
PHYSICAL REVIEW E 96, 032906 (2017)

Flow and clog in a silo with oscillating exit
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When grains flow out of a silo, flow rate W increases with exit size D. If D is too small, an arch may form and
the flow may be blocked at the exit. To recover from clogging, the arch has to be destroyed. Here we construct a
two-dimensional silo with movable exit and study the effects of exit oscillation (with amplitude A and frequency
f ) on flow rate, clogging, and unclogging of grains through the exit. We find that, if exit oscillates, W remains
finite even when D (measured in unit of grain diameter) is only slightly larger than one. Surprisingly, while W

increases with oscillation strength � ≡ 4π 2Af 2 as expected at small D, W decreases with � when D � 5 due
to induced random motion of the grains at the exit. When D is small and oscillation speed v ≡ 2πAf is slow,
temporary clogging events cause the grains to flow intermittently. In this regime, W depends only on v—a feature
consistent to a simple arch breaking mechanism, and the phase boundary of intermittent flow in the D-v plane
is consistent to either a power law: D ∝ v−7 or an exponential form: D ∝ e−D/0.55. Furthermore, the flow time
statistic is Poissonian whereas the recovery time statistic follows a power-law distribution.
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I. INTRODUCTION

Silos and hoppers are common industrial and agricultural
appliances for transporting or distributing granular materials.
The flow of granular materials through these appliances is
controlled (or limited) by the exit. Clearly the exit size is
the most important factor that determines the outflow rate
[1–6] while the pressure seems to play a minor role [7,8].
For a three-dimensional silo with grain of average diameter
d, the empirical relationship: W ∝ (D − k)5/2 between flow
rate W and exit size D (in unit of d) has been reported more
than 50 years ago by Beverloo [9] and it has been widely
accepted for D � 1 until recently [10]. In principle, Beverloo
Law breaks down for small D when the flow is clogged
stochastically [2–6]. In this regime no continuous flow can
be sustained without external means to recover from clogging
events.

In fact the cause of a clog event is known—formation of an
arch in two-dimensional silo (or a dome in three dimension)
with size larger than the bottle neck [2] at the outlet. For
granular flow to be clogged, not only that an arch has to be
formed, the arch that blocks the flow has to be strong enough
to withstand perturbation due to motion of the grains above the
arch before all grains motions are stopped [11]. Hence, there
are devices (such as vibrator [12], air cannons, etc.) invented
to tackle the problem. Although the working principle of these
devices is rather simple: prevent formation of the arch that
blocks the flow and breaks the arch once it is formed, there
is not yet a satisfactory way to avoid clogging completely
[13–15]. For example, if the hopper is vibrated, the perturba-
tion due to the vibration may destabilize the arch that clogs
the flow as suggested in the experiments by Lozano et al. [16].
However, vibrating the whole hopper requires a big machine
which is very probably an energy hog. Intuitively, if any one
of the two bases of the clog forming arch is loosened in a
two-dimensional silo, the arch will break. To test this simple
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idea, we build a two-dimensional silos with beads flowing
out through an outlet that oscillates perpendicular to the flow
direction.

Using silos with movable exit and an electronic balance
for flow rate measurement, we find that finite flow rate can be
sustained by the motion of the exit even when the exit size
is just slightly larger than the grain diameter. Furthermore,
while the flow rate W increases with oscillation strength as
expected at small exit size D, W decreases with oscillation
strength when D � 5 and the values of W can be collapsed
on a straight line with respect to an effective variable ξ ≡
Wo(D − k)3/2 − a(D − 5)�. Here, � ≡ 4π2Af 2 is the typical
acceleration of exit oscillation, A and f are, respectively, the
amplitude and frequency of oscillation. In this regime, arch
does not form readily so that beads flow continuously through
the exit. The motion of the exit induces random motion of
the beads at the exit so that W decreases. On the other hand,
when D is reduced, we observe a change from continuous flow
to an intermittent flow regime in which temporary clogging
events occur stochastically. In this regime, the flow rate, which
depends on both A and f for a silo of exit size D, can be
collapsed by plotting against the typical oscillation speed v ≡
2πAf . Hence, the flow rate is a function of v only—a feature
consistent with a simple physical mechanism related to the
motion of the exit.

In the intermittent flow regime, we also find that the flow
time tf before clogging is exponentially distributed [3,15,17].
In particular, the reliability function [18] P (tf ) is found to be
proportional to exp(−tf /〈tf 〉), an expected feature of Poisson
processes for random and independent clogging events. On the
other hand, the statistics of the recovery time tr (defined as the
time from clog to flow [14]) is power-law distributed: P (tr ) ∝
t−α
r with α = 2.25. This suggests that the packing above the

exit may be driven to a self-organized critical state [19] before
the arch at the exit is broken by the oscillation which acts as
perturbations. Moreover, the value of α, being greater than
unity, implies that the average recovery time remains finite.
This result contributes another evidence for sustainable finite
flow rate due to exit oscillation.
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FIG. 1. Experimental setup: (a) front view and (b) side view. ST:
storage tank, oscillating exit, M: motor with crankshaft (M), EB:
electronic balance, FC: fast camera. (c) A typical image from FC.
(d) Average bead number 〈n〉 in an image (red dots). The black trace
represents the instantaneous speed of the exit.

II. EXPERIMENT

A two-dimensional silo with a storage tank (ST) on top
is constructed using an aluminum plate and a glass plate as
the walls with two acrylic spacers in between as shown in
Fig. 1(a) and (b). The dimension of the glass plate is 60 ×
50 cm2 while the acrylic spacers, which are 60 × 13 cm2 and
3.3 mm thick, are placed 24 cm apart. Hence, we have a silo
of internal dimension 60 × 24 cm2 × 3.3 mm. Metal beads of
3 mm diameter and weight 0.11 g are loaded in the silo through
the storage tank on top. Since the space between the walls are
only slight larger than the bead diameter, the beads inside the
silo are packed in one single layer. The bottom of this thin silo
is made of two aluminum blocks that are mounted on a pair of
linear rails so that a movable outlet of adjustable exit size D is
constructed.

A metal rod with ball joint bearings at both ends is used
to link the outlet block to a homemade crankshaft which is
driven by a DC-motor (M). In this way, the exit of the silo can
oscillate horizontally with well-controlled oscillation strength
characterized by the typical speed v ≡ 2πAf and acceleration
� ≡ A(2πf )2, where A and f are the oscillation amplitude and
the frequency, respectively. The typical acceleration � will be
expressed in unit of 9.81 m/s2, the acceleration due to gravity.

The silo is mounted on a platform inclined at 45◦ from the
vertical direction. A digital electronic balance (EB) running
at 5.5 measurements per second is placed below the outlet to
measure the average flow rate (W ) of the beads from the silo. A
fast video camera (FC) with 1 ms exposure time running at 100
frame per second is installed to capture images of the beads that
flow out of the silo. Figure 1(c) is a typical image captured by
the camera at D = 2.08, A = 33 mm, and f = 0.33 Hz. The
number of beads n in the image can be obtained by standard
imaging software. If n = 0 for longer than 0.04 s, which is the
time for a beads to fall a distance of its diameter from rest,
the silo is considered clogged. Furthermore the average bead
number 〈n〉, calculated by a running average filter of 0.3 s time
window, is found to be highly correlated to the instantaneous
speed of the exit at small flow rate as shown in Fig. 1(d). Hence

the typical speed v of the exit may be a good physical quantity
to analyses the flow rate data at small exits.

III. RESULTS AND DISCUSSIONS

A. Flow rate for silo with large exits

Figure 2 shows the flow rate data from the electronic
balance. The black dots in Fig. 2(a) are the measurement
obtained at oscillation amplitude A = 7.6 mm and frequency
f = 3.3 Hz so that � = �o = 0.34. The line through the
dots in the figure is a fitted curve using the Beverloo Law:
W = Wo(D − k)3/2, where Wo = 3.07 ± 0.03 g/s and k =
0.68 ± 0.04. Apparently the flow curve at this oscillation
condition obeys the Beverloo Law with exit size down to about
two times the bead diameter. However, the flow rate of a fixed
exit size varies with the oscillation strength as demonstrated by
the red ‘×’ for � < �o and blue ‘+’ for � > �o in the figure.
Roughly speaking, for silos of small exit sizes (D � 5), flow
rate increases with oscillation strength. On the other hand, W

decreases with � for silos of large D. Although the reduction
of discharge rate from a horizontally vibrated silo had been
reported by Hunt et al. [20], the physical mechanism for flow
reduction due to exit oscillation was not clear.

It should be pointed out that if the exit is not oscillating,
W vanishes when D is close to 5 due to formation of a
permanent arch above the exit [2]. Similar to the tilted silo
experiments by Thomas and Durian [5], there is no signature
of clogging transition at D ≈ 5 in our experiments. However,
unlike the experiments performed in ref. [5] in which flow
was recovered from a clogged configuration by breaking the
blocking arch manually, finite flow rate can be sustained by
exit oscillation in our experiments with exit size down to 1.27
time the bead diameter. Hence, one can indeed keep the silo
running without clogging by exit oscillation, albeit with small
flow rate. When flow rate W is plotted against the acceleration
� of exit oscillation at a fixed exit size for D � 5, a linear
relation: W = −a� + b is revealed [see inset of Fig. 2(a)]. The
rate a at which W decreases with � is found to increase with
exit size D such that a = c(D − 5) with c = 1.6 ± 0.1 g/s.
This implies that the effect of � on W is stronger at larger exit
size.

We believe at large exit size, the flow is fast and the beads
near the exit are fluidized. Hence, no arch can be formed. If the
exit is not oscillating, a continuous stream of beads flow out of
the exit with velocities mainly directed downward as shown in
Fig. 3(a). Only the beads close to the edge of the exit have better
chance to hit the edge and acquire significant horizontal speed.
However, when the exit is oscillating, collisions between the
beads and the edge of the exit give the beads horizontal
speeds that may lead to collisions among the beads before
they fall through the exit. Hence the kinetic stress [21] of the
granular fluid at the exit increases and the flow rate is reduced.
Intuitively, if the collisions are strong enough a bead may even
moves upward as illustrated in Fig. 3(b). Since the impulse on
the beads increases with the relative velocity between the exit
edge and the colliding beads, the reduction of flow rate will
be larger at larger exit size when the average flow speed of the
beads are larger. This mechanism of flow rate reduction due
to oscillation at large exit size suggests a possible effective
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FIG. 2. (a) Flow rate W versus exit size D at different oscillation acceleration �. The line through the black dots is the least square
fit of the Beverloo Law to the data � = 0.34. Inset shows the effect of � on W at different D. (b) W versus the effective variable ξ ≡
Wo(D − k)3/2 − c(D − 5)�. The vertical dashed red line corresponds to D = 5 and the arrows indicate the directions of increasing �. Inset
shows the linear relationship between the rate a of decreasing W with respect to � from which the quantity c via a = c(D − 5) is obtained.

variable ξ ≡ Wo(D − k)3/2 − c(D − 5)� through which the
flow rate data should be collapsed. This particular form for the
effective variable is consistent to our experimental observation
and it reduces to the Beverloo Law when the exit is not
vibrating. Figure 2(b) is the plot of W versus ξ . One can
see that this ansatz performs satisfactorily for D > 5 but not
so for D < 5.

Although W does not collapse well for small D, they
approach the collapse curve at large �. Presumably the strong
oscillation of the exit prevents the formation of the arch at the
exit and hence the arguments in the previous paragraph are
applicable. Nevertheless, the scattering of the data for small D

implies that � is not a good physical quantity to analyze the
data. The strong correlation between the average number of
beads 〈n〉 and the instantaneous speed of the exit [see Fig. 1(d)]
suggests that the exit oscillation speed v ≡ 2πAf may be a
better parameter to understand the physics in this regime.

FIG. 3. Schematic diagrams illustrating the velocities of the beads
near the exit when the exit is (a) stationary and (b) oscillating.

B. Flow rate for silo with small exits

The reason of the unsatisfactory data collapse in the small
exit regime using � may arise from the deviation from
Beverloo Law. This can be checked by plotting W 2/3 against
D [see Fig. 4(a)]. The results confirms that flow rate does
deviate from the Beverloo Law in small D. Under certain
oscillation strength the dependence W ∼ (D − k)3/2 is valid
down to D � 2. At other oscillation strength, W (D) deviates
from the three-half power-law when D is smaller that a certain
value Dc. When we examine the temporal record of the
reading m(t) from the electronic balance for the experiment
conducted at small oscillation (A = 2.0 mm, f = 0.17 Hz)
and small D(=2.75), we find plateaus that signify the presence
of temporary clogging events as shown in Fig. 4(b). These
clogging events cause the flow to be intermittent and it can
indeed be observed visually. Transition from continuous flow
to intermittent flow by reducing the exit size at constant
oscillation strength can also be observed when the oscillation
strength is reduced at constant exit size.

C. Intermittent flow

In the intermittent flow regime, beads flow out of the silo
for a time period tf before a clogging event that stops the
flow momentarily. Then after a recovery time period tr , beads
start to flow again as illustrated by Fig. 4(b). Since the data
rate of electronic balance is slow, we use the images from
the fast camera to measure tf and tr with a better temporal
resolution. We consider that if there is no bead captured in
four consecutive frames (i.e., a period of 0.04 s which is the
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FIG. 4. (a) Two-third power of average flow rate W 2/3 versus
exit size D at different oscillation amplitude A and frequency
f . To separate the data for better viewing, data values for A =
7.6 mm (black dots, � = 0.34) are shifted up by 5 units and those
for A = 15 mm (red dots, � = 0.53) are shifted up by 10 units.
(b) Time variation of the reading from electronic balance for D =
2.75 obtained at A = 2.0 mm and f = 0.17 Hz. (c) Phase diagram
for intermittent flow in the v-D plane. The phase boundary between
intermittent and continuous flows in the figure can be fitted to a power
law: v ∼ D−7 and equally well to an exponential form: v ∼ e−D/0.55.

time for a bead to move a distance of its diameter from rest),
it is within a temporary clogging event. Otherwise, it is in
the flow state. In this way, we can identify the oscillation
conditions, characterized by the oscillation speed v ≡ 2πAf ,
for intermittent flow in silo of exit size D as shown in Fig. 4(c).
Interestingly, the phase boundary for the intermittent flow
seems to follow either a power law: v ∼ D−7 or an exponential
form: v ∼ e−D/0.55. Extrapolation of the phase boundary to
vanishing v (i.e., stationary exit) would imply the absence of a
finite exit size [4,6,17] beyond which clogging is impossible.

D. Flow time and recovery time in intermittent flow regime

In previous studies of silo with stationary exit, the transition
from clogging to continuous flow is accompanied by rapid
increase of avalanche size [4,6,17] which is defined as the
amount of material that go through the exit before clogging
occurs. In our experiments, in which finite flow rate can be
sustained, the equivalent avalanche size is proportional to the
flow time tf in intermittent flow regime. Figure 5(a) shows
that when the exit oscillation speed is small (v � 0.1 m/s), the
average flow time 〈tf 〉 grows exponentially with D such that
〈tf 〉 = t0e

D/D0 with t0 = 1.69 × 10−2 s and D0 = 1.89. At
strong exit oscillation [e.g., v = 0.159 m/s in Fig. 5(a)] 〈tf 〉
grows faster than exponentially. Obviously, 〈tf 〉 diverges when
approaching the boundary of intermittent to continuous flow
transition. In this situation, the upper bound of 〈tf 〉 is set by
the duration of the experiment. In an experiment that lasts for a
time period T in which the total flow time is Tf , the duty cycle
φ ≡ Tf /T , which approximates the probability of finding the
silo at a particular moment, is more informative. The inset of
Fig. 5(a) shows that φ increases with D and becomes unity
when D � 5, as expected.

FIG. 5. (a) Variation of average flow time 〈tf 〉 with exit size
D at different oscillation parameters. Inset shows the change of
duty cycle φ with D. The lines in the graphs are guide to the eye.
(b) Variation of average recovery time 〈tr〉 with oscillation speed
v at different D. The lines has slope equals −0.75. Inset shows
how φ varies with v. The slope of the line in the inset is 0.6.
(c) Complementary cumulative distribution P (tf ) of flow time
tf at A = 1.56 mm, f = 0.33 Hz, and v = 3.3 × 10−3 m/s when
D = 2.08. Inset: Same data plotted in semi-logarithmic graph with
the fitted curve: P (tf ) = 1.4 exp(−tf /0.059). (d) Complementary
cumulative distribution P (tr ) of recovery time tr at the same
oscillation condition is plotted in semi-logarithmic scale. Inset:
Same data plotted double logarithmic graph with the fitted line:
P (tr ) = 0.22t−2.25

r .

While the average flow time is a measure of how often one
has to wait before a temporary clog occurs due to formation
of an arch at the exit, the average recovery time 〈tr〉 indicates
how long the arch persists under the influence of the motion of
the exit. Clearly, the faster the exit moves, the faster the arch
should break. Hence 〈tr〉 should decreases with v whereas
the duty cycle should increases with v. Figure 5(b) shows
that 〈tr〉 decreases with oscillation speed v approximately in a
power-law: 〈tr〉 ∼ v−0.75 when D < 4. On the other hand, the
duty cycle increases approximately with v0.6.

The difference in functional dependence of 〈tf 〉 on D and
〈tr〉 on v suggests a fundamental differences between clogging
and clog recovery processes. Since the transition from flow to
clog and that from clog to flow are stochastic processes, one
can measure the the probability density p(tf ) and calculate the
reliability function, or complementary cumulative distribution,
P (tf ) ≡ ∫ ∞

tf
p(τ )dτ . Figure 5(c) is the graph of P (tf ) for a

silo with D = 2.08, A = 7.6 mm, and f = 0.33 Hz. The inset
in this graph implies P (tf ) ∼ exp(−tf /〈tf 〉), an exponential
decay function which is typically found in Poisson process
with a constant transition rate [15]. Hence, the clogging
transition is related to the spontaneous formation of an
arch at the exit. In contrast, the complementary cumulative
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distribution P (tr ) obtained for the recovery time in the same
experiment is a power-law function P (tr ) ∼ t−α

r with α = 2.25
as shown in Fig. 5(d). Power-law probability density for the
waiting time distribution is usually related to self organize
criticality [19,22] that underlying earthquake in which stresses
are built up before the onset. The breaking of the arch at the end
of the recovery period in our experiment may be analogous to
the onset of earthquake. During the recovery period, horizontal
motion of the exit introduces rearrangement of the packing
above the arch it is deformed to an unstable configuration and
breaks [11,16].

Note that the value of α is greater than 2. So the probability
density, which is proportional to the derivative of P (tr ),
will decrease faster than the inverse third power of tr . Let
the minimal value of tr be to which is determined by the
experimental method. Then the average recovery time 〈tr〉 ∝∫ ∞
t0

τ−αdτ is finite. Since a permanent clog will cause 〈tr〉 to
diverge, the above analysis implies that the clogging events in

FIG. 6. (a) Schematic diagram of the bead at the base of an arch
falling out when the exit moves. (b) Flow rate W versus oscillation
frequency f at different oscillation amplitude A measured at D =
2.08. (c) Schematic diagram of the bead being hit by the edge of the
exit with an upward impulse if δ is less than the radius of the bead.
(d) Same data in (b) when plotted against oscillation speed v for
different combinations of oscillation amplitude A and frequency f

when the exit size D = 2.08. The inset shows the quality of data
collapse for small v. (e) W versus v in double logarithmic plot for
different D.

our experiments are always temporary and hence finite flow
rate can be sustained indefinitely.

E. Arch breaking mechanism

In the intermittent flow regime, the presence of temporary
clogs implies the failure of arch prevention by exit oscillation.
Nevertheless even when an arch is formed, it may be broken
by the motion of the exit. Figure 6(a) illustrates one possible
mechanism for the breaking of an arch. When the exit moves
to the base (green) of an arch, the base falls out through the
exit. Hence the arch will fall apart and flow will resume.
If this mechanism is responsible for the flow, the flow rate
should increase with the oscillation speed. Figure 6(b) shows
the variation of the flow rate with oscillation frequency f

at different oscillation amplitude A for the silo of exit size
D = 2.08. While W depends on both f and A, the flow data
collapse on a single curve when plotted against oscillation
speed v [see Fig. 6(a) and its inset]. Similar data collapse of
the flow rate for silos of different exit size are also observed
as shown in Fig. 6(b). Hence, instead of depending on two
independent parameters A and f , W at a particular exit size is
a function of v only.

Note that W starts to decrease with v when v > 0.2 m/s
for the silo with the smallest exit (D = 1.27) as shown in
Fig. 6(b). To explain this observation, we consider the scenario
depicted in Fig. 6(c). Consider a bead starts to fall from rest
near the exit and hit by the edge of the exit after falling a
distance δ. If δ is less than the radius r of the bead, the bead
will acquire an upward impulse from collision and W will be
reduced. The speed vc at which this happens can be estimated
by 1

2g sin 45◦(2Dr/vc)2 � r . This leads to vc � 0.28 m/s,
which is consistent to our data as shown in Fig. 6(d).

IV. SUMMARY

To summarize, we investigate granular flow of mono-
disperse beads out of a two-dimensional silo with an oscillating
exit. Because of exit oscillation, finite flow rate can be
sustained beyond the clogging transition that occurs for
stationary exit at exit size approximately five times the grain
size. Although Beverloo Law is found to be valid beyond the
clogging transition due to exit oscillation, the effect of exit
oscillation on flow rate is very different for silos with large
and small exit sizes.

Conceptually, exit size represents the geometrical aspect
that determines how readily arches are formed at the silo exit
while exit oscillation is a dynamical effect that determines
how effective the formation of arches are prevented and how
fast the arches are destroyed by the motion of the exit. For
silo with large exit size, arch formation is not possible, exit
oscillation makes no positive contribution to flow rate. Instead
it induces random motion of the beads and hence increases
the resistance to the flow. At small exit sizes when arches
are formed readily, these arches slow down the flow and may
even block the flow in a silo with stationary exit. Under exit
oscillation, arch formation may be completely prevented and
hence continuous flow is possible and flow rate increases
with oscillation strength. For silos with even smaller exits,
arch formation cannot be avoided even with exit oscillation
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and the flow in the silo will be blocked. Nevertheless, when
the flow is blocked, the motion of the exit serves to destroy
the arch by loosening one of the bases of the arch and the
flow may resume. These temporary clogging events cause
the beads to flow intermittently with flow rate depends only
on the oscillation speed according to the arch breaking
mechanism proposed.

Finally, we find that the probability density of the flow time
and recovery time are, respectively, exponential and power-law
distributed, implying fundamental differences in the physical
processes of clogging and unclogging. Currently we are
building three-dimensional silos to check if the flow behave
differently to those of the two-dimensional silos. We believe
our studies will not only enhance the basic understanding of

the physics of clogging and unclogging but also lead to a better
designs of devices and appliances [12,23] for transporting or
distributing granular materials without clogging.
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