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Like and oppositely charged particles or dust grains in linear shear flows are often driven to collide with
one another by fluid and/or electrostatic forces, which can strongly influence particle-size distribution evolution.
In gaseous media, collisions in shear are further complicated because particle inertia can influence differential
motion. Expressions for the collision rate coefficient have not been developed previously which simultaneously
account for the influences of linear shear, particle inertia, and electrostatic interactions. Here, we determine the
collision rate coefficient accounting for the aforementioned effects by determining the collision area, i.e., the area
of the plane perpendicular to the shear flow defining the relative initial locations of particles which will collide
with one another. Integration of the particle flux over this area yields the collision rate. Collision rate calculations
are parametrized as an enhancement factor, i.e., the ratio of the collision rate considering potential interactions
and inertia to the traditional collision rate considering laminar shear only. For particles of constant surface charge
density, the enhancement factor is found dependent only on the Stokes number (quantifying particle inertia),
the electrostatic energy to shear energy ratio, and the ratio of colliding particle radii. Enhancement factors are
determined for Stokes numbers in the 0–10 range and energy ratios up to 5. Calculations show that the influences
of both electrostatic interactions and inertia are significant; for inertialess (St = 0) equal-sized and oppositely
charged particles, we find that even at energy ratios as low as 0.2, enhancement factors are in excess of 2. For the
same situation but like-charged particles, enhancement factors fall below 0.5. Increasing the Stokes number acts to
mitigate the influence of electrostatic potentials for both like and oppositely charged particles; i.e., inertia reduces
the enhancement factor for oppositely charged particles and increases it for like-charged particles. Uniquely,
at elevated Stokes numbers with attractive potentials we find collisionless “pockets” within the collision area,
which are regions completely bounded by the collision area but within which collisions do not occur. Regression
equations to results are provided, enabling calculation of the enhancement factor as a function of energy ratio
and Stokes number. In total, this study both leads to insight into the collision dynamics of finite-inertia, charged
particles in shear flows, and provides a means to simply calculate the particle-particle collision rate coefficient.
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I. INTRODUCTION

Collisions between micrometer-sized charged particles or
dust grains have a large influence on the behavior of many
colloidal [1], aerosol [2,3], granular [4–6], and dusty plasma
[7–9] systems. For example, in fluidized beds, dust storms,
and volcanic plumes, particle-particle collisions lead to charge
exchange (even for identical chemical composition particles
[4,10–12]), which can significantly alter the behavior of a
particle-laden flow [13–15]. In aerosols and dusty plasmas,
oppositely charged particles rapidly aggregate (collide and
bind) with one another, while the charging of particles to
sufficiently high levels of the same polarity stabilizes them
against aggregation [16–20]. Given the importance of charged
particle collisions in particle-laden flows, numerous efforts
have been devoted to developing accurate collision rate models
for charged particles [21–23]. Many of these efforts consider
the combined influences of electrostatic potential interactions
and thermal energy on particle motion, such that the number of
collisions per unit volume per unit time (Rij ) between particles
of type i (size, charge level) and type j can be calculated as

Rij = kijninj , (1)

where ni and nj are the number concentrations of particles
of type i and type j , respectively, and kij is the collision rate
coefficient. In particular, in liquid colloids, the approach of
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Fuchs [24] has been used to calculate collision rate coefficients
considering Brownian motion (continuum regime thermal mo-
tion) and combined electrostatic and van der Waals potential
interactions (i.e., DLVO interactions) [25]. In reduced pressure
systems, the effects of thermal energy and electrostatic forces
have been incorporated into orbital motion limited (OML)
theory based collision rate coefficient predictions [26–28].
A variety of approaches have also been utilized to derive
collision rate expressions between the colloidal (diffusive)
and low-pressure (ballistic) limits [29–33], both for particles
with one another as well as particles with ions. In large part,
the aforementioned collision rate expressions have shown
good agreement with experimental measurements [34,35];
thus their incorporation into population balance models of
particle ensembles is commonplace [36].

However, for micrometer-sized particles in flowing sys-
tems, the influence of thermal energy on particle motion is
often negligible in comparison to the influence that laminar
(linear) shear gradients have on particle differential motion.
This differential motion can lead to an enhanced rate of col-
lisions (so-called orthokinetic aggregation) between particles
as compared to consideration of thermal energy alone [37].
In the absence of any electrostatic interactions, the collision
rate coefficient for spherical particles of radii ai and aj in
the presence of a linear shear gradient G was first derived by
Smoluchowski [38], and is given as

kij = 4
3G(ai + aj )3. (2a)
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A number of studies have examined the combined influ-
ence of DLVO-like potential interactions (wherein particles
electrostatically repel one another but attract one another at
close approach via van der Waals interactions) and laminar
shear gradients on particle collisions; collision rate coefficients
derived considering these two approaches apply specifically to
particles in liquid colloids [39–41]. However, a collision rate
expression considering the combined influences of laminar
shear and electrostatic potential interactions (both attractive
and repulsive), which can be applied to particles in gaseous
media (including granular systems, aerosols, clouds, and dust
storms) remains undeveloped, despite the fact that in many gas
phase systems, both electrostatic interactions and shear play
a role in governing particle-particle collisions. The specific
issues which remain to be addressed in modeling collisions in
such systems are twofold. First, when following the derivation
of Eq. (2a) but considering attractive electrostatic interactions,
the collision area (defined subsequently) approaches infinity.
This complicates calculation of the integral required to
determine the collision rate coefficient. Second, unlike liquid
colloidal suspensions, larger shear gradients can persist in
gaseous systems, and as such the influence of particle inertia
on motion in a combined electrostatic and shear field can
be significant. Prior approaches to collision rate coefficient
evaluation have neglected particle inertial influences.

The purpose of this work is to utilize a trajectory based cal-
culation approach to find an expression for the particle-particle
collision rate coefficient in the presence of a linear shear
gradient and electrostatic potential interactions, while also
accounting for finite particle inertia. The resulting calculations
are parametrized as an enhancement factor, ηL, such that
the collision rate coefficient can be calculated in a manner
analogous to Eq. (2a):

kij = 4
3G(ai + aj )3ηL. (2b)

The sections that follow provide details on the trajectory
calculations employed as well as on incorporation of trajectory
calculation results into enhancement factor calculations. Sub-
sequently, calculation results are presented considering simple
Coulomb potentials as well as fully resolved electrostatic inter-
actions for conducting particles. We parametrize enhancement
factors as functions of a dimensionless electrostatic to shear
energy ratio, the Stokes number, and the particle-size (radius)
ratio. The resulting expressions are applicable for calculations
of particle-particle collision rates in gases wherein both shear
gradients and electrostatic effects influence particle motion,
but with thermal motion negligible.

II. THEORETICAL AND NUMERICAL APPROACH

In Sec. II A we derive the nondimensionalized equation
of motion applicable to particles used in collision rate deter-
mination (considering simple Coulomb and full electrostatic
potential interactions), and then in Sec. II B we discuss the
numerical methods employed to carry out trajectory and
enhancement factor calculations. Readers not concerned with
the details of calculations can directly focus on the Results and
Discussion section without significant loss of scope.

A. Motion of charged particle pairs in a laminar shear field

Collisions can be modeled by examining particle pairs (i.e.,
we consider one particle i and a second j ). The equation of
motion for each charged particle in a linear shear field of
magnitude G is given by

m
d2 �R(t)

dt2
= f

{
�u[ �R(t)] − d �R(t)

dt

}
+ �Fe, (3)

where m is the particle mass, �R its position, �u is the fluid
velocity field (i.e., �u(x,y,z) = −Gyêz, where êz is the unit
vector in the z direction and x, y, z are coordinates of
an arbitrary point in a linear shear field with a gradient in
the y direction), and �Fe is the electrostatic force between
particles. In writing Eq. (3), Stokes drag is assumed, hence
the drag coefficient takes the form of f = 6πμa, where a

is the particle radius and μ is the gas dynamic viscosity. We
find this is a reasonable assumption for the particle velocities
obtained in trajectory simulations here, even in situations
where the Stokes number is high. We note, however, that
we have neglected the slip correction factor [42] in our
drag formulation. The slip correction factor could be easily
incorporated into the subsequently presented dimensionless
ratios with minimal modification to results. We also neglect
the influences of viscous interactions [43] between particles
at close approach, as well as Saffman lift forces [44]. We
anticipate both influences are small for submicrometer to
supermicrometer particles in the gas phase.

The electrostatic force acting on each particle can be
obtained by differentiating the induced electrostatic potential
energy, W :

�Fe = −dW

drij

r̂, (4)

where r̂ is the unit vector pointing from the center of the
opposite particle to the present particle and rij is the scalar
distance between particle centers. We examine interactions
between nonconducting and perfectly conducting particles
in the dilute limit. Under these conditions, the influence of
screening on potentials is negligible (i.e., there is an infinite
screening length). At the same time, when particles are far from
one another, though potential interactions between particles
are not screened, the effects of electrostatic forces on particle
motion are negligible when compared to the effects of shear.
Further, multibody interactions need not be considered in the
dilute limit, as the probability that a third particle is in the
vicinity of two particles closely approaching one another is
zero. For nonconducting particles which have not yet collided,
a simple two-body Coulomb potential is hence assumed, such
that the potential energy between them can be expressed as

W = qiqj

4πε0rij

, (5)

where q is the charge carried by each of the particles and ε0

is the vacuum permittivity. For perfectly conducting particles,
we utilize the functional form [45]:

W = q2
i cjj − 2qiqj cij + q2

j cii

8πε0
(
ciicjj − c2

ij

) , (6a)
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where cii , cjj , and cij are the coefficients of capacitance, which
are expressed as [46]

cii = ai(1 − κ2)
∞∑

m=0

αm

1 − κ2α2m
, (6b)

cij = −aiaj

rij

(1 − α2)
∞∑

m=0

αm

1 − α2(1+m)
. (6c)

The dimensionless parameters α and κ are given by

α = r2
ij − a2

i − a2
j

2aiaj

−

√√√√(
r2
ij − a2

i − a2
j

2aiaj

)2

− 1, (6d)

κ = ai + αaj

rij

. (6e)

cjj can be obtained by replacing ai with aj , and vice versa in
the expression of cii .

We define t∗ = Gt , �R∗ = �R/(ai + aj ), �u∗ = −y∗êz (where
y∗ is the y coordinate also normalized by ai + aj ), W ∗ =
4πε0(ai + aj )W/qiqj , r∗

ij = rij /(ai + aj ), and c∗ = c/(ai +
aj ). The dimensionless equations of motion for particles
i and j can then be obtained by combining Eqs. (3)–(5)
(for nonconducting particles), or Eqs. (3) and (6a)–(6c)
(for conducting particles). For nonconducting particles the
dimensionless equations are

d2 �R∗
i

dt∗2 = (1 − θm)
Q

St

�R∗
j − �R∗

i

r∗3
ij

− 1 − θm

(1 − θf )St

×
[

d �R∗
i

dt∗
− �u∗( �R∗

i )

]
, (7a)

d2 �R∗
j

dt∗2 = θm
Q

St

�R∗
i − �R∗

j

r∗3
ij

− θm

θfSt

[
d �R∗

j

dt∗
− �u∗( �R∗

j )

]
. (7b)

For conducting particles the dimensionless equations are

d2 �R∗
i

dt∗2 = (1 − θm)
Q

St

�R∗
i − �R∗

j

r∗
ij

dW ∗

dr∗
ij

− 1 − θm

(1 − θf)St

×
[

d �R∗
i

dt∗
− �u∗( �R∗

i )

]
, (8a)

d2 �R∗
j

dt∗2 = θm
Q

St

�R∗
j − �R∗

i

r∗
ij

dW ∗

dr∗
ij

− θm

θfSt

[
d �R∗

j

dt∗
− �u∗( �R∗

j )

]
.

(8b)

dW ∗
dr∗

ij

can be evaluated through the dimensionless form of

Eqs. (6a)–(6c):

W ∗ = θqc
∗
jj − 2c∗

ij + 1/θqc
∗
ii

2
(
c∗
jj c

∗
ii − c2

ij

) , (9a)

c∗
ii = θr(1 − κ2)

∞∑
m=0

αm

1 − κ2α2m
, (9b)

c∗
ij = −θr(1 − θr)

rij
∗ (1 − α2)

∞∑
m=0

αm

1 − α2(1+m)
, (9c)

with the definitions α = r∗2
ij −1+2θr(1−θr)

2θr(1−θr)
−√

[
r∗2
ij −1+2θr(1−θr)

2θr(1−θr)
]
2
− 1, κ = θr+α(1−θr)

rij
∗ , θq = qi

qj
, and

θr = ai

ai+aj
. In calculating dimensionless potentials with

Eqs. (9b) and (9c) the number of terms retained in series
(mt ) is determined by calculating the value of the series∑∞

m=mt+1( αm

1−κ2 ) and the series
∑∞

m=mt+1( αm

1−α2 ), for Eqs. (9b)
and (9c), respectively. These series have sums which are
straightforward to calculate and are the respective upper limits
for the series terms in (9b) and (9c). mt is selected such that
the upper limits are smaller than 0.01.

The dimensionless equations of motion show that the
system, and hence the enhancement factor, is governed by six
parameters: Q, St, θm, θf , θr, and θq (though θq only comes into
play for conducting particles). They are the ratio of potential
to kinetic energy, Stokes number, particle mass ratio, drag
coefficient ratio, size ratio, and charge ratio, respectively. Q,
St, θm, and θf are calculated with the equations:

Q = −qiqj

4πε0fijG(ai + aj )3 , (10a)

St = mijG

fij

, (10b)

θm = mi

mi + mj

, (10c)

θf = fi

fi + fj

, (10d)

wherein mij = mimj

mi+mj
and fij = fifj

fi+fj
. Q takes on positive

values for oppositely charged particles and negative values
for like-charged particles. To reduce the number of cases
necessary to examine, we note that for equivalent density

particles in the continuum regime, θm = ( a3
i

a3
i +a3

j

) = ( θ3
r

1−3θr+3θ2
r
)

and θf = θr [47]. Additionally, under the assumption that
irrespective of polarity, particles have similar surface charge

densities, θq = θ2
r

−1+2θr−θ2
r

for oppositely charged particles and

θq = θ2
r

1−2θr+θ2
r

for like-charged particles. This reduces the
number of cases to examine, as now the enhancement factor is
a function of Q, St, and θr only.

B. Enhancement factor calculation

We use trajectory calculations to determine the collision
rate and enhancement factor for selected Q, St, and θr. In
calculations, initially, particle j is placed at the origin of the
coordinate system, with dimensionless Cartesian coordinates
x∗, y∗, and z∗ (each normalized by ai + aj ). Particle i is
released from a surface which is perpendicular to the direction
of the shear flow, and is infinitely (100 dimensionless units
in simulations) far from particle j (with an initial velocity
of magnitude y∗, the dimensionless y coordinate). As noted
in the prior section under such conditions particle velocities
are defined only by the shear field; the potential is negligible
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FIG. 1. (a) Example results for trajectory calculations, wherein particle j is placed in the center of a linear shear field, and particle i is
placed at a specific location at a large “z∗” distance from particle j . The trajectories displayed correspond to different Q and St values, as well
as different initial positions, with the upper set corresponding to a collision, and the lower corresponding to a noncollision. Particle j only
moves in response to the shear field after electrostatic forces brought about by the close approach of particle i move it from its original y∗

position. (b) A depiction of the dimensionless collision area formed considering attractive potentials on the y∗-x∗ plane.

initially. For each condition examined the equations of motion
solutions are obtained via the Euler method with a fixed
maximum distance traveled by each particle during a time
step (0.01 dimensionless units). A collision is considered to
occur when the dimensionless center-to-center distance is less
than 1.0. As demonstrated in the “Calculation validation and
relative trajectories” section subsequently, we find this simple
numerical algorithm is sufficient for accurate collision rate
coefficient and enhancement factor determination under all
circumstances. Sample trajectories are depicted in Fig. 1(a),
which specifically displays two views of particle i and particle
j trajectories for two different initial release positions of
particle i. For both sets of trajectories, attractive potential
interactions between particles are considered, but there are
different Q and St values, leading to a collision (upper images,
with particles partially orbiting one another prior to collision)
and noncollision (lower images), respectively.

For each input Q, St, and θr, a dimensionless collision area
(S∗

c ), can be obtained by recording the initial positions of parti-
cle i which lead to collision. With this dimensionless collision
area, the dimensional collision rate would be expressed as

kij = (ai + aj )2
∫∫

S∗
c

vdS∗ = (ai + aj )3G

∫∫
S∗

c

y∗dS∗,

(11)

where v denotes the initial relative speed between particles,
which, in the case of linear shear, is equivalent to (ai + aj )Gy∗.
In the absence of potentials, particles take straight line trajecto-
ries, and collisions only occur when the particles’ initial center
to center distance is less than or equal to the sum of their
radii. S∗

c is hence a circular area of dimensionless radius of
1.0 with its center at the origin of the polar coordinate system.
Substituting dS∗ = ρ∗dρ∗dθ and y∗ = ρ∗cos(θ ) into Eq. (11),
where ρ∗ and θ are the dimensionless polar coordinate radial
position and angle, respectively, leads to Eq. (2a) in the absence
of potential interactions.

Considering potentials, the dimensionless enhancement
factor can then be obtained by combining Eqs. (2b) and (11):

ηL =
3
∫∫

S∗
c

y∗dS∗

4
. (12)

We adopt slightly different approaches for enhancement
factor calculations considering attractive and repulsive interac-
tions. For attractive interactions, we utilize a polar coordinate
system on the release plane for type i particles. The pole of the
polar coordinate system is located at the center of the collision
area, and the polar axis is parallel to the y axis. We define ρ∗

b

as the dimensionless boundary of the collision area. In doing
so, we assume that for ρ∗(θ ) � ρ∗

b (θ ), collision can occur, and
outside of it collision does not occur. Equation (12) is then
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expressed as

ηL,0 = 3
∫ π

2

0

∫ ρ∗
b (θ)

0
ρ∗2cos(θ )dρ∗dθ (attractive potentials),

(13)
where the subscript “0” denotes the “baseline” enhancement
factor calculated with the aforementioned ρ∗

b assumption
(collision occurs). For 30–50 specific θ values (variable for
different input conditions), ρ∗

b is determined by monitoring
particle trajectories releasing particle i at a dimensionless
radius of 1.0 and then at successively larger radii; ρ∗

b (θ )
corresponds to the largest radial location at which collision
occurs. ρ∗

b (θ ) is not bounded as θ approaches π/2 because
the initial velocity difference between particle i and j goes
to zero, and because of the long-range nature of the Coulomb
potential. This complicates the calculation of the integral in
Eq. (13). We hence divide the collision area into N individual
areas with the angle occupied by the nth area ranging from
θn−1 to θn. The contribution to collisions for each individual
area can be calculated as

γn =
∫ θn

θn−1

∫ ρ∗n
b (θ)

0
ρ∗2cos(θ )dρ∗dθ, n = 1,2, . . . ,N − 1,

(14)

γN =
∫ π

2

θN−1

∫ ρ∗N
b (θ)

0
ρ∗2cos(θ )dρ∗dθ (15)

The baseline enhancement factor is expressed as

ηL,0 = 3

(
n=N∑
n=1

γn

)
. (16a)

To evaluate Eqs. (14) and (15), expressions for θn, ρ∗n
b (θ ),

and ρ∗N
b (θ ) need to be specified. We let θn = π

2 (1 − 1
8n ),

though note that the choice of this expression is arbitrary, and
adopt it simply because it rapidly approaches π

2 at large n. We
also adopt a function of the form ρ∗n

b (θ ) = An( 1
π
2 −θ

)Bn + Cn.
The coefficients An, Bn, and Cn are determined from the
results of trajectory calculations yielding ρ∗n

b (θ ) on the interval
θn−1 � θ � θn. A depiction of the dimensionless collision
area formed on the y∗- x∗ plane, with ρ∗, θn, ρ∗n

b (θ ), and
γn each labeled, is provided in Fig. 1(b). A regression example
result for determination of An, Bn, and Cn is provided in
the Supplemental Material [48]. ρ∗N

b (θ ) is the boundary for
the collision area which consumes the angle from θN−1

to π
2 , and approaches infinity as θ → π

2 . Because we can
only use finite simulation data to fit ρ∗N

b (θ ), there is some
uncertainty in ρ∗N

b (θ ), which further leads to the uncertainty
of γN . However, we remark that there is no uncertainty in
determination of ρ∗n

b (θ ) and γn for n < N . Furthermore, as N

increases, the value of γN decreases. Therefore, to compute
ηL in the presence of attractive potentials, we iteratively
increase N until the inequality γN∑n=N−1

n=1 γn

< 0.01 is satisfied, and

then approximate ηL,0 = 3(
∑n=N−1

n=1 γn). Because the assumed

functional form for θn converges quickly to π
2 and because the

assumed form for ρ∗n
b (θ ) captures trajectory calculation results

well, N � 5 is employed in most instances.
For low-St simulations, the assumption that collision occurs

for all ρ∗(θ ) � ρ∗
b (θ ) is found valid. However, at St = 5 and

St = 10, the two largest Stokes numbers examined, “pockets”
within the collision area are found. These are regions of
initial positions for which ρ∗(θ ) � ρ∗

b (θ ) and collision does
not occur, but which are completely circumscribed by a region
of initial positions for which collision does occur. Such cases
require corrections to the enhancement factor; to determine
the bounds of pockets we examined trajectories with particle
i released from a structured square grid within the bounds of
ρ∗

b (θ ), with a grid spacing of 0.01 dimensionless units. From
these calculations we extract ρ∗

i (θ ) and ρ∗
o (θ ), the inner and

outer radii of the pocket at the angle θ , respectively, as well as
θ1 and θ2, the minimum and maximum angles where the pocket
exists. The enhancement factor is then calculated correcting
for the pocket area:

ηL = ηL,0 − 3
∫ θ2

θ1

∫ ρ∗
o (θ)

ρ∗
i (θ)

ρ∗2

× cos (θ )dρ∗dθ (attractive potentials). (16b)

For repulsive interactions, the collision area is bounded,
and in converse to the collisionless pockets found for attractive
potentials, collisions only occur for ρ∗

i (θ ) � ρ∗ � ρ∗
o (θ ). The

integral in Eq. (12) can thus be evaluated directly by summing
up values of y∗dS∗ in the region where collision occurs;
this region can be determined by releasing particle i from
a structured square grid (again with a grid spacing of 0.01
dimensionless units, and with particle i released on the grid
nodes).

III. RESULTS AND DISCUSSION

A. Calculation validation and relative trajectories

As enhancement factor calculations require implemen-
tation of trajectory calculations and subsequent numerical
integration, it is critical to validate the method by deter-
mining enhancement factors through alternative means. We
compare simulation results to those calculated more directly
considering infinite Stokes number (St → ∞, which signifies
the influence of drag is negligible) with both attractive and
repulsive Coulomb potentials. Though this situation is highly
unphysical, as in order for shear to have an influence on particle
motion the drag force must be significant, neglecting drag
enables determination of the collision area boundaries directly
from the conservation of energy and angular momentum for
the colliding particles. Derived in the Supplemental Material
[48] following the approach of Vasil’ev and Reiss [49]
but incorporating linear shear in lieu of thermal motion,
the enhancement factor for St → ∞ considering attractive
Coulomb potentials can be calculated as

ηL|St→∞ = 3
∫ π

2

0

∫ √
1
2 + 1

2

√
1+ 8Q

cos2(θ )St

0
ρ∗2cos(θ )dρ∗dθ

× (attractive). (17a)
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FIG. 2. The calculated enhancement factor in the presence of laminar or linear shear considering (a) attractive and (b) repulsive Coulomb
interactions between particles in the St → ∞ limit. Open symbols: trajectory calculation results. Lines: Eqs. (17a) and (17b) predictions.

For the repulsive Coulomb potential, the enhancement
factor is expressed as

ηL|St→∞

= 3
∫ √

1+√
1+8[Q/St]

2√
1−√

1+8[Q/St]
2

∫ √
1+ 2[Q/St]

y∗2 −y∗2

0
y∗dx∗dy∗ (repulsive).

(17b)

Equation (17b) applies for negative values of Q, and for
sufficiently large Q it does not result in real numbers; in these
instances ηL|St→∞ = 0. The consequence of St → ∞ is that
in Eqs. (7a) and (7b) the drag term (rightmost term) can be
neglected, with which it is evident that trajectory calculation
results, similar to Eqs. (17a) and (17b), are dependent primarily
on the parameter Q/St (which is the ratio of electrical energy to
initial particle translational energy). Equations (17a) and (17b)
calculations are plotted in comparison to trajectory calculation
results in Figs. 2(a) and 2(b), respectively. Across multiple
orders of magnitude in Q/St, we find excellent agreement
with one another for both attractive and repulsive collisions;
in most circumstances the two approaches agree to within 1%
of one another, supporting the use of trajectory calculations
for enhancement factor determination.

In total, we determined ηL for more than 400 distinct St,
Q, and θr combinations, considering attractive and repulsive
potentials, both with the Coulomb and conducting electrostatic
potential functional forms. Tables S1–S4 in the Supplemental
Material [48] summarize calculation results for St = 0, 0.5,
1.0, 5.0, and 10; each presented ηL is the result of more
than 100 trajectory calculations, up to 2000 trajectories for
instances where potential influences are large. In subsequent
sections we discuss the results of these calculations consid-

ering attractive and repulsive interactions, respectively. How-
ever, first we examine selected relative trajectories of particles
in the presence of attractive collisions in Fig. 3(a), considering
complete electrostatic potential interactions. The boundary
for collision, (y∗

i − y∗
j )2 + (z∗

i − z∗
j )2 = 1, is marked in the

figure for each condition displayed. Particle motion at St = 0,
the inertialess limit, is examined with simplified, first-order
equations of motion; these equations can easily be derived
from Eqs. (8a) and (8b). Elevated Stokes number relative
trajectories result from direct implementation of Eqs. (8a)
and (8b). At St = 0−1, the displayed trajectories reveal that
at smaller initial separation distances (smaller y∗

i − y∗
j in

Fig. 3), collision occurs, while above a critical value, there
is no collision. Additionally evident is that particles may
“overshoot” one another (i.e., z∗

i − z∗
j becomes negative prior

to collision) and in many instances particle relative kinetic
energy can approach zero at a relative location near y∗

i − y∗
j =

0, where there is little-to-no fluid driven differential motion.
In such instances with attractive potentials, particles will be
directed to collide with one another; this is evident first for
one of the trajectories displayed at St = 1. At higher Stokes
numbers (5 and 10), the overshoot and directed motion toward
collision are even more pronounced, and in addition we find
that particles can take orbitinglike trajectories, completing
an entire revolution around one another. Experimentally, in
the presence of differential settling (gravity) and electrostatic
interactions, orbitinglike trajectories have been observed in the
gas phase [5]; simulations here suggest that similar trajectories
can be driven by shear and electrostatic forces. Interestingly,
we also find at elevated Stokes number instances where
collision does not occur in a narrow initial separation distance
region, with the precise bounds of this region dependent
on θ . This is evidenced in Fig. 3(b), which displays plots
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FIG. 3. (a) Selected relative particle trajectories (i.e., the motion of particle i from the perspective of particle j ) for particles initiated
on the y∗, z∗ (x∗ = 0) plane. Black lines denote collision, while red lines denote noncolliding trajectories. The blue line denotes the bound
(y∗

i − y∗
j )2 + (z∗

i − z∗
j )2 = 1; hence it is the collision boundary. (b) Points corresponding to initial relative release points leading to collision.

Collisionless pockets are evident at St = 5 and St = 10. For all instances, Q = 1.56 and θr = 1.0, with the full electrostatic potential considered.

of all initial relative coordinates in trajectory calculations
leading to collisions. The collisionless pockets are evident
in Fig. 3(b) plots for St = 5 and St = 10. Such collisionless
pockets, which necessitate the use of Eq. (16b) in enhancement
factor calculations, only persist in instances where linear shear,
inertia, and electrostatic interactions all have an influence on
particle relative motion; they are not present for St = 0 (no
inertia) conditions, St = ∞ (no shear gradient) conditions, and
Q = 0 (no electrostatic interactions) conditions. Pockets are
hence a unique feature of charged particle collision dynamics
in gaseous media where particles can attain sufficiently high
inertia.

B. Enhancement factor for attractive potentials

Though a simpler problem to examine, collisions in the
inertialess limit (St = 0) are of interest for smaller particles;
hence we examine this scenario first. Considering the Coulomb
potential only and attractive potentials, the inertialess enhance-
ment factor as Q → ∞ can be analytically derived:

ηL|St→0, Q→∞ = 3πQ. (18)

Equation (18) leads to a dimensional collision rate coeffi-
cient which agrees exactly with the diffusion limited collision
rate coefficient [24] at high potential energy to thermal
energy ratios; this is because in both the laminar shear case
and in the diffusive limit, only electrostatic forces and drag
influence particle motion at high potential energy. In Fig. 4,
we plot ηL as a function of Q considering both Coulomb

and conducting electrostatic potentials at variable particle-
size ratios (θr) for St = 0. Considering only the Coulomb

FIG. 4. The enhancement factor considering attractive potential
interactions for St = 0. The black dashed line denotes Eq. (18)
predictions.
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FIG. 5. The enhancement factor considering attractive potential interactions for St = 0.5−10. The legend provided in Fig. 4 applies to all
displayed curves.

potential, the particle-size ratio is found to have a minimal
influence on the enhancement factor; size influences are more
pronounced for the complete electrostatic potential, with the
largest enhancement factors observed for equal-sized particles
with the electrostatic potential. Also noteworthy is that even for
small values of Q (i.e., Q = 0.1) the enhancement factor takes
on values greater than 1.5 for all examined conditions. In air
at 300 K with a shear rate of 10 s−1, Q = 0.1 corresponds
to a modest surface charge density of 44 nC m−2; hence
calculations suggest that charged particle collisions in shear
flows cannot be accurately modeled without considering the
influence of the charge itself.

Plots analogous to Fig. 4 but for Stokes numbers in the
0.5–10 range are displayed in Fig. 5. Qualitatively, plots at
elevated Stokes number are similar to the curves obtained
for inertialess particles; ηL → 1 as Q → 0, the highest
enhancement factors are obtained for equal-sized particles
subjected to full electrostatic potentials, and at larger Q, ηL

scales linearly with Q. However, enhancement factors for all
Q are reduced at elevated Stokes numbers, e.g., for Q = 0.21,
ηL decreases from 2.26 to 1.89 and then to 1.24 as St increases
from 0 to 0.5 and then to 10, for equal-sized particles subject
to the electrostatic potential. At larger Q, more pronounced St

effects are evident, and ηL at Q = 1.56 evolves from 14.74 to
5.48 as St increases from 0 to 10. The decrease in ηL can be
partially (but not entirely) attributed to the collision pockets
formed at high Stokes number; for example, at Q = 5.97,
St = 10, and θr = 0.2, we find ηL,0 = 21.0 while the pocket
correction [Eq. (16b)] is 2.2 (leading to ηL = 18.8). These
results collectively show that coupled with the influence of
charge is the influence of particle inertia, and that neither can
be neglected outright in modeling charged particle collisions
in gaseous shear flows.

The influence of potentials on the enhancement factor is
not well described by an additivity approximation, i.e., ηL �=
1 + 3πQ. To parametrize results we fit results for equal-sized
(and hence equal but opposite charge level) particles to the
functional forms:

ηL = 1 + 3πQb3

[
b1 + (1 − b1) exp

(
−b2

Q

)]
. (19)

These functional forms match the large and small Q

limiting functional forms by design. The values of b1, b2,
and b3 provided in Tables I and II for the Coulomb and
complete electrostatic potentials, respectively, are found to
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TABLE I. Equation (19) regression parameters for equal-sized
particles considering the attractive Coulomb potential.

St b1 b2 b3

0 0.5104 0.2302 1.0000
0.01 0.5389 0.3103 1.0174
0.02 0.5364 0.2991 1.0074
0.05 0.5297 0.3070 0.9916
0.1 0.5321 0.3319 0.9638
0.2 0.5208 0.3170 0.8985
0.5 0.5253 0.3973 0.7672
1 0.5168 0.4734 0.6349
2 0.4689 0.5177 0.5141
5 0.2681 0.4106 0.4149
10 0.1584 0.4022 0.3805

match calculations extremely well (to within 1% of calculation
results in most circumstances).

C. Enhancement factor for repulsive potentials

In all circumstances where long-range, repulsive interac-
tions between particles are present, there will be a value
of Q (absolute) above which the enhancement factor is
zero. Therefore, an analogous expression to Eq. (18) need
not be developed for repulsive potentials. Figure 6 displays
plots of the enhancement factor versus −Q for St = 0–10,

TABLE II. Equation (19) regression parameters for equal-sized
particles considering the attractive electrostatic potential.

St b1 b2 b3

0 0.9949 32.2759 1.0000
0.01 0.9790 5.0819 1.0160
0.02 0.9748 7.8983 1.0141
0.05 0.9909 2.5547 0.9743
0.1 0.8426 0.5888 0.9511
0.2 0.9671 2.0743 0.8931
0.5 0.9241 1.4361 0.763
1 0.8738 0.7967 0.6251
2 0.7882 0.5944 0.5072
5 0.6521 0.4555 0.3994
10 0.2601 0.0933 0.3132

considering both repulsive Coulombic and complete elec-
trostatic potentials (with the latter a repulsive potential at
large separation distances, and an attractive potential at
close separation distances). For repulsive potentials, again the
enhancement factor is higher for the complete electrostatic
potential in comparison to the Coulomb potential, which is
attributable to the close-range attraction incorporated into this
potential form. While for purely attractive interactions particle
inertia leads to decreased enhancement factors with increasing
St, for repulsive potentials, the enhancement factor increases
with increasing St, and drastically so. For example, at Q =

FIG. 6. The enhancement factor as a function of −Q for repulsive interactions.
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TABLE III. Equation (20) regression parameters for equal-sized
particles subjected to the repulsive Coulomb potential.

St c Q0

0 4.745 0.4348
0.01 4.689 0.4389
0.02 4.679 0.4348
0.05 4.498 0.4348
0.1 4.249 0.4308
0.2 3.689 0.4308
0.5 2.111 0.4348
1 0.888 0.4836
2 0.331 0.6211
5 0.123 1.0445
10 0.062 1.7392

−0.63, with St = 0, particle-particle collisions will not occur,
irrespective of particle-size ratio. Under the same conditions
but with St = 10, the enhancement factor remains above 0.55
(for all potentials and size ratios), suggesting that though
repulsive interactions decrease the rate of particle-particle
collisions, it remains similar in magnitude to that for uncharged
particles.

For equal-sized particles, we fit repulsive potential results
to the functional form:

ηL = cQ2 + (cQ0 + 1/Q0)Q + 1, |Q| < Q0;

ηL = 0, |Q| � Q0. (20)

Regression values for c and Q0 (the absolute value of
Q above which collisions no longer occur) are provided in
Tables III and IV for the Coulomb and complete electrostatic
potentials, respectively.

D. Comparison to diffusion limited collision rates

An interesting comparison is the collision rate for oppo-
sitely charged particles in the presence of a laminar shear
gradient to that predicted by the diffusion limited reaction
theory [31,36,50], i.e., evaluation of whether Brownian motion
or differential fluid motion has a greater influence on charged
particle collisions. Consideration of inertialess, equal-sized

TABLE IV. Equation (20) regression parameters for equal-sized
particles subjected to the repulsive electrostatic potential.

St c Q0

0 2.510 0.6322
0.01 2.471 0.6379
0.02 2.479 0.6321
0.05 2.431 0.6321
0.1 2.328 0.6321
0.2 2.130 0.6321
0.5 1.542 0.6332
1 0.759 0.6575
2 0.226 0.7820
5 0.078 1.2542
10 0.038 2.0282

FIG. 7. The ratio of the laminar shear collision rate coefficient to
the Brownian motion collision rate coefficient for oppositely charged
particles, considering the Coulomb potential with St = 0.

particles and the Coulomb potential enables direct derivation
of kij |L

kij |B , the laminar shear to Brownian motion collision rate
coefficient:

kij |L
kij |B

= [1 − exp(−
Q)]

×
{

1

3πQ
+

[
b1 + (1 − b1)exp

(−b2

Q

)]}
, (21)

where 
 = Gfij (ai+aj )2

kT
is the shear energy to thermal energy

ratio (kT is the thermal energy). Equation (21) is plotted in
Fig. 7 for selected values of 
. Immediately apparent is that
only in instances of high 
 (larger than 3π ) and modest values
of Q (below 1) will the laminar shear collision rate exceed the
Brownian motion collision rate. In converse to prior sections,
which demonstrate the importance of considering both charge
and inertial influences on particle-particle collisions in shear
flows, Fig. 7 clearly shows that such phenomena need only
be considered at high 
. As 
 approximately scales with
the cube of the particle radii (neglecting noncontinuum drag
effects), shear based collisions hence become significant above
a critical size, determined by 
 = 3π . In air at 300 K, with
G = 10 s−1, the critical particle radius is 1.78 μm, while at
G = 1 s−1, the critical radius increases to 3.85 μm. Though
density dependent, particles in this size range would still have
Stokes numbers close to 0 (St < 0.001 for unit density particles
under both example conditions); with shear gradients in the
100−102 s−1 range Stokes number influences on collisions
manifest themselves for particles with radii in excess of 10 μm.

IV. CONCLUSIONS

We have developed and utilized a trajectory based approach
to determine the enhancement factor for collisions between
charged particles in a laminar or linear field in a gas, accounting
for finite particle inertia. Electrical effects are parametrized
by the electrical energy to shear energy ratio (Q), while
inertial effects are parametrized by the Stokes number (St).
With the enhancement factor, particle-particle collision rates
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can be calculated simply via Eq. (2b). We provide regression
equations to better facilitate enhancement factor calculations
for equal-sized particles charged to equal levels. Based on our
computations, we make the following concluding remarks:

(1) In gaseous systems with appreciable shear gradients,
the interplay between particle charge and particle inertia
can strongly impact particle-particle collision rates. Use of
simplified models of particle-particle collisions [i.e., Eq. (2a)]
may lead to highly inaccurate predictions of collision rates,
for both oppositely charged particles [where Eq. (2a) leads to
underprediction] and particles of the same polarity (where it
leads to overprediction). Particle inertia is found to lessen the
influence of charge on collision, both for oppositely charged
and like-charged particles, though not to the extent that charge
effects can be ignored.

(2) At moderate to large Stokes numbers (i.e., 5–10), we
find collisionless pockets in the collision area for attractive po-
tentials, which are regions of relative initial particle positions
where collision does not occur, but which are completely cir-
cumscribed by relative initial positions which lead to collision.
Such pockets appear to be a unique result of inertia, shear, and
electrostatic interactions all influencing particle motion.

(3) For charged particles (as well as uncharged particles,
though not examined here), shear based motion need only
be consider for modest Q levels and high shear energy to
thermal energy ratios (above 3π ). The shear energy to thermal
energy ratio is strongly dependent on particle size, and is
also influenced by gas viscosity, temperature, and through

the friction coefficient, mean free path (if noncontinuum drag
is considered). Above a critical size for any given system,
shear induced motion is significantly more important than
Brownian motion in driving particle-particle collisions. More
refined analysis will be required to consider instances where
shear induced motion, electrostatic interactions, inertia, and
Brownian motion [51] all influence particle dynamics.

(4) The collision rate described in this work refers to the
rate of initial collisions between two particles in a dilute
system; whether particles bind and aggregate, rebound and
exchange charge, or recollide [5] has not been considered here.
To investigate these phenomena in future work the approach
employed here will need to be coupled with models of adhesion
(i.e., more detailed short-range potential interactions than the
models employed here), charge exchange upon collision, and
exchange of momentum and energy upon collision. Also not
examined were aspherical particles and aggregates [23,52–54];
this will require consideration of alignment and rotation in
flow, as well as an appropriate drag coefficient [55]. Finally,
in many instances the dilute approximation is not valid, and
multibody particle interactions (particularly electrostatic) will
need to be considered in future collision modeling efforts.
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