε

∫ 1

0
G(t,ξ,η)dt. (18)

The difference in our model is in defining a function G that
gives a continuum description of the mismatch of the spacing
between the atoms on each chain. We will first focus on the
inner sum of (4) and try to estimate the interaction of a given
atom on the deformable chain with all the atoms on the rigid
chain. We accomplish this by tracking the offset between the
two lattices embedded in C1 and C2 as a function of t .

Our starting point is to pick an atom i on C2. A discrete
description of the total interaction energy between this atom
and the atoms on C1 is given by

∞∑
j=−∞

g(dij /ε), (19)

where dij is the distance between the fixed atom i on C2 and
the atom j on C1. Here we replace the finite rigid chain with
a larger rigid chain that contains infinitely many atoms. Due
to the rapid decay of the potential function g as it argument
tends to ∞, this should have no effect on the total interaction
energy unless the atom i lies very close to an end point of the
deformable chain. Without loss of generality, we will assume
that, in the reference configuration, the leftmost atom on the
deformable chain C0

2 lies directly above an atom on C1.
To write down an expression for dij , we let ki denote the

offset between the atomic lattices of the two chains in the
reference configuration as measured at the atom i on C0

2 . Then
ki is the distance between the projection of the atom i onto C1

and the first atom on C1 to the left of this projection. We will
label this atom on the rigid chain as the atom with the index
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C0
2

t = iεδ2

ki = mod( 2 1)

εδ2 C1

εδ1

FIG. 4. Definition of the lattice offset.

j = 0. (See Fig. 3). It is now clear that

dij =
√

[jεδ1 + ki + εξ (εδ2i)]2 + [ε + εη(εδ2i)]2. (20)

Furthermore, since the atom at the left end of C0
2 is directly

above the zeroth atom on C1, if the horizontal component of
the position of the atom i on C2 is ti = εδ2i, then

ki = mod(iεδ2,εδ1) = iε(δ2 − δ1) − i1εδ1

= iεδ2(δ2 − δ1)/δ2 − i1εδ1 (21)

for some i1 ∈ N. (See Fig. 4.) Hence for any t we define

k(t) := εαt, (22)

where α := (δ2 − δ1)/εδ2 = O(1). Therefore, our function G

that gives a continuum description of the mismatch of the
spacing between the atoms on each chain is defined by

G(t,ξ (t),η(t))

=
∞∑

j=−∞
g(dij /ε)

=
∞∑

j=−∞
g

(√
[(j − i1)εδ1 + k(t) + εξ (t)]2 + [ε + εη(t)]2

ε

)

=
∞∑

j=−∞
g{

√
[jδ1 + αt + ξ (t)]2 + [1 + η(t)]2}, (23)

where we translated the index j by i1 on the last step.

C. Continuum energy

Putting together all the contributions, one choice for the
continuum energy of the system is

Eε[ξ,η] := γsε

2

∫ 1

0

[(
ξ ′(t) + ε

2
[η′(t)]2

)2

− ε2[ξ ′(t)η′(t)]2

− ε2δ2
2

12
[ξ ′′(t)]2

]
dt + γbε

3

2

∫ 1

0
(η′′)2dt

+ 1

ε

∫ 1

0
G(t,ξ,η)dt. (24)

Note that the variational problem associated with the energy
(24) is not well posed since the negative sign in front of (ξ ′′)2

leads to min Eε = −∞. This issue is due to our choice to
terminate the expansion (12) of the bond vector at O(ε4);
once the additional terms are included, the coefficient in front

of the term containing the third derivative of ξ squared will
be positive. The downside of incorporating higher derivatives,
however, is that the model quickly becomes more complicated.

From the Ginzburg-Landau structure of the energy in (24),
if we expect the minimizers of (24) to develop wrinkles of
characteristic width ε, then we should expect all derivatives
of the minimizers to appear as powers of ε−1 inside the
wrinkled regions. Accordingly, all elastic terms in (24) will
then contribute roughly the same amount to the overall energy.
In fact, a quick glance at (12) indicates that all terms in
that expansion can also have the same magnitude inside the
wrinkles, possibly invalidating the asymptotic procedure that
led to (24).

On the other hand, in the regions between the wrinkles,
all minimizers should have bounded derivatives and the terms
with higher powers of ε in (24) should simply provide small
corrections to the lower-order contributions. The situation is
not unlike that arising in continuum modeling of crystalline
solids, where the structural defects, such as dislocations, can
only be described in terms of their influence on the global
strain field, without properly resolving the cores of the defects.
In order to fully resolve these cores, an alternative approach
would be to use a quasicontinuum method that combines a
continuum description in the bulk with the discrete description
in a vicinity of each defect [15].

With these observations in mind, we will adopt the
following strategy to formulate a purely continuum theory.
Since the negative terms in (24) should only contribute inside
the wrinkles and since the asymptotic procedure that led to
(24) is likely not to be valid inside the wrinkled regions, we
neglect these terms from now on. We conjecture that the overall
effect of this change on the structure of minimizers will be
restricted to a perturbation in the cross section of the wrinkles.
Numerical simulations in the next section appear to support
this statement and in fact show that the predictions of the
proposed continuum model are close to the results of discrete
simulations, even inside the wrinkles. We set

Eε[ξ,η] := γsε

2

∫ 1

0

(
ξ ′ + ε

2
(η′)2

)2

dt + γbε
3

2

∫ 1

0
(η′′)2dt

+ 1

ε

∫ 1

0
G(t,ξ,η)dt. (25)

The energy functional in (25) can be viewed as a generalization
of similar energies for one-dimensional Frenkel-Kontorova
chains with the elastic contribution similar to that in Föppl–von
Kármán theory.

Note that both the discrete and continuum nondimensional
models contain the small parameter ε and, in particular, the
continuum model cannot be thought of as a limit of the
discrete model as ε → 0. Instead, we conjecture that both
models converge to the same asymptotic limit as ε → 0 in
the appropriate sense. The limit has to be understood within
the framework of 
 convergence [16] so that both energies
are 
 equivalent [17]. Hence the number of terms retained
in the expansion of the discrete problem in order to obtain
the continuum problem should be sufficient to reproduce the
behavior of the discrete system for a small ε. The proof of 


equivalence is beyond the scope of the present work.
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FIG. 5. Discrete simulation result with σ = 1.0, ω = 1.0, h1 = 1.0, h2 = 0.99, kb = 100.0, and ks = 10.0. The atoms on the rigid chain
(not shown) occupy positions (j,0), where j is an integer. Inset (a) shows that in the commensurate regions, each atom falls into a potential
well created by the rigid chain. Inset (b) shows how the wrinkle allows six atoms to span over five potential wells. The two lines of overlapping
circles below the plot form the one-dimensional moiré pattern.

The Euler-Lagrange equations for (25) are

−γsε(ξ ′′ + εη′η′′) + ε−1Gξ (t,ξ,η) = 0, (26)

−γsε
2

[(
ξ ′ + ε

2
(η′)2

)
η′

]′
+ γbε

3η′′′′ + ε−1Gη(t,ξ,η) = 0.

(27)

Here (26) corresponds to the horizontal force balance and the
function Gξ describes how the tensile or compressive force
in the chain changes with axial position. Similarly, (27) is
the vertical force balance, including the vertical force Gη that
arises from coupling between the chain’s mismatch and the
out-of-plane displacement of the deformable chain. Note that
the vertical deformation in the von Kármán contribution to
(25) is multiplied by the small parameter ε, in contrast with a
typical form of this expression.

The natural boundary conditions are

ξ ′(0) + ε

2
[η′(0)]2 = ξ ′(1) + ε

2
[η′(1)]2 = 0, (28)

η′′(0) = η′′(1) = 0, (29)

η′′′(0) = η′′′(1) = 0. (30)

These boundary conditions have natural interpretations in
elasticity theory: (28) corresponds to the assumption of no
applied compression, while (29) and (30) indicate that there is
no applied moment or shear force. The boundary conditions
and the force balances (26) and (27) can be modified in the
standard way to include applied loads and body forces.

IV. NUMERICAL RESULTS

In this section, we study the predictions of our continuum
model by numerically solving the two-point boundary-value
problem defined by the Euler-Lagrange equations (26) and
(27) with the boundary conditions (28)–(30). We make several
basic comparisons between the predictions of our continuum
model and those of the discrete model. The discrete simulations
are conducted by using dissipation-dominated (gradient-flow)

dynamics based on the discrete energy described in Sec. II.
Recall that this energy has three terms that correspond to the
stretching (1) and bending (2) energies of the deformable chain
and the van der Waals interaction between the deformable
and the rigid chains (4). Assuming gradient-flow dynamics
gives a system of ordinary differential equations. These are
solved numerically until the solution equilibrates, which
yields solutions that are minimizers of the discrete energy.
As an initial condition for both the discrete and continuum
simulations, we assume that the rigid and deformable chains
of atoms are parallel and at a distance σ apart.

Figure 5 shows the result of an atomistic simulation for
which σ = 1.0, ω = 1.0, h1 = 1.0, h2 = 0.99, kb = 100.0,
and ks = 10.0. There are two relatively large regions on which
the atoms on the deformable chain are uniformly spaced and
the chain is parallel to the rigid chain. These two flat regions
are separated by a single narrow region with a relatively large
vertical displacement, or wrinkle. The atoms on the rigid chain
are at positions (j,0) with j an integer. Hence, the van der
Waals interaction from the rigid chain creates potential wells
located above every point j + 1/2 on the x axis.

As can be seen in inset (a) in Fig. 5, in the regions where
the deformable chain is parallel to the rigid chain, the atoms
fall into the potential wells of the van der Waals interaction.
Hence, in these regions the atoms are one unit apart. However,
because h2 = 0.99, over the length of the system there is one
“extra” atom on the chain that has no potential well. As can be
seen in inset (b) in Fig. 5, this extra atom is accommodated by
a wrinkle, which minimizes the cost of placing n atoms over
n − 1 potential wells. This wrinkle forms the domain wall be-
tween the large commensurate regions to the left and the right.

One way to understand the configuration of wrinkles
that forms in a system of two incommensurate chains is to
consider the corresponding moiré pattern. As noted in the
Introduction, when two lattices with different geometries or
the same geometry but different orientations are stacked,
a larger periodic pattern, called a moiré pattern, emerges
[2,3]. A similar, one-dimensional pattern arises when two
incommensurate periodic chains of atoms are overlaid. In
Fig. 5 this pattern is shown below the plot of the discrete
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FIG. 6. Discrete and continuum simulation results with σ = 1.0, ω = 1.0, h1 = 1.0, ks = 1.0, and kb = 1.0. The parameter h2 = 1.01 and
h2 = 0.99 on the left and right, respectively. The discrete simulation involves 100 atoms on the rigid chain, while there are 99 (left) and 101
(right) atoms on the deformable chain per period.

solution. The atoms of the rigid and deformable chains in the
reference configuration are both represented by circles. At the
left end point, the atoms of the deformable chain lie exactly
above the midpoint between the atoms of the rigid chain, so
the corresponding circles show the minimum overlap. As one
moves to the right along the chains, because of the difference
between the lattice parameters h1 and h2, the atoms of the
deformable chain progressively shift in relation to the atoms
of the rigid chain until the circles lie exactly on top of each
other. This creates a pattern of lighter and darker regions, where
the darker regions correspond to optimal atomic registry. On
the other hand, the atoms of the deformable chain are out of
registry in the lighter regions and these are where the wrinkles
form. Note that each light region corresponds to a single extra
atom on the deformable chain, hence the number and locations
of light regions in the moiré pattern should predict the number
and the locations of wrinkles. For instance, in Fig. 5, there
is exactly one extra atom on the deformable chain and, as a
consequence, exactly one light region and one wrinkle.

Figures 6 and 7 show the numerical solutions of both
discrete and continuum models for the parameter values

σ = 1.0, ω = 1.0, h1 = 1.0, ks = 1.0, kb = 1.0 (31)

and for two different values of h2. In both cases, we see that the
continuum solution has the same structure as the discrete so-
lution, with a single wrinkle separating two commensurate re-
gions. The continuum solution is close to the discrete solution
except that the amplitude of the wrinkle in the continuum
solution is significantly smaller than that in the discrete
solution.

To further understand the details within the wrinkle, we
note that when h1 < h2, there are fewer atoms per period
on the deformable chain than there are atoms on the rigid
chain. Consequently, the deformable chain contracts between
the wrinkles so that interatomic distance in the deformable
chain matches that in the rigid chain. The contraction in the
bulk causes the expansion of distances between atoms of
the deformable chain inside the wrinkles, thus making the
wrinkles relatively wide (the left plot in Fig. 7). On the other
hand, when h1 > h2, there are more atoms per period on the
deformable chain, leading to bulk expansion and wrinkles that
are relatively narrow (the right plot in Fig. 7).

Note that only three atoms form the body of the wrinkle
in the discrete solution in the two cases shown in Figs. 6 and
7. This is to be expected since the nondimensional width of
the wrinkle and the nondimensional interatomic distance are
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FIG. 7. Details of atomistic structure near the wrinkle when σ = 1.0, ω = 1.0, h1 = 1.0, ks = 1.0, and kb = 1.0. The parameter h2 = 1.01
and h2 = 0.99 on the left and right, respectively. The discrete simulation involves 100 atoms on the rigid chain, while there are 99 (left) and
101 (right) atoms on the deformable chain per period.
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FIG. 8. Discrete and continuum displacements for σ = 1.0, ω = 1.0, h1 = 1.0, h2 = 0.99, ks = 1.0, and kb = 1.0. The horizontal and
vertical displacements are shown on the left and right, respectively. The discrete simulation involves 100 atoms on the rigid chain, while there
are 101 atoms on the deformable chain per period.

of order ε (these are of order 1 in dimensional units). With
so few atoms, there is no reason to expect that the continuum
approximation should remain valid inside the wrinkles. The
problem is further compounded by large gradients of the
continuum solution in these singular regions. Indeed, as Fig. 7
demonstrates, the match between the discrete and continuum
solutions is reasonable away from the center atom inside
the wrinkle, while there is a significant discrepancy near the
center atom. A further problem, associated with contraction
inside the wrinkle, can be seen in the plot on the right in
Fig. 7. The continuum solution forms a narrow loop near
the maximum, indicating self-penetration of the deformable
chain. Hence, the continuum solution for the combination of
parameters (31) is unphysical near the top of the wrinkle. Note,
however, that the nonphysicality is restricted to the region
where there is only a single atom of the discrete solution.
Indeed, as Fig. 8 demonstrates, the continuum displacements
predict the discrete displacements well at the atomic positions
for the values (31) of the parameters used to produce the plot
on the right in Fig. 7. We emphasize that the accuracy of
the continuum approximation is the same for both plots in
Fig. 7. There is no self-penetration in the plot on the left

simply because near the wrinkle the chain experiences local
expansion rather than contraction.

The elastic constants ks and kb are the same in (31), so the
cost of stretching and bending is comparable for the solutions
depicted in Figs. 6 and 7. That bending is relatively expensive
tends to spread bending deformation, causing the dips that
form on both sides of the wrinkles as well as depressing
the amplitude of the wrinkles themselves. In particular, large
bending stiffness causes the deformable sheet to “undershoot”
the equilibrium distance between the chains in registry at the
edge of a wrinkle. A subsequent “bounce off” away from the
substrate is the cause of the dips adjacent to the wrinkles. A
macroscopic version of this effect is well known for elastic
beams on a liquid [9]. An analysis similar to the one presented
in [9] can be performed here to study the shape of the dips.
Indeed, the ability to analyze the system of ordinary differential
equations to establish the properties of equilibrium solutions
is one of the clear advantages of working with the continuum
rather than the discrete model.

We now fix the strength of the Lennard-Jones interaction
ω = 1 and investigate the influence of the elastic constants on
the discrete and continuum solutions. Generically speaking,
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FIG. 9. Discrete and continuum simulation results with σ = 1.0, ω = 1.0, h1 = 1.0, ks = 100.0, and kb = 1.0. The parameter h2 = 1.01
and h2 = 0.99 on the left and right, respectively. The discrete simulation involves 100 atoms on the rigid chain, while there are 99 (left) and
101 (right) atoms on the deformable chain per period.
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FIG. 10. Discrete and continuum simulation results with σ = 1.0, ω = 1.0, h1 = 1.0, ks = 1.0, and kb = 100.0. The parameter h2 = 1.01
and h2 = 0.99 on the left and right, respectively. The discrete simulation involves 100 atoms on the rigid chain, while there are 99 (left) and
101 (right) atoms on the deformable chain per period.

we expect that with larger elastic constants the solution
should incur a larger penalty for elastic deformation and,
consequently, should exhibit smaller gradients. This in turn
should lead to wider wrinkles that involve more atoms per
wrinkle. Both effects should have a positive influence on the
accuracy and applicability of the continuum approximation
near the wrinkles.

In Fig. 9, we set ks = 100.0 and kb = 1.0 so that stretching
deformation is significantly more expensive than bending. As
a result, the bending stiffness is small and the dips next to
the wrinkles disappear, in the case of both local stretching
(Fig. 9, left) and local compression (Fig. 9, right). As expected,
there are more atoms involved in forming a wrinkle and the
continuum approximation matches the discrete solution very
well. Further, the amplitude of the wrinkles is larger than that
observed in Fig. 6. Note that, even though the number of atoms
that form the wrinkle is now larger, the wrinkle itself still serves
to accommodate only one extra atom on the deformable chain.

In Fig. 10, we consider the opposite case, ks = 1.0 and
kb = 100.0, so that bending is significantly more expensive
than stretching. Because the bending stiffness is now large, the
dips next to the wrinkles are enhanced and the wrinkles have

a smaller amplitude than in Fig. 6. The combination of large
bending stiffness and compression causes the self-penetration
near the top of the wrinkle in the plot on the right in Fig. 10.
Note that, typically, bending in two-dimensional materials is
much cheaper than in-plane compression [18,19], so in practice
one is unlikely to encounter the extreme situation depicted in
the plot on the right in Fig. 10.

The solutions for smaller value of the parameter ε, when
the size of the system is assumed to be larger given the
same interatomic distance, are shown in Figs. 11–13. For the
relatively large stretching constant ks = 10.0, it appears that all
continuum solutions match well their discrete counterparts.

If the deformable chain has three extra atoms over the length
of the system, then three equispaced wrinkles form as shown in
Fig. 14. The locations and the number of wrinkles are predicted
by the moiré pattern at the bottom of Fig. 14.

The amplitude of the wrinkles is determined by how close
an atom on the deformable chain tends to be to the rigid
chain when it is in registry (i.e., it is positioned above the
midpoint between two atoms of the rigid chain) versus when
it is out of registry (i.e., it is positioned exactly above one of
the atoms of the rigid chain). As we can see in Fig. 15, the
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FIG. 11. Discrete and continuum simulation results with σ = 1.0, ω = 1.0, h1 = 1.0, ks = 10.0, and kb = 1.0. The parameter h2 = 1.003
and h2 = 0.9967 on the left and right, respectively. The discrete simulation involves 300 atoms on the rigid chain, while there are 299 (left)
and 301 (right) atoms on the deformable chain per period.
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FIG. 12. Details of atomistic structure near the wrinkle when σ = 1.0, ω = 1.0, h1 = 1.0, ks = 10.0, and kb = 1.0. The parameter
h2 = 1.003 and h2 = 0.9967 on the left and right, respectively. The discrete simulation involves 300 atoms on the rigid chain, while there are
299 (left) and 301 (right) atoms on the deformable chain per period.

equilibrium distance for an atom in registry and out of registry
are, respectively, ∼0.86 and ∼0.98. The lower of these values
corresponds to the distance between the chains when they
are in registry in Figs. 6–14, while the higher value closely
approximates the height of the wrinkles observed in the same
figures, unless the amplitude is depressed due to a relatively
large bending stiffness.

We conclude this section by emphasizing that the wrinkling
predicted by the continuum model occurs because the interac-
tion energy G retains information about the discrete character
of the substrate. Recall that, in the nondimensional variables,
h1 is the spacing between atoms on the rigid chain and σ is
the equilibrium separation of the Lennard-Jones atom-to-atom
potential. Because of the fast decay of this potential, the
equilibrium separation essentially determines the range of the
van der Waals interaction between atoms. If h1 is close to σ ,
an atom on the deformable chain interacts with only the one or
two nearby atoms, both to the left and to the right on the rigid
chain. The strength of the interaction varies significantly in
the regions above the gaps between atoms on the rigid chain,
which creates deep potential wells. As explained above, these
potential wells along with the mismatch drive the formation of
isolated wrinkles. Conversely, when h1 is much smaller than
σ , an atom on the deformable chain interacts with a relatively
large number of nearby atoms on the rigid chain and the gaps
between these nearby atoms are relatively small. Hence the

atom essentially experiences the average of this interaction,
which is like a continuum approximation in which the strength
of the interaction depends only on the vertical distance from
the line of fixed atoms. One would not expect the formation of
isolated wrinkles in this case.

To support these observations, we note that for the solutions
shown in Figs. 6–14, h1 = σ = 1.0. We contrast the isolated
wrinkles observed in those cases with the discrete and
continuum solutions shown in Fig. 16. For the discrete solution
in Fig. 16, h1 = 1.01 and σ = 3.0 and the corresponding
configuration is approximately sinusoidal. Furthermore, the
amplitude of the solution is on the order of 10−4, while the
height of the wrinkles in Figs. 6–14 is on the order of 10−2.
The continuum solution for parameters corresponding to those
used in the discrete simulation shows an excellent match with
the discrete solution.

V. CONCLUSION

We have applied an upscaling procedure to develop a
mesoscopic continuum model of the cross section of a
graphene sheet interacting with a rigid crystalline substrate.
Without making any a priori assumptions on the structure of
the continuum model, we established that the elastic part of
the model resembles the Föppl–von Kármán theory of thin
rods but without thickness as that notion is meaningless for
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FIG. 13. Discrete and continuum simulation results with σ = 1.0, ω = 1.0, h1 = 1.0, h2 = 0.9967, ks = 10.0, and kb = 100.0. The plot on
the left shows the simulation results over a full period, while the plot on the right shows the details of the atomistic structure near the wrinkle.
The discrete simulation involves 300 atoms on the rigid chain and 301 atoms on the deformable chain per period.
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FIG. 14. Discrete and continuum simulation results with σ = 1.0,
ω = 1.0, h1 = 1.0, h2 = 0.99, ks = 100.0, and kb = 1.0. The discrete
simulation involves 300 atoms on the rigid chain and 303 atoms
on the deformable chain per period. There are three wrinkles to
accommodate the three extra atoms on the chain. The two lines of
overlapping circles below the plot form the one-dimensional moiré
pattern.

the two-dimensional (2D) materials (or their one-dimensional
reduction). Our approach allows us to identify the potential
function that keeps track of microscopic registry effects on the
mesoscale and also determines the correct orders of magnitude
of various contributions to the continuum energy in terms
of the small parameter ε. The main difference in this work
is in the development of the continuum contribution for the
weak interaction between the deformable and rigid chains.
Although a continuum description, this energy retains discrete
information about any mismatch between the chains.

Numerical simulations demonstrate that the predictions of
the mesoscopic model are generally in close correspondence
with the configurations obtained via a discrete molecular

0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01 1.03 1.05
y

-10

-5

0

5

10

f

Above atom
Above midpoint

FIG. 15. van der Waals force on an atom of the deformable chain
when this atom is the distance y above the midpoint between two
adjacent atoms of the rigid chain (dash-dotted line) or the distance y

directly above an atom of the rigid chain (solid line). The atom is in
equilibrium when f = 0.
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FIG. 16. Discrete and continuum simulation results with σ = 3.0,
ω = 1.0, h1 = 1.01, h2 = 0.99, ks = 10.0, and kb = 100.0. The
discrete simulation involves 99 atoms on the rigid chain and 101
atoms on the deformable chain per period. Note that the vertical
scale is approximately 100 times smaller than the vertical scale in
Figs. 6–14.

dynamics approach. In both cases, relaxation of slightly
mismatched chains resulted in formation of wrinkles, where
flat, approximately uniform domains are separated by wrinkles
characterized by relatively large out-of-plane deformations.
Fixing the strength of the Lennard-Jones potential and using
a flat undeformed configuration as the initial condition, we
considered a number of different parameter regimes. When
the elastic constants corresponding to stretching and bending
are of order 1, the wrinkles contain a small number of atoms
and the quality of the continuum approximation near the top of
the wrinkle is poor, while the approximation is accurate both
near the base of the wrinkle and in the flat regions of registry.
In the case when the stretching constant is of order greater than
10 and is larger than the bending constant, which is of practical
importance, a solution of the continuum model approximates
well the corresponding solution of the discrete model, even
near the top of the wrinkle. This improved approximation
occurs because there are more atoms per wrinkle and because
the solution exhibits relatively smaller gradients for a given ε.

Compared to the number of atoms on the rigid chain,
there can be more or fewer atoms on the deformable chain.
The number of wrinkles is then equal to the difference
between the number of atoms on the chains, with each
wrinkle compensating for exactly one extra atom or vacancy.
The locations of the wrinkles correspond to the regions of
the largest misfit in the moiré pattern for a given system of
incommensurate deformable and rigid chains.

Unlike what is seen in analogous macroscopic systems
consisting of a thin film attached to a substrate, subject to
misfit strains, here the wrinkling is observed not only when the
deformable chain is compressed but also when it is stretched.
This is true because the equilibrium distance between an atom
of the deformable chain and the rigid chain is strictly larger
in the region of misregistry than in the region of registry. The
difference between these equilibrium distances determines the
amplitude of a wrinkle.

Periodic boundary conditions were imposed in this work
primarily for simplicity, and other boundary conditions can be
considered. The model can also be extended in a standard way
to include applied body forces. In this more general setting it
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would be possible to consider a problem in which the registry
effects can be combined with a standard compressive misfit
between the deformable and rigid chains. It would be of interest
to understand how the wrinkling pattern would respond to the
applied loads and whether different types of singular regions,
e.g., wrinkles and delamination blisters, may coexist in the
same system.

Continuum modeling that retains discrete registry effects
is important both for solving computational problems more
efficiently and for allowing theoretical insight into mesoscopic
pattern formation in graphene and other 2D materials. Here
one of the principal advantages is the ability to fully utilize
the powerful tools provided by the theory of differential
equations and variational calculus. The similarity between
the structure of the continuum model that was derived in
this paper and the existing models of a thin film on an
adhesive substrate should allow for an extension of the
known results for these macroscopic systems to 2D materials.
For example, the formation of dips in the vicinity of the
wrinkles, which was discussed in the preceding section,
may likely be explained using the techniques developed in

[9]. Continuum modeling may also facilitate the study of
the influence of atomic relaxation of slightly mismatched
graphene or substrate lattices on electronic properties of the
system [2].

In addition to the analysis of the one-dimensional model,
future work should include a rigorous verification of our
conjecture that both the discrete and continuum models
converge to the same asymptotic limit in the appropriate sense
as ε → 0. Here the limit has to be understood within the
framework of 
 convergence [16]. This analysis should justify
the number of terms that was retained in the expansion of the
discrete problem in order to obtain the continuum problem.
Further, an extension of the derivation presented in this paper
to a full model for a 2D material consisting of two slightly
mismatched, interacting lattices could be developed.
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