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Mechanical failure in amorphous solids: Scale-free spinodal criticality
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The mechanical failure of amorphous media is a ubiquitous phenomenon from material engineering to geology.
It has been noticed for a long time that the phenomenon is “scale-free,” indicating some type of criticality. In spite
of attempts to invoke “Self-Organized Criticality,” the physical origin of this criticality, and also its universal
nature, being quite insensitive to the nature of microscopic interactions, remained elusive. Recently we proposed
that the precise nature of this critical behavior is manifested by a spinodal point of a thermodynamic phase
transition. Demonstrating this requires the introduction of an “order parameter” that is suitable for distinguishing
between disordered amorphous systems. At the spinodal point there exists a divergent correlation length which is
associated with the system-spanning instabilities (known also as shear bands) which are typical to the mechanical
yield. The theory, the order parameter used and the correlation functions which exhibit the divergent correlation
length are universal in nature and can be applied to any amorphous solid that undergoes mechanical yield. The
phenomenon is seen at its sharpest in athermal systems, as is explained below; in this paper we extend the
discussion also to thermal systems, showing that at sufficiently high temperatures the spinodal phenomenon is
destroyed by thermal fluctuations.
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I. INTRODUCTION

Mechanical failure of amorphous solids is an unwanted and
often catastrophic event, occurring when enough strain and
stress accumulate due to external loading. The phenomenon is
ubiquitous in nature in the form of earthquakes due to tectonic
activity and in material engineering due to shear or tensile
strains. The phenomenon is known to be “scale-free” in the
sense that the statistics of energy release on failure appears
to have no typical scale, a characteristic that is exemplified
by the Gutenberg-Richter law [1] in the geophysical context.
Many authors commented that this scale-free nature indicates
that material failure should be a critical phenomenon with
power-law scaling, but until recently the precise origin and
the actual character of this criticality remained unknown. in
the late 1980s P. Bak and coworkers [2] offered the idea of
“self-organized criticality” to explain the ubiquity of such
scale-free statistics, but the correspondence to the microscopic
structure of amorphous solids and the particle-scale mech-
anisms that are responsible for the phenomenon remained
mysterious. Recently [3,4], the source of the criticality was
revealed in the form of a spinodal criticality which appears
to be quite universal in athermal conditions independently
of the detailed microscopic interactions between the particles
forming the amorphous solids. The aim of this paper is to
review the pertinent features of this phenomenon and extend
its exploration from athermal systems to amorphous solids at
finite temperatures. Among other issues discussed below it will
be shown that when the temperature becomes high enough the
spinodal characteristics are destroyed by thermal fluctuations.

Solids are states of matter capable to respond elastically to
a small externally applied shear deformation [5]. However,
when the external strain grows the response of all solids
becomes mixed with plastic deformations, and eventually
they suffer a mechanical yield. In crystalline solids plasticity
and yield involve defects and dislocations. In amorphous
materials, such as molecular and colloidal glasses, foams, and
granular matter, there is no long-range order with respect to

which defects are defined. Thus the mechanisms of plasticity
and yield need to be understood along different lines from
those of crystalline matter. The physics near the yielding
point of this vast class of materials, as reported in a host of
strain-controlled simulations [6–12] and experiments [13–15]
shows a high degree of universality despite the different nature
of the systems involved. Importantly, one finds that at the
onset of flow at yielding, there appear typical system spanning
excitations referred to as shear bands [16,17]. We refer to a
plastic event as a shear band when previously homogeneous
shear strongly localizes, leaving the rest of the material less
perturbed. This phenomenon is of capital importance for
engineering applications as it is responsible for the brittleness
typical of glassy materials, in particular metallic glasses [18],
whose potential for practical use is stymied by their tendency
to shear band and fracture [17,19,20]. Measurements of plastic
events occurring after yield reveal scale-free energy or stress
drops, typically characterized by power-law statistics [21,22].
The aim of this paper is to present the current understanding
of this scale-free behavior which, as said above, is suspected
to be related to some criticality.

In Sec. II we discuss the universal features of mechanical
yield, explaining that any appropriate theory must use generic
order parameters which are equally applicable to a large variety
of amorphous solids. This is crucial. After discussing the order
parameter, we turn to using the order parameter to investigate
the physics of yield in athermal conditions. The key result will
be that yield is tantamount to a spinodal point in the emerging
phase transition that is associated with the phenomenon. In
Sec. III we follow up on the identification of the precise
criticality that is implied by the spinodal point and study the
correlation functions that are expected to exhibit a divergent
correlation length. We show in this section that the correlation
length diverges as a power law in the distance from the spinodal
point, cf. Eq. (17) below. Section V explores the modifications
caused by having a finite temperature. Not too surprisingly, we
will discover that at higher temperatures fluctuation destroy
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FIG. 1. A typical stress-vs.-strain curve resulting from a shear
loading of an amorphous solids using an AQS protocol. Similar
transitions between a regime in which the stress rises on the average
as a function of strain to a second regime after a yield point γ

Y
have

been observed in countless experiments and simulations, requiring an
explanation using a generic theory that is insensitive to microscopic
details.

the spinodal characteristics, forcing a crossover to different
statistics of the energy drops. In Sec. VI we offer a summary
of the paper and thoughts about the road ahead.

II. MECHANICAL YIELD, UNIVERSALITY,
AND ORDER PARAMETER

A. Universality of mechanical yield

To introduce the main issue, consider Fig. 1 showing a typ-
ical stress-vs.-strain curve obtained using standard numerical
simulations in a strain-controlled athermal quasistatic (AQS)
shearing protocol using a Kob-Andersen 65–35% Lennard-
Jones (LJ) binary mixture [23] of 4000 particles in two
dimensions (2D). The protocol is standard, and is implemented
by increasing the shear strain on the system in small steps
and after each such step apply gradient energy minimization
to bring the system back to mechanical equilibrium. Similar
curves were computed and measured in a large variety of
simulations and experiments. The universal features that need
to be observed are as follows: (i) For very small strain values
the stress increases linearly according to the laws of linear
elasticity. One should note that the region of purely elastic
behavior is expected to reduce with the system size, shrinking
to nonexistence in the thermodynamic limit. Nevertheless,
before a value of the strain known as the “yield strain” γ

Y
, the

plastic events are “small,” in the precise sense that the energy
drop �U associated with them is system size independent,

�U ∼ N0, (1)

where N is the number of particles in the systems. The
nature of these plastic events is identified as quadrupolar
displacements, known also as Eshelby [24] events, which
can release stress locally in regions that are particularly
susceptible to the type of loading employed. The important
thing is that, whether elastically or punctuated by plastic
events, the stress σ continues to increase with the strain γ

until the latter exceeds γ
Y
, which in Fig. 1 is about γ

Y
≈

0.07. After that point, in strain-controlled protocols the strain
increases without increasing the average stress—the material
“flows,” keeping an average “flow stress.” In stress-controlled
experiments, exceeding the average flow stress results in a
mechanical collapse of the material. In athermal conditions
it was found that the transition around γ = γ

Y
is associated

with a change in the plastic response which is no longer
localized but rather exhibits system spanning events, known
also as micro shear bands, in which the energy release becomes
subextensive [21],

�U ∼ Nβ, β = 2/3. (2)

The mechanism for the creation of these micro shear bands
was elucidated in Ref. [17]; it has to do with the preferred
appearance of concatenated series of Eshelby quadrupoles
[lines in 2D or embedded in a plane in 3D] that organize
the displacement field to localize the shear on narrow lines
or planes, respectively. The interested reader is referred to
Ref. [19], where detailed energy estimates were offered to
explain the energetic preference of single Eshelby quadrupoles
at low strains vs the appearance of a density of such objects at
higher values of the strain.

The key observation is that after yield strain γ
Y

the stress
cannot grow on average, no matter how much the strain
is increased. What has long remained obscure is what the
difference is in the material before and after the yield point, and
why the stress could continue growing with the strain before
yield, but it cannot do that after yield. Since the phenomenon
is ubiquitous, the universality of this basic phenomenology of
yielding begs an explanation in terms of a universal theory,
in the sense that such a theory should rely on a statistical-
mechanical framework and be independent of details such
as chemical composition and the production process of the
material.

B. Order parameter and transition

In Ref. [3] it was made clear that the difficulty in making a
distinction between the pre- and postyield configurations lies
in the fact that there is really no distinction. It is difficult to
characterize a major change in the nature of configurations
at yield. The important point is that there is a tremendous
increase in the number of allowed configurations. The yield
is tantamount to a sudden opening up of a vast number of
marginally stable configurations that are not available to the
system before yield. To demonstrate this one needs to employ
an order parameter that is designed [25–32] to compare two
different glassy configurations {r (1)

i }Ni=1 and {r (2)
i }Ni=1

Q12 ≡ 1

N

N∑
i

θ
[
a − ∣∣r (1)

i − r (2)
i

∣∣], (3)

wherein θ (x) is the Heaviside step function. The parameter
a is of the order of the microscopic interaction length and
is determined by trial and error. The quantity Q12 is called
an “overlap” since it has a value that goes from 0 (completely
decorrelated configurations) to 1 (identical particle coordinates
within the tolerance of a). Its purpose is to measure the degree
of similarity between configurations.
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The glass that we are straining below is made by quenching
a supercooled liquid with N particles down to a certain
temperature T � 0 at a suitable rate. A glass is an amorphous
solid wherein particles vibrate around an amorphous structure.
So if we take two configurations {r (1)

i }Ni=1 and {r (2)
i }Ni=1 from

this glass at two different times, then they will be most
likely close to each other with Q12 of the order of unity.
By considering a sufficiently good sampling of the typical
configurations visited by the particles in the glass, one can
measure the probability distribution function (pdf) of the
overlap P (Q12). This pdf will be strongly peaked around an
average value 〈Q12〉 close to unity. The configurations visited
by the particles will then form a small connected “patch” in the
configuration space of the system, selected by the amorphous
structure provided by the last configuration that was visited by
the liquid glass former before it fell out of equilibrium while
forming a glass.

Consider now what happens when we strain this glass.
While the stress increases, there appear plastic events that
are associated with irreversible displacements in the particle
positions. The average order parameter 〈Q12〉(γ ) responds to
these displacements, reducing from O(1) to lower values.
An important point to understand is that before reaching
the yield strain 〈Q12〉(γ ) tends to remain around unity, but
as the mechanical yield takes place a sharp phase transition
occurs, where subextensive plastic events [11,17,20] begin to
take place. These are sufficiently large, cf. Eq. (2), to cause
substantial displacements, allowing different regions of the
configuration space to affect the order parameter. In such a
situation, the distribution Pγ (Q12) may develop two peaks:
one at high Q12 corresponding to configurations in the same
patch and one for a smaller value of Q12 corresponding to
configurations that were “ergodized” by the mixing of the
subextensive plastic events. A visual of the system spanning
event that ergodizes the system is available, for example, in
Fig. 4 of Ref. [4].

To demonstrate this fundamental idea, we can use any
model glass, since this order parameter description is ex-
pected to be universal. Here we review molecular dynamics
simulations of a Kob-Andersen 65–35% LJ binary mixture
in 2D, using five system sizes, N = 500,1000,2000,4000,
and N = 10 000. We chose Q12 with a = 0.3 in LJ units but
verified that changes in a leave the emerging picture invariant.
As a first step, we prepared a glass by equilibrating the system
at T = 0.4, and then quenching it (the rate is 10−6 in LJ units)
down to T = 1 × 10−6 into a glassy configuration. The sample
is then heated up again to T = 0.2, and a starting configuration
of particle positions is chosen at this temperature. Note that
while at T = 0.4 equilibration is sufficiently fast, at T = 0.2
the computation time is much shorter than the relaxation
time. The configuration is then assigned a set of velocities
randomly drawn from the Maxwell distribution at T = 0.2,
and these different samples are then quenched down to T = 0
at a rate of 0.1. This procedure can be repeated any number
of times (say, n times), and it allows us to get a sampling
of the configurations inside one single “patch.” We verify
that the typical overlap of the ensemble of configurations
so obtained in one patch is close to 〈Q12〉 = 1, signaling
that indeed the ensemble is completely located in a single
patch.
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FIG. 2. The averaged order parameter 〈Q12〉 as a function of
γ (left scale) and the averaged stress as a function of γ (right
scale). The averaging is over all the patches for this systems size
N = 10 000. Note the phase transition that occurs near the yield
stress. The transition gets sharper with the system size, see Fig. 6 and
the associated discussion below.

Having generated one such patch, we repeat the procedure
starting from another equilibrated configuration of the liquid to
create another patch. The process is then repeated to generate
as many patches (say m patches) as needed to obtain good
statistics, depending on the system size.

We then apply to each configuration in a given patch an
AQS protocol as described above. This will create for each
value of γ a strained ensemble of configurations in the patch.
The order parameter Eq. (3) is computed by using all the
n(n − 1)/2 unique pairs of configurations generated in the
strained ensemble at a given γ . We stress that we do not
compare configurations at a given value of γ to the reference
configuration at γ = 0 but rather the overlap between pairs
of configurations at the same value of γ . Having computed
the γ dependence of an average 〈Q12〉 from the n(n − 1)/2
of configurations in one patch, we average the results over
m patches to obtain the average order parameter denoted as
〈Q12〉, wherein the acute brackets denote the average over
a single patch and the overline denotes the average over all
patches. We present the results for N = 10 000 in Fig. 2.
Note that the initial ensemble for γ = 0 shows a value of the
averaged order parameter 〈Q12〉 = 1, signifying that our initial
ensemble is indeed composed of close-by configurations. As
the ensemble is strained, the value of the order parameter
gets lower, dropping towards zero when the strain is increased
beyond the yield strain. Below we will show that the sharpness
of the transition depends on the system size N , getting sharper
and sharper when N increases.

To determine the yield strain γ
Y

accurately, one should
construct the probability distribution function (pdf) Pγ (Q12)
by hystogramming the values of Q12 within a patch of n

configurations obtained as explained above, and then average
the result over the m available patches. The result is denoted
Pγ (Q12). We ask at which value of γ this averaged pdf has
two equally high peaks, see Fig. 3. The resulting Pγ (Q12)
determines a value of γ

Y
� 0.088. Note that this criterion

implies a sharp definition of “yield” which seems absent in the
current literature. If accepted, it indicates that the mechanical
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FIG. 3. The probability distribution function Pγ (Q12) at γ
Y

=
0.088 averaged over 100 initial configurations each of which has 500
different realizations to obtain Pγ (Q12). At this value of the strain the
pdf has two peaks of equal heights. We identify this value of γ as the
point of the phase transition.

yield occurs beyond the stress overshoot in agreement with the
mean-field results of Ref. [33]. We should also state here the
yield point and the spinodal point (denoted below as γS) are
not identical for finite N , although they become closer when
N increases, and see below for details.

Having identified the phase transition point, we can ex-
amine the transition itself. In Fig. 4 we display the change
in Pγ (Q12) in the neighborhood of the critical point γ

Y
as a

function of γ . Within a very narrow range of γ , of the order
of �γ ≈ 0.017, we observe a first-order-like transition from
a pdf with dominant peak at high values of Q12 to a dominant
peak at low values of Q12. We capture a very unambiguous and
qualitative change in behavior as the yielding point is reached.

Next we can examime how many of our realizations loose
the tight overlap and where the loss of overlap is taking place.
To this aim we consider, as an example for the system of
4000 particles, all the 50 000 realizations that we have from
100 patches each containing 500 configurations. These are
obtained by 100 choices of liquid realizations, each of which
is velocity randomized 500 times (chosen with Boltzmann
probabilities). When the strain γ is increased in our AQS
algorithm, we keep computing the order parameter Q12 where
the first configuration {r (1)

i }Ni=1 in Eq. (3) is chosen randomly
from all the available configurations at that value of γ , and the
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FIG. 4. The probability distribution function Pγ (Q12) in the
vicinity of the critical point γ

Y
= 0.088.
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FIG. 5. The number of configurations which pass below the
threshold value Q12 = 0.8 of the overlap order parameter as a function
of the strain γ for N = 4000. In the inset we show the same test for
N = 500. The conclusion is that all the configurations lose the mutual
overlap in the vicinity of the yield point γ

Y
.

second is any one of the other available configurations at the
same value of γ . We confirmed that changing the randomly
chosen {r (1)

i }Ni=1 does not affect the results. Next, choosing
Q12 = 0.8 as a threshold value, we now count how many of our
observed configurations cross this threshold and exhibit Q12 �
0.8. The number of configurations that do so as a function of the
strain (superimposed on the stress-vs.-strain curve) is shown
in Fig. 5. The conclusion of this test is that in the vicinity
of the yield point γ

Y
the majority of the configurations lose

their overlap with the initial configuration but not before. The
mechanical yield is tantamount to the opening up of a vast
number of possible configurations, whereas before yield the
system is still constrained to reside in the initial metabasin of
the free-energy landscape.

The upshot of these results is that we are able to focus
on the essential feature that is responsible for the mechanical
yield: a very constrained set of configurations available to
the system before yield is replaced on yield with a vastly
larger set of available configurations. This much larger set is
generic; we would like to refer to the phenomenon as “stressed
ergodization.” The initially prepared close-by configurations
are now scattered, but all of them are stressed with stress
value close to the yield stress. They are all marginally
stable in the sense that they would yield plastically with
any increase of strain [34,35]. We propose this as a universal
mechanism for the ubiquitous prevalence of stress-vs.-strain
curves that look so similar in a huge variety of glassy
systems.

C. System size dependence

In the context of first-order phase transitions, one expects
that the transition should become sharper as a function
of system size. To this aim we consider the dependence
of 〈Q12〉 on γ for a series of system sizes, see Fig. 6.
Indeed, the sharpening of the transition is obvious to the
bare eye. To quantify it, we evaluated the derivative of
this function, see the upper panel in Fig. 7 for N = 4000,
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FIG. 6. Demonstrating the sharpening of the transition with the
system size.

and computed the maximum of this derivative function,
denoted as

S ≡ max
γ

(
−d〈Q12〉

dγ

)
. (4)
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FIG. 7. Panel (a): A typical graph of 〈Q12〉 as a function of γ

(here for N = 4000 (right scale) and the slope of the same function
(left scale). Panel (b): The maximal slope of the function 〈Q12〉(γ ) as
a function of system size.
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FIG. 8. Panel (a): The pdf’s P (γc,N ) for different systems sizes
from N = 500 to N = 10 000. Panel (b): Data collapse on rescaling
the pdf’s P (γc,N ) according to Eq. (6) to obtain a scaling function
P̃ (x) with x = [(γc − γ ∗)

√
N ].

Finally, the value of S(N ) is plotted in a log-log plot vs. the
system size N as shown in the lower panel of Fig. 7. This
log-log plot indicates the existence of a power law of the form

S ≈ CNθ ; θ = 0.41 ± 0.09. (5)

The error bars measured here is compatible with an exact value
of the exponent θ is θ = 1/2, and see below for a justification
of this value. Such an exponent indicates that the width of
the transition is not determined by the thermal fluctuations in
the parent fluid from which our glassy patches were quenched.
Rather, it is dominated by the disorder fluctuations which cause
γ

Y
to vary from sample to sample. To test this hypothesis,

we return to our numerical data and compute, for each patch
a yield point γc which we identify as the first value of the
strain for which 〈Q12〉 � 0.5. Having done so, we can evaluate
the probability distribution function P (γc,N ). These functions
obviously depend on the systems size as shown in the upper
panel of Fig. 8. To examine the scaling of the width of these
distributions, we rescale the data according to the ansatz

P (γc,N ) =
√

NP̃ [(γc − γ ∗)
√

N ], (6)

where γ ∗ is the peak value of each pdf. The data collapse
means that, indeed, the disorder leads to a spread �γc

in the
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values of γ
Y

that scales like

�γc
∼ N−1/2, (7)

which will end up as the scaling law Eq. (5) with θ = 1/2.
If we just had a thermal origin to the measured width, then
we could expect rather a scaling law with θ = 1, as typical of
first-order transitions [36].

D. Concluding this section

The upshot of this section is that the yield is associated
with a first-order phase transition such that before yielding
the amorphous system is limited to a small patch in the
configuration space, very far from any kind of ergodicity. The
yielding transition is an opening of a much larger available
configuration space, whereupon the system is ergodized
subject to the constraint of constant mean stress. The generic
configurations that are created by the mixing caused by micro
shear bands include many marginally stable states which yield
easily on the increase of strain. This is why the stress cannot
increase further on the average.

This realization does not explain yet where is the criticality.
In general, first-order phase transitions are not characterized
by diverging correlation lengths, while critical points asso-
ciated with second-order phase transitions do. The point to
understand, as sharpened in the next section, is that first-order
phase transitions are bordered by spinodal points which do
exhibit criticality. To see this pictorially, examine again Fig. 4
and focus on the pdf associated with γ = 0.097. At that point
the maximum of high values of 〈Q12〉 has been reduced to a
saddle. This is a spinodal point that we denote as γS where the
slope of the curve vanishes as well as the second derivative.
This is where a correlation length is expected to diverge as we
are going to explain in the next section. The reader should also
take into account that when N → ∞ also γc → γS .

III. THEORY OF SPINODAL CRITICALITY

The aim of this section is to clarify the identification of
the yielding transition as a spinodal point [37]. This is the
point where the metastable, high overlapped glassy patch of
configurations becomes unstable with respect to a new phase
with low Q12, associated with a stressed ergodized system in
the presence of disorder [38]. The existence of the spinodal
point can be gleaned from Fig. 4. Observe the curve for P (Q12)
for γ = 0.097 where the right maximum flattens to a saddle
with zero slope with respect to Q12. This is the spinodal point
γS . The appearance of shear bands will be associated with a
system spanning correlation length, conditional that one is able
to derive the expression of the right correlator to measure. It is
important to stress here that the reason that a spinodal point can
be exposed and measured is that the glassy time scales and the
athermal conditions stabilize the metastable system until the
spinodal point is crossed and the system becomes unstable
against constrained ergodization. We will see below how
thermal fluctuations may destroy the spinodal characteristics.

In statistical mechanics with a suitable Gibbs free energy
G[φ], stable phases are identified with its points of minimum in
φ. Of particular interest are instances for which the curvature
of these minima goes to zero, inducing a critical behavior

which manifests diverging susceptibilities and fluctuations,
critical slowing down of the dynamics, and growing correlation
lengths [39]. At a spinodal point, for example, one such
minimum becomes unstable and transforms into a saddle.
In the case of the order parameter Q12, the general form of
the free energy s[Q12] had been already derived and studied
(see Ref. [40] for a review) in the context of the theory of
replicas originally developed for the study of spin glasses, and
its properties, at least at a mean-field level, are well known
(we refer to Refs. [33,41] for the derivation of s[Q12] in the
specific case of mean-field hard spheres); the matrix of second
derivatives (or, using a more field-theoretic terminology, the
mass matrix) is not diagonal in the basis of Q12 and after
diagonalization is found to have only three distinct modes or
masses [40]. Of these, the most relevant ones are the so-called
replicon mode λR , which, for example, goes to zero at the
newly proposed Gardner transition [42], and the longitudinal
mode λL, which is instead related to spinodal points [37,41]
such as our yielding transition. In Appendix of this paper we
review briefly the background theory that is at the basis of the
present approach.

A. Correlation functions

Based on the introductory discussion, we now derive an
expression for the correlator associated with the longitudinal
mode, from whence one can extract the diverging correlation
length associated with the onset of criticality at the spinodal
point and define an associated susceptibility which will shoot
up as the spinodal point is approached. The first step is to
“localize” the overlap function and define the r-dependent
quantity

Q12(r) ≡
N∑

i=1

θ
(
	 − ∣∣r (1)

i − r (2)
i

∣∣)δ(r − r (1)
i

)
. (8)

Next, as mentioned above, the expression for the longitudinal
correlator in terms of four-replica correlation functions can
be found by diagonalization of the correlation matrix Gab;cd

(see Appendix), which is defined as the inverse of the mass
matrix Mab;cd of the replicated field theory of the overlap order
parameter Q12 [40]. The derivation is a matter of standard
diagonalization algebra, so we shall not report it here and refer
to Appendix for the details. The expression, employed, for
example, in Refs. [43,44] in the case of a model with spins on
a lattice, reads for athermal systems

GL(r) = 2GR(r) − �2(r), (9)

with the definitions

GR(r) ≡ 〈Q12(r)Q12(0)〉 − 2〈Q12(r)Q13(0)〉 (10)

+〈Q12(r)〉〈Q34(0)〉,
�2(r) ≡ 〈Q12(r)Q12(0)〉 − 〈Q12(r)〉〈Q12(0)〉. (11)

We reiterate that angular brackets denote a patch average and
(•) indicates an average over different patches. The quantity
GR(r) is the correlation function of the replicon mode [40]
and �2(r) is just the garden-variety four-point correlator.
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Using these definitions and taking Eq. (8) into ac-
count, the quantities we compute in numerical simulation,

before taking the ensemble average, are (see Appendix and
Ref. [45])

�̃2(r) =
∑

i �=j

(
u

(12)
i − Q12

)(
u

(12)
j − Q12

)
δ
[
r − (

r (1)
i − r (1)

j

)]
∑

i �=j δ
[
r − (

r (1)
i − r (1)

j

)] (12)

and

G̃R(r) =
∑

i �=j

[
u

(12)
i u

(12)
j − 2u

(12)
i u

(13)
j + Q12Q34

]
δ
[
r − (

r (1)
i − r (1)

j

)]
∑

i �=j δ
[
r − (

r (1)
i − r (1)

j

)] , (13)

with

u
(12)
i ≡ θ

[
	 − ∣∣r (1)

i − r (2)
i

∣∣]. (14)

These four-replica objects can be computed for any quadru-
plet of distinct replicas. The ensemble averaged correlation

functions are simply obtained as �2 ≡ �̃
(12)
2 and GR ≡ G̃

(12)
R ,

and cf. Appendix for a proof. We stress that one must keep
the full space dependence of the correlators in the definitions
above, as the shear strain breaks the rotational symmetry of
the glass samples and so the correlators are not just functions
of a distance r .

IV. NUMERICAL RESULTS

The three correlation function discussed in the previous
section were computed in the same numerical simulations
discussed in Sec. II B. Typical results are shown in Fig. 9,
here at γS = 0.09405. One notices the obvious fact that the
correlation functions reflect the breaking of isotropy that is
caused by the strain. In fact the structure of the correlation
function is quadrupolar precisely indicating where shear bands
are bound to appear in simple strain. The x and the y axes are
in 45◦ to the principal axis of the stress [46].

To demonstrate the strain dependence of the correlators we
consider first the susceptibilities χ

GL
,χ

GR
, and χ

�2
that can be

obtained from the correlators. For example,

χ
GL

(γ ) ≡
∫

d2x GL(x,y; γ ). (15)

In Fig. 10 (upper panel) we show the susceptibility χ
�2

as a function of γ for the three system sizes at our disposal.
Superimposed are the stress-vs.-strain curves obtained by aver-
aging the individual curves over all the available configurations
and glass samples. One sees very clearly the singularity that
develops near the spinodal point as a function of the system
size. In the middle and lower panels of the same figure we
show the other two susceptibilities χ

GR
and χ

GL
as a function

of the strain γ , again with the stress-strain curve superimposed
for comparison. As we expected, the susceptibilities show
a distinct peak at the spinodal point γS where criticality is
reached.

The scaling of the peak of the susceptibility χ
�2

with the
system size is expected to mirror the scaling of the response
as written in Eq. (4), at least if standard fluctuation-dissipation
theorems should apply to the present problem. Indeed, plotting
the maximal values of −χ

�2
as a function of N in a log-log

plot, cf. Fig. 11, we find that the maxima χmax
�2

scale like
√

N

as expected.
More detailed information is provided by the full depen-

dence of the correlators on their arguments. To see most
clearly the change in the correlators as the spinodal point is
approached, we consider, for example, the one-dimensional
function GR(x = 0,y; γ ), shown for N = 4000 in Fig. 12.
We note that the correlator changes both in amplitude and in
extent when we approach the critical point. To quantify these
changes, we fit a three-parameter function to GR(x = 0,y) in
the form

GR(x = 0,y; γ ) ≈ C + A exp(−y/ξ ), (16)

where all the fitting coefficients are functions of γ . In Fig. 13
we present the γ dependence of the amplitude A(γ ), the
constant C, and the correlation length ξ (γ ).

An interesting observation concerns the constant C used in
the fit [Eq. (16)]. This constant is also sensitive to the approach
of the criticality, cf. the lower panel in Fig. 13. One could
worry that integrating this constant over y could contribute
to the divergence of the susceptibilities. In fact, the rise in C

near the spinodal point goes down with the system size and
its contribution to the integral is reduced as well, as can be
seen in Fig. 14, which presents the integral

∫
dyGR(x = 0,y)

from which C × L is subtracted. The conclusion is that indeed
the contribution of C goes down also when integrated over
the system size, showing that the main contribution to the
divergence of the susceptibility is from the divergence of the
correlation length. It is interesting to notice that the constant
C decreases with the system size, presumably becoming
irrelevant in the thermodynamic limit. The amplitude A is
still increasing with the system size, and it is difficult to assert
whether it converges or not. On the other hand, we can safely
conclude that the data present strong evidence for the increase
in the correlation length. This conclusion is substantiated
below using the correlation function �2(x,y). Before doing
so, we need to discuss the fitting procedure for the correlation
function GR(x = 0,y). In Fig. 15 we show the full results for
this correlation function for all the available values of γ and
for two larger systems sizes at our disposal. One sees that the
exponential decay that is used for the fit is only reliable up to
the minima of the functions. The reason for the upward trend is
the periodic boundary condition that reflects the correlations.
To eliminate this spurious effect we presented in Fig. 12 the fit
up to the minimum in the function. One should note, however,
that the distance to the minimum increases with the system
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FIG. 9. A three-dimensional projection of the three correlation
function as a function of x,y.

size, presumably diverging in the thermodynamic limit. Thus
the fit up to the minimum allows a faithful estimate of the
correlation length ξ .

The dependence of ξ on the distance from criticality and
on the system size is not easy to read from Fig. 13. In fact, a
smoother dependence is available from the correlation function
�2(x = 0,y) and �2(y = 0,x). An exponential fit similar to
Eq. (16) was applied to these two projections of �2(x,y) and
the correlation length ξ was determined as shown in the upper
panel of Fig. 16. The scaling exhibited in the lower panel of
Fig. 16 is not perfect, but a least-squares fit to all the three

FIG. 10. The susceptibilities χ
�2

(a), and χ
GR

(b), and χ
GL

(c) as a
function of γ for the three systems sizes available. Superimposed are
the stress-vs.-strain curves for comparison. The color code is violet
for N = 1000, red for 4000 and green for 10 000.

curves leads to a scaling law in the form

ξ ≈ (γc − γ )−ν, ν ≈ 2.4 ± 0.35. (17)

The estimated value of ν is unusually high. The error bars
are significant, and it is quite likely that this result is not
incompatible with ν = 2, although at the present time we
cannot offer a theoretical basis for this number.

The result Eq. (17) may have important experimental
consequences, predicting the length of microshear bands
in materials as a function of the distance from criticality.
We propose that such measurements should be carried out,
providing a possible direct test of the present ideas.
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FIG. 11. The system size dependence of the maxima χmax
�2

indicating a dependence on
√

N in correspondence to the results
in Fig. 7.

V. THE EFFECTS OF FINITE TEMPERATURES

The mechanical yield in athermal conditions is an excel-
lent conceptual laboratory for clarifying the essence of the
yield mechanism, but in reality many yielding amorphous
solids operate under thermal conditions, effected by thermal
fluctuations. It is therefore interesting and important to
assess the effects of temperature on the findings described
above.

To assess the effects of temperature we repeat precisely
the same protocol described above to create a patch of n

replica at T = 0, including the creation of m such patches.
The difference is that presently we warm up all the replica in
a given patch to a target temperature. Results will be reported
for target temperatures T = 0.1,0.2. While keeping the strain
at γ = 0, each configuration was thermalized by molecular
dynamics. At that point each configuration was strained by
increasing the strain in steps of δγ = 2 × 10−4, allowing
the energy to stabilize after each such step before straining
again. Typical averaged strain-vs.-stress curves (with averages
computed first over a patch and second all the patches) for
a system with N = 10 000 are shown in the upper panel
of Fig. 17. We see that at the lower temperature T = 0.1
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FIG. 12. The function GR(x = 0,y; γ ) for various values of γ

from 5 × 10−5 to 0.09405. Note the increase in the over all amplitude
of the correlator as well as the increase in the correlation length. The
lines through the data are the fit function Eq. (16).
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FIG. 13. The γ dependence of the correlation length ξ (γ ) (a), the
amplitude A(γ ) (b) and the constant C(γ ) (c) in the best fit to the
function GR(x = 0,y; γ ), cf. Eq. (16).

there is still a stress peak before the yield, but at the higher
temperature T = 0.2 the stress peak no longer exists and the
stress reaches the flow steady-state stress quite monotonically.
In both temperatures the steady state is attained at lower
values of the strain than at T = 0. Computing the average
overlap order parameters 〈Q12〉 (cf. lower panel of Fig. 17), we
observe a corresponding behavior. At T = 0.1 a remnant phase
transition is still observable, with the order parameter falling
sharply after γ ≈ 0.04. At T = 0.2 there is no longer a sharp
decrease but rather a smooth decline of 〈Q12〉 as a function of
γ . It is obvious that temperature fluctuations at T = 0.2 are
sufficient to destroy the spinodal characteristic of our phase
transition.
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FIG. 14. The difference between
∫

dy GR(x = 0,y) and C × L.

The same conclusion is draws from examining the pdf of the
order parameter. In Fig. 18 we show the function Pγ (Q12,T )
for three temperatures T = 0,0.1,0.2 for a system with N =
10 000. While the phase transition is observed nice and clear at
T = 0, it still remains observable at T = 0.1, but it changes to
a smooth migration of the single peak of Pγ (Q12,T ) from high
to low values of Q12 when γ is increased. We lose completely
the double hump structure which underlies the spinodal
criticality.

It is important to stress that with the loss of the spinodal
criticality we also lose the qualitative distinction between the
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FIG. 16. Panel (a): The correlation length ξ read from an
exponential fit to the x and y projection of the correlation function
�2(x,y) for three values of the system size. Panel (b): The dependence
of the correlation length ξ on γ − γc.

preyield and postyield statistics of the energy drops as shown in
Eqs. (1) and (2). Observing a stress-vs.-strain curve for a single
realization one finds the same statistics of energy and stress
fluctuations before and after the yield. The sharp appearance of
system spanning events with the yield phenomenon is caused
by the spinodal criticality as explained in this paper. Once
this get destabilized by temperature fluctuations there is no
increase in correlation length and we remain with only standard
temperature fluctuations.

This observation raises the question whether the mecha-
nism of spinodal criticality could be observed in laboratory
experiments where the temperature is finite. Clearly, one must
choose materials that can be studied at temperatures that are
much lower than the glass transition temperature Tg . For
temperatures T � Tg diffusion from cages is much suppressed
even under strain. In such a situation we expect that the essence
of the phenomenon discussed in this paper should be observed
and shear bands should be visible and distinguishable from
preyield plastic events. This point of view is corroborated by
the observation of Ref. [47].

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented evidence that the scale-
free yielding transition in amorphous solids is governed by
a spinodal point with disorder. The associated correlated
length is exhibited by suitable four-point correlators whose
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temperatures as a function of the strain γ . Here N = 10 000.

expression can be obtained from replica theory. The full
implications of the theory pertain to an athermal setting, and
the full fledged criticality is destroyed by thermal fluctuations
[47]. In athermal conditions the transition becomes ever
sharper with increasing the system size. We have found that
the range of strain values over which the transition takes place
goes to zero like 1/

√
N . The correlation length ξ appears

to diverge a scaling law, cf. Eq. (17). We have commented
above that this prediction may be tested experimentally by
examining the lengths of micro shear bands as a function
of the strain or the stress while approaching mechanical
collapse. A previously known example of such a spinodal
is the mode coupling theory transition [16], characterized by
dynamical slowing down and heterogeneities, whose behavior
is characterized by a dynamical length scale which can be
extracted from suitable multipoint correlators [16]. Within
replica theory, mode coupling theory corresponds to a spinodal
point like it does in the present case of yielding; also in that
case one can define susceptibilities that peak at the onset
of the transition and which are associated with dynamical
heterogeneities whose length scale grows on approaching the
transition. The difference is that in mode coupling we have
finite temperature so these excitations are transient in nature.
Also in our present case, for sufficiently high temperatures
the system will generally be able to escape through thermal
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FIG. 18. The dependence of Pγ (Q12,T ) on γ for three different
temperatures T = 0,0.1,0.2.

activation from the high-Q12 minimum before this has a chance
to flatten and the relative susceptibility to diverge. However,
since the nucleation time is expected to be fairly long, one
should anyway be able to observe transient shear-bands or
heterogeneities, as long as the temperature is low enough that
nucleation does not take place until the system is close to
the spinodal, which, interestingly, is precisely the behavior of
transient shear bands as reported in Ref. [47].

In the future, one needs to examine further the universality
of the proposed scenario and of the scaling laws found in this
paper, examining different amorphous systems and different
space dimensionalities. Another interesting future path is the
study of the mechanical yield in frictional aggregates. It is
now known at the present point in time whether these fall
in the same universality class or whether they might exhibit
totally different behavior.
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APPENDIX: THE LONGITUDINAL
CORRELATION FUNCTION

Let us start from the expression of the free energy of a
glass state, prepared by equilibrating a generic glass former
down to a glass transition temperature Tg where it can still
be equilibrated, and then quenching it out of equilibrium to a
given temperature T < Tg . Such a free energy was first defined
in Ref. [25] in the context of spin-glass physics. Its definition
in the case of structural glasses, and its computation in the
particular case of hard spheres were first discussed in Ref. [33].
The definition, in the case of a generic glass former made of
N particles is based on comparing two configurations Xa and
Xb of the same glass. Here

Xa ≡ {
ra
i

}N

i=1, Xb ≡ {
rb

i

}N

i=1, (A1)

where the labeling r i refers to the position of the same particle
i in the two different configurations. For a generic interaction
potential V (X) the definition of the free energy is

f [T ,Tg] ≡ − 1

βN

∫
dX0

e−βgV (X0)

Zg

× log

[∫
dX1 eβV (X1)δ(q∗

r − Q01)

]
, (A2)

where βg = 1/(kBTg), β = 1/(kBT ), and q∗
r is the value of

qr �= 0 where the free energy attains a local minimum [33].
The overlap function Q01 for any two configurations, say, a

and b, is [3]

Qab = 1

N

N∑
i=1

θ
(
	 − ∣∣ra

i − rb
i

∣∣). (A3)

Here 	 is a coarse-graining parameter (in Ref. [3], 	 � 0.3 in
Lennard-Jones units). The idea is to consider the free energy
at temperature T of the glass former, which is constrained
to stay close to an amorphous configuration X0 which is
selected from the equilibrium ensemble, using the canonical
distribution when the glass is still at equilibrium at Tg .

The properties and computation of the free energy (A2)
are discussed extensively in [33,41], so we refer the interested
reader to those works. The explicit analytic computation is
accomplished in the mean-field approximation. In our paper
we use the results far from the mean-field limit, but we
ascertain that the relevant correlation functions that are fleshed
out in the mean-field calculation are the relevant ones also in
the general case. Of course, critical exponents can differ. In the
sequel we sketch how from this mean-field theory in terms of
an overlap order parameter Qab one can extract the definitions
of the correlation functions that are expected to show critical
behavior.

The outermost integral in the Eq. (A2) can be computed
with the replica trick,

f [T ,Tg] = lim
s→0

∂s�[T ,Tg; s], (A4)

where � is defined as

�[T ,Tg; s] = − 1

βN
log

∫
dX0 dX1 · · · dXse

−βgV (X0)

× e−βV (X1)δ(q − Q01) · · · e−βV (Xs )δ(q − Q0s),

(A5)

so we are considering s replicas of the X configuration. In
infinite dimensions for the case of hard spheres it was shown
[48] that the functional defined above can be written as

� = − 1

βN

∫
DQab e−dS(Qab). (A6)

HereDQab denotes an integration measure over all the distinct
Qabs,

DQab ≡
0,s∏
a<b

dQab, (A7)

and d is the number of spatial dimensions. The functional
S(Qab) is referred to as the “replica action.” In the mean-field
limit d → ∞, the integral above can be computed via the
saddle-point method [49], which means that one must consider
the optimum points in Qab of the replica action S(Qab). This
means that S(Qab) plays the role of a Gibbs free energy, i.e., the
free energy for fixed order parameter. An illustrative example
is the case of a Curie-Weiss model (mean-field ferromagnet)
wherein, for the Helmholtz free energy F in zero magnetic
field, one has [50]

F (h = 0,T ) = min
m

G(m,T ), (A8)

where G(m,T ) is indeed the Gibbs free energy for fixed
magnetization m. The minimization equation for G is then
the celebrated equation for the spontaneous magnetization

∂G

∂m
= 0 =⇒ m = tanh(βm) (A9)

and the ferromagnetic phase transition takes place when the
paramagnetic, m = 0 minimum of G flattens and splits in
two degenerate minima with m �= 0, which implies that at the
critical temperature ∂2G

∂m2 = 0. The derivation of the S(Qab)
action in the case of mean-field hard spheres can be found in
Ref. [48].

In the present case the f [T ,Tg] plays the role of the
Helmholtz free energy F and the S(Qab) of the Gibbs free
energy G. With this analogy, one can understand how the
critical properties of glass states are related to the matrix of
second derivatives of the replica action S(Qab),

Mab;cd ≡ ∂2S

∂Qa<b∂Qc<d

, a,b,c,d ∈ [1,s], (A10)

in the limit s → 0 (we stress that X0 is not involved in this
definition). The inverse Gab;cd of the tensor M , defined as∑

e �=f

Mab;ef Gef ;cd = δ13δbd + δadδbc

2
(A11)
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is then the covariance matrix of the mean-field theory

Gab;cd = 〈(Qab − 〈Qab〉)(Qcd − 〈Qcd〉)〉, (A12)

wherein the angled brackets denote the thermal average
restricted to a single glass sample at temperature T [that is over
the canonical distribution of the X1 configuration in the (A2)],
and the overbar denotes the average over all possible glass
samples selected at Tg [that is, over the canonical distribution
of the X0 configuration in the (A2)]. This covariance tensor
encodes the critical fluctuations of the system near the critical
points where the tensor Mab;cd develops a zero mode.

Let us now assume that the glass state under study is a single
minimum of the free-energy landscape of the system wherein
all replicas from 1 to s can move ergodically, this means that
the replicas are all equivalent and the matrix Qab must then be
invariant by any replica permutation, a hypothesis referred so
as replica symmetric (RS).

In Ref. [33] it is discussed how this is not true in all
cases, i.e., there exist a regime wherein the glass basin
undergoes an ergodicity breaking and fractures into sub-basins.
Nevertheless, here we stick to the simple RS ansatz. In this
case, since the action S(Qab) must in turn be invariant for any
replica permutations, the most general form that the Hessian
M can take is

Mab;cd = M1

(
δacδbd + δadδbc

2

)

+M2

(
δ13 + δbd + δad + δbc

4

)
+ M3, (A13)

and the same goes for the covariance matrix Gab;cd . This form
is completely general as it only pertains to the RS symmetry;
then the only model dependence is in the parameters M1,
M2, and M3, which must be computed case by case and
are generally dependent on the external parameters like
temperature or magnetic field.

The diagonalization of the tensor Mab;cd is an exercise of
standard linear algebra and has been already carried out many
times, see, for example, Refs. [40,51–53] where it is proposed
as an exercise. It is found that the tensor M has only three
distinct eigenvalues

λR = M1, (A14)

λL = M1 + (s − 1)(M2 + sM3), (A15)

λA = M1 + s − 2

2
M2, (A16)

and the same goes for the tensor G. Those three eigenvalues (or
modes) are called the replicon, longitudinal, and anomalous,
respectively [53]. We are interested in the longitudinal mode
(which in the limit s → 0 is degenerate with the anomalous
one), which becomes soft at the yielding transition [37,41]. Let
us consider the G tensor. Because of replica symmetry, there
are only three distinct correlators that one can define, namely

G12;12 = G1

2
+ G2

2
+ G3, (A17)

G12;13 = G2

4
+ G3, (A18)

G12;34 = G3, (A19)

and in the limit s → 0 we know that

1

λL

= G1 − G2. (A20)

It is then immediate to check that

G12;12 − 2G12;13 + G12;34 = G1

2
∝ 1

λR

≡ GR, (A21)

G12;12 − 4G12;13 + 3G12;34 = G1 − G2

2
∝ 1

λL

≡ GL,

(A22)

which then implies

GL(r) = 2GR(r) − �2(r), (A23)

with the definitions

GR(r) ≡ 〈Qab(r)Qab(0)〉 − 2〈Qab(r)Qac(0)〉
+ 〈Qab(r)〉〈Qcd (0)〉, (A24)

�2(r) ≡ 〈Qab(r)Qab(0)〉 − 〈Qab(r)〉〈Qab(0)〉, (A25)

as in the main text. We have used �2 = G12;12 − G12;34 which
derives from replica symmetry, as 〈Q12〉〈Q12〉 = 〈Q12Q34〉 in
the replica-symmetric phase.

Let us now detail how to transform these definitions into
quantities that can be measured in simulation. We start by
“localizing” the definition of the Qab overlap in the following
way:

Qab(r) ≡
N∑

i=1

θ
(
	 − ∣∣ra

i − rb
i

∣∣)δ(r − ra
i

)
. (A26)

In a thermal simulation the a and b configurations would
depend on the time t , and so would the Qab(r), so one
would need to perform the in-state thermal average 〈•〉
by considering the equilibrium value of these quantities.
In the present paper we focus on athermal solids under
quasistatic shear, so we do not have dynamics and the a and
b configurations will simply be two distinct minima of the
interparticle potential obtained through the protocol described
in the main text, and the thermal average will be the average
over this ensemble of configurations which make up a glassy
patch.

We now apply the definition (A26) in (A24) and (A25)
to construct the correlators. For illustrative purposes, we
use the �2(r). We get, omitting the overline to lighten the
notation,

〈[Qab(x) − 〈Qab(x)〉][Qab(x + r) − 〈Qab(x + r)〉]〉
=

∑
ij

[(
uab

i − Qab

)(
uab

j − Qab

)]
δ
(
r + x − ra

i

)
δ
(
x − ra

j

)
,

(A27)

with

uab
i ≡ θ

(
	 − ∣∣ra

i − rb
i

∣∣), (A28)

as in the main text, and we used that 〈Qab(x)〉 = Qab.
Because of translational invariance, the correlator is actually
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independent of x. We can get rid of x by performing an
integration over this variable, which, using the δ functions,
gives as a result∑

ij

[(
uab

i − Qab

)(
uab

j − Qab

)]
δ
[
r − (

ra
i − ra

j

)]
, (A29)

then, following Ref. [45], we omit the terms with i = j (which
are anyway relevant only for r = 0) and we normalize the

correlator with the pair distribution function of the glass; we
finally obtain∑

i �=j

(
uab

i − Qab

)(
uab

j − Qab

)
δ
[
r − (

ra
i − ra

j

)]
∑

i �=j δ
[
r − (

ra
i − ra

j

)] ≡ �̃2(r),

(A30)

as in the main text. The derivation for the G̃R(x) is then an
obvious generalization.
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