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Thermal gas rectification using a sawtooth channel
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We study the rectification of a two-dimensional thermal gas in a channel of asymmetric dissipative walls. For
an ensemble of smooth Lennard-Jones particles, our numerical simulations reveal a nonmonotonic dependence
of the flux on the thermostat temperature, channel asymmetry, and particle density, with three distinct regimes.
Theoretical arguments are developed to shed light on the functional dependence of the flux on the model
parameters.
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I. INTRODUCTION

Systems where fluctuations are rectified into directed
motion are known as Brownian motors or ratchet devices [1,2].
According to the second law of thermodynamics, these systems
ought to be impossible in equilibrium [2,3]. This is why broken
spatial symmetry and nonequilibrium conditions are a key
feature for their operation [4,5]. Brownian motors are relevant
in a number of situations from biological processes to devices
for particle segregation [6–9] and transport [10–12]. For
instance, asymmetric objects (e.g., wedge shapes) immersed
in a granular gas tend to move [13,14] or rotate [15–18] in a
preferential direction, provided that particle-object collisions
are dissipative. Also, granular particles enclosed in a vibrating
sawtooth-shaped channel flow along a preferential direction
defined by the asymmetry of the channel [19]. Similar results
are also observed for microscopic particles in an asymmetric
channel under the action of a pulsating potential [7]. There are
also various examples of active matter systems ranging from
bacteria at microscopic scale [20–22], to centimeter scale bots
[23], up to pedestrians [24] where rectification can be induced
by spatial asymmetries.

Although these systems rectify the motion of the particles
or objects immersed within the particle bath, they still
require either a pulsating potential or active particles. Further
examples, that in some sense relax these requirements, include
rectification using differentiated noise sources [25,26] or
asymmetric piston models [27–29] that show rectification
effects, even when working at a single temperature, provided
there is friction and the particle-piston collisions are different
on both sides of the piston. So far there are only few examples
[30,31] in which the motion of a single particle in a single
dimension is rectified without external driving forces. In
the present work, we provide a novel example of collective
particle motion rectification in two dimensions. We show
that the motion of a gas of Lennard-Jones particles can be
rectified without external pulsating potentials only by means
of dissipation and broken spatial asymmetry. To this end, we
consider a two-dimensional gas of particles in a fixed (not
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moving) asymmetric sawtooth-shaped channel and study how
the overall flux depends on the different model parameters.
We expect that this idea can find applications in fields such as
microfluidic or laboratory on a chip setups.

The paper is organized as follows. In Sec. II, the model and
methods are introduced. The results are discussed in Sec. III
and we draw some conclusions in Sec. IV.

II. MODEL AND METHODS

We consider a two-dimensional sawtooth channel of linear
length L consisting of a sequence of N equal cells, as
represented in Fig. 1, with periodic boundary conditions
along the horizontal axis. The geometry of the channel is
characterized by four lengths: the length of each cell l = L/N ,
the aperture size h, and the horizontal position a and height
d of the edge. To systematically study the dependence on the
asymmetry of the channel, we fix h and define the adimensional
asymmetry coefficient α as

α = 1 − 2
a

l
, (1)

where α ∈ [−1,1]. For α = 0 the channel is symmetric with
respect to the vertical axis, while for α = ±1 the cells look
triangular. We classify channels of negative and positive α as
left and right asymmetric, respectively.

We consider a gas of particles interacting pairwise, where
the force of particle j on particle i is conservative and given
by Fij = −∇iULJ. ULJ is the 12-6-Lennard-Jones potential,

ULJ(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (2)

where rij = |rj − ri |, and ri and rj are the positions of
particles i and j , respectively. ε corresponds to depth of the
potential well which is located at rm = 21/6σ . The force Fiw of
the wall on a particle i is described as the superposition of two
contributions: a conservative force Fc

iw, and a dissipative one
Fd

iw. The conservative force is described as a Lennard-Jones
interaction with the closest point on the wall, with the same ε

and σ of the particle-particle interaction. The dissipative force
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FIG. 1. Schematic representation of the channel of size L, with
N = 4 cells. The shape of each cell is characterized by four lengths:
the linear length l, the aperture size h, and the horizontal position
a and height d of the peak. The depicted channel is classified as
right asymmetric (see text) and the arrows indicate the corresponding
direction of particle flow. The dashed lines delimit the region where
particles are initially released.

is given by

Fd
iw = −γ (ṙi · n̂iw)n̂iw, (3)

where n̂iw = ri−rw

riw
is the unit vector pointing from the closest

point on the wall rw to the particle i and γ � 0 is a friction
constant. The particle-wall interaction is conservative for
γ = 0 and dissipative otherwise. Interactions with the wall
are truncated at a cutoff distance dc = 2.5σ and if the particle
is within the cutoff distance of multiple points or walls the
contributions are superimposed. The particle-wall interaction
model was chosen to study the effect of the wall geometry on
the particles dynamics. It is assumed that the particles locally
bounce off the wall thus the use of a cutoff distance and the
nearest point prescription. dc = 2.5σ has been found to be
a reasonable cutoff Ref. [32]. The analysis of more complex
particle-wall interaction models where the walls are directly
modeled as a fixed set of particles is left for future work.

We performed canonical molecular dynamics simulations,
using the Nosé-Hoover thermostat [32–34]. Accordingly, the
equation of motion of particle i is

r̈i = 1

mi

⎛
⎝∑

j �=i

Fij (rij ) + Fiw

⎞
⎠ + FNH,

FNH = − ξ ẋ, (4)

where rij = rj − ri , mi is the particle mass, and FNH is the
force per unit of mass, resulting from the coupling with the
thermostat [34]. ξ is the variable that describes the thermostat
and its dynamics is given by

ξ̇ = 1

Q

(
N∑

i=1

p2
i

mi

− (3N + 1)kBT

)
, (5)

where Q is a parameter known as “thermal inertia” that
throughout the work was set to Q = 0.05, kB is the Boltzmann
constant, N is the number of particles, and T is the thermostat
temperature.

For simplicity, we set mi ≡ m and consider reduced units,
such that mass is in units of m, distance in units of σ , and
energy in units of ε. The equations of motion are integrated
using a fifth-order predictor-corrector algorithm, with a time
step dt = 10−5 and we run the simulation up to t = 165.

To generate the initial configurations, all particles were
released within the region delimited by the dashed lines
in Fig. 1, with an initial velocity drawn from a uniform
distribution of zero mean. Particles are thermalized at the
thermostat temperature within the dashed region, considering
periodic boundary conditions along the horizontal direction
and reflective top and bottom boundaries, without interacting
with the channel walls. At t = 15, the constraint imposed by
the dashed lines is removed and particles move inside the
channel, following the dynamics described by Eq. (4).

III. RESULTS

To characterize the effect of the asymmetry of the channel
walls on the overall flux, we fixed N = 24, l = 15, d = 3, and
h = 6, and performed simulations for different values of the
asymmetry coefficient α ∈ [−1,1]. To reduce statistical noise,
instead of directly measuring the outlet flux φ(t), we introduce
an integrated quantity B(t), which we call balance. B(t) is
defined as the difference between the cumulative number of
particles crossing the rightmost boundary from the left to the
right and the ones crossing it in the opposite direction, up to
time t . In the continuum limit,

φ(t) = 1

h
Ḃ(t). (6)

Asymptotically, we expect that the balance scales linearly in
time, and so we estimated the flux from a linear regression fit
of the curve B(t) in the linear regime.

Figure 2(a) shows the balance as a function of time for
different values of α. Clearly, spontaneous flow emerges as a
result of the asymmetry of the channel walls. For right symmet-
ric channels (α > 0), the flow is from the left to the right, while
for left symmetric channels (α < 0), the flow is in the opposite
direction. Figure 2(a) also shows examples for α = {0,0.8,1},
for a particle-wall cutoff distance of 5σ . These examples
show that the observed rectification of the particle motion
is still observed for a larger cutoff distance, but the quantitative
values of the flux are obviously different.

To analyze the transition at α = 0, we define � as the
fraction of samples where B(t) > 0 for large values of t (t =
165). The dependence of � on α is in Fig. 2(b), for three
different sizes of the channel. One sees that � is 0.5 for α = 0
and it seems to converge to a step function as the system size
increases.

The dependence of the flux on the density is shown in
Fig. 3(a), for α = 1 and T = 2.5. One clearly observes an
optimal density (ρopt ≈ 0.45) at which the flux is maximized.
The data for ρ < ρopt suggests two different regimes [see
inset of Fig. 3(a)]: a low-density regime, for ρ < 0.1, and an
intermediate-density regime, for 0.1 < ρ < ρopt. It is expected
that the flux of particles is a monotonically increasing function
of the density up to the point where it either saturates or starts to
decrease. For systems where the particle-particle collisions are
more frequent than the particle-wall collisions, kinetic theory
[35] suggests that the flux is linear in the density. However,
for low densities, most of the particle collisions are with the
wall; this implies that the flux is mostly determined by the
chance of a particle to bounce off the wall and eventually
cross the boundary at either end of the channel thus increasing
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(a) (b)

FIG. 2. (a) Time evolution of the balance B(t) for different values of α = {−1.0,−0.8,−0.6,−0.4,−0.2,0,0.2,0.4,0.6,0.8,1.0} (from
bottom to top). Results are averages over 500 samples of systems of 100 particles at a thermostat temperature T = 2.5 and γ = 1. The black
dashed lines correspond to simulations with α = {0,0.8,1} and dc = 5σ which show that the rectification phenomena is not unique to the choice
dc = 2.5σ . (b) Fraction of samples � for which B(t) > 0, for T = 2.5, ρ = 0.143, and N = 250 (blue circles), N = 500 (green squares),
N = 1000 (red triangles).

or decreasing the net flux. In this case the monotonic increase
of the flux is not necessarily linear. The numerical data suggest
a power-law scaling: φ ∼ ρβ . Assuming a power-law scaling,
we estimate β = 1.47 ± 0.07, for the low-density regime, and
β = 1.01 ± 0.04, for the intermediate-density one.

Figure 3(b) shows the average horizontal component of the
velocity (vx) as a function of the density. For the first regime,
vx increases with the density, thus the enhancement of the
flux with the density stems from an increase in the number
particles per cell and possible collective effects affecting the
particle velocity. Similar flux enhancement was reported in the
context of comb systems, where the comb tooth would take
the role of the sawtooth [36]. However, in Ref. [36], the flux
enhancement is observed for high densities and is related to the
saturation of the traps. Here, instead, we observe a flux increase
for much lower densities suggesting a different mechanism.

By contrast, for the intermediate-density regime, vx does
not significantly change with the density and so the flux
only increases due to an increase in the number of particles
per cell, yielding a linear scaling. For ρ > ρopt, a third
regime is observed, for which the flux simply decreases

with the density due to crowding effects. That is, as the
density increases, the available space for a particle to move
diminishes. Thus, the motion of a single particle is strongly
constrained by the presence of others. This in turn implies
that for a particle to move over an extended region, it requires
a concerted rearrangement of several other particles. As the
density increases, the chances that this concerted motion leads
to a majority of particles moving in a preferred direction
diminishes. Instead, it is more likely that the particles rearrange
by moving with no preferred direction leading to a decrease
in the flux. Notice that this is consistent with the fact that vx

approaches zero [Fig. 3(b)] which implies that roughly the
same number of particles travel in each direction.

To study the dependence on α, we plot in Fig. 4, the
flux rescaled by ρβ , using the estimated values of β for the
corresponding regime. We observe a data collapse for each
regime, suggesting that the power-law scaling is resilient over
the entire range of values. The low-density regime shows an
optimal value whereas the intermediate regime shows instead
a nearly constant behavior. We think that, for high-enough
density, the rate of particle-particle collisions is significantly

(a) (b)

FIG. 3. (a) Flux φ as a function of the density ρ, for T = 2.5 and α = 1. The two initial regimes are shown in the inset in a double
logarithmic plot, where the dashed lines represent the power-law fits, φ ∼ ρβ , with β = 1.47 ± 0.07 and β = 1.01 ± 0.04 for the low and
intermediate density regimes, respectively. (b) Average horizontal component of the particle velocity (vx) as a function of the density, for the
same set of parameters.
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FIG. 4. Flux φ rescaled by ρβ as a function of α for T = 2.5 and
different values of the density. The values reported on the left (right)
legend were rescaled using β = 1.47 (β = 1.01).

higher than the one of particle-wall collisions and thus the
geometry of the walls does not play a significant role on the
overall dynamics. By contrast, for low density, the rates of
particle-particle and particle-wall collisions are comparable
and a competition between the two is observed, leading to
the maximum in the flux. Although there is some dispersion
on the data collapse, it is clear that there are two distinct
regimes. The origin of the dispersion can be due to finite-
size effects or scaling corrections. The study of the nature
of the transition and crossover between these two regimes
requires further study, that is beyond the scope of this work.
It is interesting to notice that the results for low densities
in Fig. 4 are similar to those obtained by Sarracino [30].
Namely, the quantity that indicates the presence of motion
rectification (φ in our case and 〈V 〉 in Ref. [30]) shows a
qualitatively similar nonmonotonic behavior as a function of
the asymmetry parameter. In both cases, it vanishes for the
symmetric case and initially grows with the asymmetry, having
a maximum for intermediate values, and then decreasing
towards a saturation value for large values of the asymmetry
parameter.

The dependence of the flux on the thermostat temperature is
shown in Fig. 5, for different values of γ . For the entire range of
values of γ , a maximum is observed at an optimal temperature
Tmax that increases with γ (see inset). Also, the optimal flux
grows with dissipation (increasing γ ). Note that, for γ = 0,
the overall flux vanishes and thus a dissipative interaction with
the walls is necessary to rectify the thermal motion of gas.
This is consistent with the work of Prost et al. that suggests
that time-reversal symmetry of trajectories needs to be broken
to obtain rectification from asymmetric walls [12].

Finally, to quantify the flux for a specific system, let us
consider a channel of total length L = 216 μm, single cell
length l = 9 μm, α = 0, p = 1.8 μm, and h = 3.7 μm at
room temperature, with colloidal particles of σ = 6 × 10−7 m,
m = 2.49 × 10−16 kg, and γ = 2 × 10−14 kg/s [37,38]. If

FIG. 5. Scaled flux φ/ρ as a function of the thermostat temper-
ature, for α = 1, ρ = 0.0917, and different values of the friction
constant γ . The thermostat temperature was shifted by Tmax, defined
as the optimal temperature at which a maximum is observed in the
flux. The dependence of Tmax on γ is shown in the inset.

we assume, ε/kb = 0.01414 K (where kb is the Boltzmann
constant), we obtain a flow velocity φ/ρ ≈ 42 μm/s.

IV. CONCLUSION

In this work, we systematically study the dependence of
the rectification of the motion of a thermal gas on a channel
of asymmetric dissipative walls. We found that the overall
flux enhances with the friction constant of the particle-wall
interaction and that it shows a nonmonotonic dependence
on three other model parameters, namely, the thermostat
temperature, channel asymmetry, and particle density. For
the dependence of the flux on the density of particles, we
found three different regimes. For low density, the flux scales
superlinearly with the density, as collective effects lead also to
an increase in the horizontal component of particle velocity.
For intermediate density, the horizontal component of particle
velocity saturates at a constant value and the overall flux scales
linearly with the density. Finally, above an optimal value of
the density, the flux monotonically decreases due to crowding
effects. Future work might consider different geometries and
a generalization to the three-dimensional case. The effect of
different dissipation mechanisms as well as particle shapes are
still open questions.
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