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Surface contact charging
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Experiments in several laboratories have demonstrated that identical materials brought into repeated contact
generate unexplained and growing surface charge domains. Here we show that the growth of charge from these
experiments can be fitted to a previously developed first-principles model for contact charging based on feedback
of random surface polarizations. Surprisingly this mechanism, which leads to exponential growth in colliding
granular beds, can also explain nonexponential growth of surface charging, as well as predicting spatiotemporal
growth of charge domains and their dependencies on material parameters.
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I. BACKGROUND

Anyone who has looked under a couch knows how
assiduously dust can spread and adhere to surfaces. The motion
and sticking of particles is not limited to tiny motes of dust:
rubbing a balloon against your hair—or even against another
balloon—will generate enough charge to make it stick to a wall.
Merely a curiosity at home, particle charging is a serious issue.
Faraday himself was hired to investigate a mine explosion
that killed 95 men and boys; among his findings were that
thick layers of flammable coal dust adhered to surfaces near
the explosion [1]. Technologically, a high point in the field
was the invention of the photocopier by Carlson who had
the idea—rejected by consultants as pointless—that charged
particles could be used to form a permanent image on paper
[2].

So how do particles—or more generally surfaces—charge?
In view of the ongoing and historic nature of the problem,
an observer would be forgiven for believing that the question
has been answered, however even charging material as com-
monplace as a child’s balloon is not easily explained [3,4].
An essential issue in the field is that several laboratories have
demonstrated that identical materials charge one another after
symmetric contact. In Fig. 1, we summarize these results,
showing that identical balloons in sliding contact [5], identical
polycarbonate disks in rolling contact [5], and silicone sheets in
normal contact [6] all break symmetry and charge one another.
In these panels, we reproduce voltage and charge plots showing
that the quantitative charging in the three experiments appears
to behave similarly. In this paper, we analyze this problem and
show that this charging behavior is reproduced using a recently
described first-principles model [7–10]. We show fits of this
model to the three experiments in each panel of Fig. 1.

We propose that the essential physics of contacting surfaces
can be described by two lattices of identical dielectric particles
that are periodically brought into near contact. Modeling
approaches have been presented previously [7–10]; in the
present work, each particle has the same radius, R, and is fixed
in a close-packed hexagonal lattice as depicted in Fig. 2(a).
We embed two charges within every particle, each located
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3
4R from the particle center. The magnitudes and angular
locations of the charges depend on the applied field (to mimic
charge induction) and contact between upper and lower lattices
(to mimic charge neutralization). In this way, as sketched in
Fig. 2(b), if the two charges on particle i are qi1 and qi2, then the
particle will possess a net charge qi1 + qi2, and a polarization
(qi1 − qi2)�r , where �r is the vector connecting the charges, and
|�r| = 3

2R.
Evolution of charges is defined as a discrete time mapping,

where each time increment represents one cycle of bringing the
separated surfaces into and then out of contact. So if particle
i at time t has a polarization pi(t), then at time t + 1, it will
acquire polarization �pi(t + 1) given by the vector sum �pi(t) +
�pind
i . The induced polarization, �pind

i , is assumed to simply be
proportional to the electric field due to charges on the opposing
surface,

�pind
i = α

∑ �Ej (1)

as sketched in Fig. 2(a). Here α is a constant polarizability and∑ �Ej is the electric field due to all particles on the opposing
surface. Only the opposing surface is used for this calculation
because particles on either surface do not move with respect
to one another, and the energy required to change a particle’s
polarization is considered to be done by the work of moving
the surfaces—and their embedded charges—relative to one
another. In principle charges on a particle’s own surface also
contribute to induced polarization, but no work is done—and
so no charge separation is produced—by this polarization,
and so it is neglected in our calculations of surface charge
evolution.

We calculate �Ej at a fixed separation between surfaces [�Z

in Fig. 2(a)]. This separation is intended to account for the fact
that real surfaces (as in the experiments of Fig. 1) are seldom
atomically flat but have surface imperfections and asperities.

After polarization has been induced according to Eq. (1),
neutralization is imposed by requiring the vector component
of the charges on adjacent contacting surfaces to obey

q̂i → 1
2 [q̂i (2 − η) + q̂j η],

q̂j → 1
2 [q̂i η + q̂j (2 − η)], (2)
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FIG. 1. Spontaneous charging of identical materials in three experiments. (a) Latex balloons slid symmetrically in circular motions against
one another as indicated in inset, with charging measured using a noncontact voltage probe at a fixed distance after each circuit of motion;
(b) polycarbonate disks in symmetric rolling contact, with charging measured using a different noncontact probe after each rotation; (c) virgin
PDMS sheets in symmetric normal contact, with charging measured using an electrometer and Faraday cup after each contact. Data in panels
(a) and (b) are from Ref. [5], and data in panel (c) are from Ref. [6]. Broken lines show comparison with model described in text and shown
also in Fig. 3(d).

where η is a neutralization efficiency, and as indicated in
Fig. 2(b), q̂i is the fraction of charge that faces downward
on the ith particle on the top surface, and q̂j is the fraction
of charge that faces upward on the nearest particle beneath.
Explicitly, q̂i = qi(1,2)cos(ϕi), where ϕi is the polar angle of
the polarization vector �ri shown in Fig. 2(b). In this way,
if �ri were pointing vertically, ϕi would be 0, and q̂i would
be whichever charge is facing the interface between surfaces
(denoted qi(1,2)), while if �ri were pointing off of vertical, then
the nearest charge would be decomposed into a vertical and a
nonvertical component, and only the vertical component would
participate in neutralization.

As for the neutralization efficiency, when η = 0, Eq. (2)
leaves contacting charges unchanged, and when η = 1, Eq. (2)
reduces to the average charge, (qi + qj )/2. Charge is explicitly
conserved by both Eqs. (1) and (2): the total charge on each
particle is constant during induction, and the charge of pairs
of particles is constant during neutralization.

In previous work [7–10], it was demonstrated that the
mechanism of repeated polarization and neutralization defined

FIG. 2. Illustrations of charging mechanism. (a) Induction de-
fined by Eq. (1): two parallel hexagonal lattices of particles, where
the electric field on every particle is calculated by summing the fields
due to all particles on the opposing lattice. The dark particle is an
exemplar in the upper lattice whose induced polarization is as shown.
Colors here are only used to distinguish upper from lower lattices.
(b) Neutralization defined by Eq. (2): every particle in each lattice
contains two charges: qi1, qi2 in particle i, and qj1, qj2 in particle j .
Blue here indicates negative, and red positive, charges. The effective
fractions of the charges q̂i and q̂j nearest the interface between the
surfaces are defined geometrically as described in the text, and these
charges neutralize according to Eq. (2).

by Eqs. (1) and (2) leads to exponential growth in charging.
This occurs because the electric field defined by Eq. (1)
grows multiplicatively with the polarization: a straightforward
recipe for exponential growth. In this paper we show that the
same mechanism can unexpectedly lead to transient growth
in surface charging that differs from this recipe in significant
ways.

We present results of this model next, but before doing
so we stress two caveats. First, as with any model, it is
only an approximation. It does not describe the microscopic
chemistry or physics of how charges rearrange to produce
the phenomenological behaviors defined by Eqs. (1) and (2).
Several groups have published important contributions, for
example dealing with changes to effective material work
functions due to the fields produced by charged particles
[11–13], and with carriers that may be responsible for surface
charge transport [14,15]. Second, the change in polarization on
a particle inevitably feeds back on itself; i.e., the field from a
polarized particle induces a polarization on other particles that
in turn affect the original particle’s polarization. In prior work
[16], we have shown that this feedback converges rapidly; e.g.,
the error compared with the asymptotic state is typically under
0.8% after 2 iterations of polarization calculation. We therefore
use 3 iterations in our calculations, but we note that more rapid
convergence has also been shown to be possible [17].

II. HIGH-NEUTRALIZATION RESULTS

To explore the charging of surfaces, we perform simulations
in which Eqs. (1) and (2) are sequentially and repeatedly
applied to two close-packed hexagonal lattices of 50 × 50
identical particles, where the lattices are separated by �Z = 1
particle diameter [as indicated in Fig. 2(a)]. Available data
(Fig. 1) are produced in experiments in which contact times
between surfaces range from 1 second to over an hour [6],
and so we assume that there is ample time for complete
neutralization to occur. Thus we start with the case where
the neutralization efficiency is 100% [η = 1 in Eq. (2)]. This
differs from earlier simulations [7–10] of collisional grains
in which contact times are short, and so for completeness
we follow this first simulation with additional simulations in
which we investigate the effect of varying η.
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FIG. 3. Simulation results. (a) Maximum dipole moment evaluated over lattices of 50 × 50 particles vs number of contacts under application
of Eqs. (1) and (2) for polarizabilities, α, indicated. Surface asperities are modeled by taking contact to occur when arrays are �Z = 1 diameter
apart [�Z shown in Fig. 2(a)]. (b) The same plot as in (a) on a semilog scale: note exponential growth occurs after an initial concave-down
transient. (c) α = 0.01 case extended to 500 contacts, showing exponential growth after long times. (d) Concave-down regimes scale: here we
display linear plots of three exemplars where t is multiplied by a constant scale factor to produce data collapse. Broken curve is overlaid on
data from each of the existing experiments in Figs. 1(a)–1(c).

Particles are initialized with small random charges. Explic-
itly, each particle is initially neutral, with two charges qi1 =
−qi2 chosen from a uniform distribution on [–10−6, 10−6],
and with unit vector �r/|�r| connecting the charges chosen
with random azimuthal and polar angles. In Fig. 3(a),
we show the magnitude of the maximum dipole moment,
Pmax ≡ max( �pi,j ), among the 50 × 50 pairs of particles for
polarizabilities ranging from α = 0.01 to α = 1.

We calculate the maximum rather than the another measure
(e.g., the mean of absolute values, 〈|qi,j |〉) both to provide an
unambiguous measure of the fastest growth in a lattice and to
facilitate comparison with prior work [7–10]. Asymptotically,
the fastest growing charges dominate the mean and so the two
measures produce the same results. Transient growth, on the
other hand, is systematic and predictable when evaluated using
Pmax, however we have found that measures such as 〈|qi,j |〉
can vary erratically as charge domains migrate, compete, and
annihilate.

Plots in Fig. 3(a) are on a linear scale, and evidently
the growth in polarization is concave down for all cases:
qualitatively similar to what is seen in experiments (Fig. 1),
and distinct from the exponential growth reported elsewhere
[7–10].

We note that the direction of concavity can change on a
semilog scale for growth that is slower than exponential, and
if we instead plot the same data on semilog axes, we obtain
the result shown in Fig. 3(b), where we see both a concave-
down regime for shorter times, and an exponential regime
at longer times. This is most visible here for the case α =
0.32, but longer trials confirm that this is a general result
for all polarizabilities; for example in Fig. 3(c), we show an
exponential regime for α = 0.01, which appears after about
100 contacts.

We investigate the cause of nonexponential transient growth
next, but first we observe that for all α, linear plots of
the transient regime can be collapsed by simple scaling:
scaled t = ωαt , where the constant ωα is found empirically
to be 22 ± 1. In Fig. 3(d), we show three examples of this
scaling, and we also overlay the black curve from this plot as a
broken line alongside experimental data in Fig. 1. In that figure,
the broken line only represents the curve in the region of data
collapse shown in Fig. 3(d). Depending on polarizability, α,
used in experiments, charges may grow exponentially outside
of this region [as shown in Figs. 3(b) and 3(c)], or may grow
more slowly [as shown in Fig. 3(a)]. Thus the comparison
shown in Fig. 1 is not definitive; nevertheless it suggests that
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FIG. 4. Charging behaviors of 50 × 50 2D lattice model. (a)
Exemplars showing exponential growth of magnitudes of maximum
charges on lattice. Exponential growth of slowly charging examples is
not obvious, so in the inset, we expand the semilog scale in two such
cases. (b) Exponential rates of growth (after transient of 32 time steps)
of largest polarization, Pmax, as a function of polarizability, α, and
neutralization, η. Color coding distinguishes patterns observed, and
black spots identify cases shown in panel (a). (c) Patterns expressed
as α and η are varied in 0.01 increments; color coding as in panel
(b). (d) Snapshots of net charge magnitudes on upper surface after
50 time steps. Static domains are steady; the other states fluctuate in
time (also shown in the videos in the Supplemental Material [22]).
Color coding according to charge on logarithmic scale (i.e., red value
= +log10|Pmax|, blue value = −log10|Pmax|; see text).

a mechanism such as we have described may be involved in
surface charging.

III. CHARGING VERSUS POLARIZABILITY AND
NEUTRALIZATION

To better understand the mechanisms underlying contact
charging, we vary the polarizability, α, from 0.1 to 0.9, and
the neutralization, η, from 0 to 1, in the model that we have
defined. As illustrated in Fig. 4(a) through several exemplars at
broadly ranging choices of α and η, we find that charge growth
is invariantly exponential for sufficiently many repetitions of
contact. Despite this apparent similarity, qualitatively different
patterns of charging—both in time and in space—are seen as
α and η are varied.

This is apparent by considering Fig. 4(b), where we plot
exponents of growth obtained in the exponential regime (for
times >32). Here we see a systematic confirmation first that
most choices of α and η produce asymptotically exponential
growth rates, and second that distinct regimes of exponential
growth are identifiable. As we will describe, these distinct
regimes of growth rates are correlated with distinct spatial
patterns of growth.

In Fig. 4(c), we identify these spatial patterns in a more
detailed phase diagram. Here we have performed multiple
simulations at increments of 0.01 in both α and η and
at varying time scales (between 50 and 500 iterations,

until an asymptotic spatial pattern was obtained). We found
four distinct patterns [shown as snapshots in Fig. 4(d)] as
follows.

For small η [magenta in Figs. 4(c) and 4(d)] we observe
an irregular static array of positively and negatively polarized
domains. We will discuss this pattern in more detail shortly, but
in overview, domains attain a fixed polarization direction early
in the simulation, and consolidate thereafter. There is some
jockeying for position during a transient period, and for larger
α charges grow more rapidly, but essentially the strongest
domains establish themselves early and grow in strength—
though not in size—thereafter. We have remarked that both
polarization [Eq. (1)] and neutralization [Eq. (2)] mechanisms
are charge conserving, and consequently the number, size, and
magnitude of positively and negatively charged domains are
comparable.

For small α on the other hand, individual dipoles corre-
late little with their neighbors, and no spatial patterns are
perceptible. This makes sense since α is the measure of
neighbor-neighbor induction, and as α → 0, spatial correlation
should vanish. Growth is substantially slower than at larger
values of α, but nevertheless growth becomes exponential at
longer times: this is shown in the inset to Fig. 4(a), where
we also include a typical case of slow growth without a spatial
pattern, at α = 0.1, η = 0.9. As expected, the iterative nature
of the charging mechanism described leads asymptotically to
exponential growth for any nonzero α.

At the other extreme, at large α and η, we encounter
global oscillations. The mechanism for the emergence of this
state can be understood by observing that at large η, the
charges nearest the contacting surface (nearly) neutralize, and
only outermost charges, farthest from that surface, remain
[sketched in Fig. 5(a)]. Those residual outermost charges grow
multiplicatively after repetition of Eq. (1), and these charges
must be of opposite sign, else charge would not be conserved.
For strong neutralization but weak polarizability, the residual
charges diminish in magnitude as depicted in Fig. 5(b);
however for strong polarizability, the induced charges can in
principle exceed the magnitude of the existing charges, which
causes the ultimate charges to reverse in sign. This case is
depicted in Fig. 5(c), and results in the two outermost charges
switching signs every time step as they increase in magnitude,
which is what we see in simulations.

Between the extremes of η and α, we find wavelike
states as indicated in Figs. 4(c) and 4(d). We term these
states “traveling” and “irregular” waves [22]. Traveling waves
move smoothly and continuously, while irregular waves are
instantaneously similar, but rapidly switch sign. We interpret
the changes in sign as being due to high η and α, as described
in Figs. 5(a)–5(c).

Apparently, as shown in Fig. 5, simple geometrical ar-
guments can be used to analyze charging mechanisms, so
for strong polarization and neutralization, outermost surfaces
attain opposite charges that globally coordinate and switch
signs every time step. Geometrical arguments also provide
insights into the static domain configuration shown in Fig. 4.
In Fig. 6(a), we show a typical plan view of charges, using
a logarithmic color map. The arrangement of domains is
never quite regular; nevertheless, charge patterns obey clear
geometrically based rules.
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FIG. 5. Charging at large η and α. (a) For large η, contacting charges neutralize, leaving residual charges on surfaces farthest from contact.
These residual charges dominate the resulting dynamics. (b) For large η and small α, induction produces polarization charges (sketched at left
of panel) that reduce the residual charge magnitudes (as shown at right of panel). (c) For large η and large α, the induced charges can exceed
the original charges, and the residual charge therefore changes sign every time step.

To understand these rules, note as shown at the left of
Fig. 6(b) that two dipoles oriented normal to the contact plane
will tend to align in parallel, so that negative and positive
charges are adjacent. The antiparallel orientation is unstable,
as that would place like charges, which repel, nearby one
another. By the same reasoning, if the dipoles are oriented

FIG. 6. Static domain pattern at η = 0.8, α = 0.2. (a) Charge
magnitudes (colors on logarithmic scale). (b) At the center of each
colored spot, dipoles are oriented perpendicular to the contact plane,
and upper and lower dipoles are parallel. Between these spots, dipoles
are oriented in the contact plane, in which case positive charges
align with negative ones in an antiparallel configuration. (c) Parallel
and antiparallel orientations are identified in quiver plot of the same
simulation as in panel (a). Green quivers are in the lower lattice; blue
are in the upper.

in the contact plane, as shown at the right of Fig. 6(b), the
parallel orientation is unstable, for again this would place like
charges nearby. Instead, such dipoles orient either antiparallel,
as shown in Fig. 6(b), or in-plane, but skewed with respect
to one another (not shown). In Fig. 6(c), we provide a quiver
plot of upper (blue) and lower (green) dipole unit vectors (i.e.,
all vector magnitudes are plotted as being constant), and we
identify parallel and antiparallel dipoles that obey the rule
described in Fig. 6(b). Examples of skew dipoles can also be
found, but are not identified here.

IV. CONCLUSION

It has been known at least since the 16th century that
insulating materials charge more readily than conducting
ones [18], and for over 30 years that identical materials can
tribocharge one another [19]. The mechanism by which insu-
lators recruit charge carriers, or by which identical insulators
break symmetry to choose charged states, has only recently
been investigated.

In the present work, we have shown that aspects of existing
data of the charging of surfaces can be explained by focusing
on dipoles rather than on net charges. Indeed, by the same
token that it is mysterious that net charges of opposite signs
build in proximity to one another, it is entirely predictable
that dipoles do so. Likewise, only in insulators can the mutual
reinforcement of nearby dipole moments occur. And as we
have shown, if the nearest parts of mutually reinforcing dipoles
neutralize, a self-consistent, charge-conserving first-principles
model can be constructed that appears to agree with existing
experimental data.

In particular, in the limit of long contact times between
surfaces—and so high neutralization efficiencies—we find that
all experimental data, shown in Fig. 1, collapse onto a master
curve, as shown in Fig. 3(d). Further, we predict that localized
charge domains should be seen for high polarizability and
low neutralization (e.g., on pristine, high dielectric constant
surfaces [6]), while as neutralization efficiency grows (e.g.,
through surface contamination by water or other mediators
of charge transport [14,15]), spatiotemporal states should
emerge. Existing data (Fig. 1) seem to generate steady, or
nearly steady, charge growth, and more detailed experiments
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will be needed to determine whether such spatiotemporal states
in fact occur.

The simplified simulations that we have presented here beg
the question of how, in detail, surface transport of charge
interacts with polar molecules in bulk insulators [20]. This
is a fundamental question that will require intensive research
to resolve in the future. Our results so far suggest that the
underlying practical finding—in dissimilar as well as identical
insulators—should be that growth of localized charge domains
is the rule, and that this growth should asymptotically be
exponential, though slower transient growth can also occur.
Moreover, our results indicate that the well-known lack of

reproducibility of tribocharging [3,21] may be the result of
an intrinsic exponential growth mechanism that amplifies
infinitesimal imperfections, and not due to lack of experimental
care, as has long been believed.
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