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For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated
by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become
smaller as the Plateau borders and vertices inflate with liquid. So-called “border-blocking” models can explain
some features of wet-foam coarsening based on the presumption that the inflated borders totally block the
gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles
become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the
ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside
the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we
verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated
vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the dA/dt = K0(n − 6)
von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the
concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate
of the average bubble area, which is not constant.
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I. INTRODUCTION

Aqueous foams consist of gas bubbles in soapy water and
are prototypical far-from-equilibrium disordered systems that
exhibit a variety of unusual and useful properties [1–3]. Even in
the absence of drainage and film rupture, the average bubble
size grows “coarsens” with time due to the diffusion of gas
from smaller higher-pressure bubbles to larger lower-pressure
bubbles [4,5]. For two-dimensional (2D) foams, von Neumann
famously pointed out that the rate of change of area for an
n-sided bubble is

dA

dt
= K0(n − 6), (1)

and hence depends only on topology and not at all on details
of size, shape, or constellation of neighbors [6]. Avron and
Levine showed how the von Neumann law generalizes if the
foam is embedded in curved space [7,8], while Mullins [9],
Glazier [10], and MacPherson and Srolovitz [11] discussed
how it generalizes to higher dimensions. An important feature
is that the bubble-size distribution can evolve into a self-similar
scaling state, where its shape is constant, and the average
bubble radius grows as the square-root of time [12]. These
theories all pertain to mathematically ideal dry foams, where
neighboring gas bubbles are separated by soap films of zero
thickness. According to Plateau’s rules for local mechanical
equilibrium, films meet by threes at equal 120◦ angles in a
so-called Plateau border (a vertex in d = 2 dimensions, a curve
in d = 3); and borders meet by fours at equal arccos (−1/3)
angles in a vertex (d = 3).

This paper concerns the coarsening rules for physical foams
that are not mathematically dry but have some appreciable
liquid content that may be varied from nearly a dry limit up to
and beyond a wet limit where the bubbles become close-packed
circles or spheres. While some of the liquid resides in the films,
which have a constant thickness l of order 1–100 nm as set
by disjoining pressure [13], it mostly resides in the borders

and vertices. This follows from the typical hierarchy of length
scales, where l is much less than border or vertex thickness
r , which in turn is less than the average bubble radius R.
Then the liquid fraction scales as ε ∼ (lR + r2)/R2 ∼ (r/R)2

in d = 2 and ε ∼ (lR2 + r2R + r3)/R3 ∼ (r/R)2 in d = 3;
i.e., the Plateau border thickness is r = O(

√
εR) and thus

changes with both wetness and bubble size. In d = 2 there is
a decoration theorem showing that borders can inflate in this
manner without any change in the location of the underlying
“undecorated” dry films or vertices [14–18]. Though this
breaks down when neighboring borders and vertices merge,
and though the theorem does not hold in d = 3, the concept of
decoration provides intuition for the structure of not-very-wet
foams.

The coarsening process must be slowed by wetness, since
gas diffusion is faster across films than across the thicker
borders and vertices. This can be examined by the growth
of the average bubble radius versus time, R(t) versus t , where
R is proportional to the average bubble volume raised to the
power of 1/d. In the dry limit for d = 2, the expectation
is R(t) ∼ t1/2, since d〈A〉/dt = 2K0[〈A〉2/〈A2〉][〈〈n〉〉 − 6]
follows from von Neumann and self-similarity [19], where
〈〈n〉〉 ≈ 6.5 is the area-weighted average side-number and
〈A2〉/〈A〉2 ≈ 1.7 [19]. In the ε = 0 dry foam limit, one can
alternatively argue dRd/dt ∝ D[(hγ/R)/l]Rd−1 where D is
gas diffusivity, Rd−1 is the bubble surface area, and the term in
brackets is the typical concentration gradient of dissolved gas
in the film as set by gas solubility (Henry’s constant h) times
typical pressure difference (film tension γ times curvature
1/R) divided by film thickness; this also gives R(t) ∼ t1/2, but
now in all dimensions. In the ε = 1 limit of dilute spherical
bubbles, the concentration gradient at the bubble surface is
instead h(σ/R)/R, where σ is the gas-liquid surface tension;
this changes the growth law to R(t) ∼ t1/3 in all dimensions.

These arguments lead to two conflicting empirical ap-
proaches for quantifying the effect of wetness on the growth
rate of the average bubble radius, R(t) versus time. One is
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to fit data for the growth exponent in R(t) ∼ tβ , expecting
β to decrease with increasing liquid fraction. For example,
β = 0.45 was observed by diffuse light transmission for
a foam with ε = 0.08 [20]; Potts model simulations gave
β ≈ 1 − ε1/5/6 in d = 2 [21] and β = {0.5,0.44,0.4} for
ε = {0,0.05,0.2} in d = 3 [22]; and a fast crossover from
β = 1/2 for ε < 0.25 to β = 1/3 for ε > 0.35 was found also
by diffuse light transmission [23]. To our knowledge it has
not been pointed out that such approaches are consistent with
the assumption that the average concentration gradient around
a bubble is h(σ/R)/e, set by an effective diffusive thickness
e ∝ l1−αRα between bubbles across which gas must diffuse;
this gives β = 1/(2 + α). The second approach assumes β = 1
and analyzes data in terms of RdR/dt = DF (ε), where D has
units of a diffusion constant and F (ε) describes the decrease
in coarsening rate with wetness. In “border-blocking” models,
F (ε) is the fraction of a typical film that is undecorated by
inflated borders/vertices, and 1 − F (ε) is the fraction that is
blocked to gas diffusion [14,15]. References [24,25] take F (ε)
as decreasing from 1 to 0 as ε varies from 0 to random-close
packing. This overestimates the rate reduction, since inflated
borders cannot totally block gas diffusion. Indeed, Refs. [26–
28] measured RdR/dt over a wide range of sizes and liquid
fractions and found evidence for F (ε) = 1/

√
ε.

These empirical descriptions of average behavior are not
built on an explicit treatment of microstructure and the
diffusion of gas across films and inflated borders or vertices,
and hence cannot recover the von Neumann law in the dry limit.
A step in this direction was made in Ref. [19] for a quasi-2D
foam of bubbles squashed between parallel plates of separation
H . Repeating the von Neumann argument, supplemented by
border blocking, the growth rate for an n-sided bubble of area
A was calculated to be

dA

dt
= K0

(
1 − 2r

H

)[
(n − 6) + 6Cnr√

3πA

]
. (2)

Here C is a dimensionless shape parameter (“circularity”) set
by the average film curvature times a power of bubble area,
scaled to be one for circular bubbles:

C =
⎛
⎝1

n

n∑
j=1

1

Rj

⎞
⎠√

A

π
, (3)

where 1/Rj is the curvature of side j . By this definition,
C is one for circular bubbles, positive for convex bubbles,
zero for polygonal bubbles, and negative for concave bubbles.
This result holds for any liquid fraction, as long as the bubble
in question satisfies the decoration theorem [14] such that
its neighboring Plateau borders are separated by a film with
nonzero length. Experimentally, the average and standard
deviation of the observed circularities were measured to
be approximately 〈C(n)〉 = (1 − n/5.73) ± 0.25 in the self-
similar scaling state [19]. Note that the 2r/H term in Eq. (2)
slows down the overall growth rate, while the C term causes
a violation of von Neumann behavior; both terms vanish for
r = 0, thus recovering the usual von Neumann law in the dry
limit. The modified growth law of Eq. (2) was shown to account
for an observed slowing and violation of the von Neumann law
that increases with wetness (r > 0) and for smaller bubbles
[19]. Unphysically, however, it predicts the growth rate to

vanish when the border radius inflates to r = H/2, since then
the vertical extent of the film shrinks to zero and all gas
transport is assumed to be blocked.

In this paper we significantly extend the approach of
Ref. [19] by explicitly treating the diffusion of gas across
inflated Plateau borders and vertices. For this we use physical
arguments as well as numerical solution of the diffusion
equation. We begin with surface Plateau borders in quasi-2D
foams, which have a particularly simple geometry, before
considering bulk Plateau borders and vertices. We then use
these results to modify the von Neumann law to model
the growth of individual bubbles caused by gas transport
through borders and vertices, in addition to films. Finally, we
average the modified von Neumann law over the bubble-size
distribution to obtain the rate of change of the average bubble
area.

II. SURFACE PLATEAU BORDERS

A. Expectation

We begin by considering diffusive gas transport across
Plateau borders that run along the surface of a quasi-2D foam
of bubbles squashed between parallel plates of separation H .
Figure 1 depicts the contact between two such bubbles, where
a vertical soap film spans the gap and is surrounded by (a)
two surface Plateau borders running along the plates, (b) two
vertical Plateau borders running between the plates, and (c)
four surface vertices where four borders meet. A vertical cross
section through the middle of the film [Fig. 1(b)] shows the
soap film as having thickness l and terminating at distance r

away from the plates at surface Plateau borders of radius r .
In this quasi-2D geometry the liquid volume fraction scales as
ε = (RHl + Rr2 + r3)/(R2H ); therefore, the border radius
inflates with liquid content as r = O(εRH )1/2 assuming the
usual separation of length scales. For a sealed sample cell, ε

is fixed and hence r grows as the foam coarsens [though more
slowly than in a truly 2D sample where r = O(

√
εR)]. By

contrast, for the sample cell design of Ref. [19] it is held fixed
at r0 = σ/(ρgd) and can be controlled by the distance d of the
foam above a liquid reservoir, independent of bubble size; σ

is the gas-liquid surface tension, ρ is the liquid density, and g

is gravitational acceleration.
Two remarks on geometrical assumptions: First, we neglect

transport through the wetting layer of thickness lw on the
plates, which is valid for macroscopic bubbles where {l,lw} 	
r holds even for very dry foams. Second, as in the decoration
theorem and the two-dimensional simulation and modeling
work of Weaire and others, we assume that there is junction
point separating films from Plateau borders and that the
interfaces are all sections of a circle. In reality, the detailed
shape of gas-liquid interfaces in the junction region depends on
the disjoining pressure and the variation of interfacial surfaces
forces versus distance. This is a good approximation for wet
foams and even for rather dry foams as long as r 
 l holds.

The diffusion of gas between two squashed bubbles is
driven by pressure difference that leads to an imposed
concentration difference 	φ of dissolved gas at opposite sides
of the film/borders. For two bubbles pressed into contact,
at any liquid fraction, this is given by 	φ = hγ/R, the
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FIG. 1. The contact of two neighboring bubbles confined between
plates of separation H , shown in perspective (a) and in vertical cross
section (b, not to scale). Liquid is contained in soap films of thickness
l, in surface Plateau borders that run along the plates, in vertical
Plateau borders that run between the plates, and in vertices where
borders meet. Surface borders of thickness e(y) flare out from the
soap film in circular arcs of radius r and meet the plates tangentially;
endpoints are shown as red dots. The gray-scale image in the lower
half of the film border represents the steady-state concentration
field of dissolved gas, found by numerical solution of the diffusion
equation, which is driven by the first bubble being under higher
pressure than the second.

product of solubility (Henry’s constant, h) times the Laplace
pressure difference between the two bubbles (where γ ≈ 2σ

is film tension and 1/R is film curvature). The total two-
dimensional diffusive current [i.e., the current per unit distance
perpendicular to Fig. 1(b)] may be written as the sum of
contributions across the film and across the two surface Plateau
borders:

I = If + 2Isb (4)

= D

(
	φ

l

)
(H − 2r) + D

(
	φ

e2

)
(2r), (5)

where D is the gas diffusivity, the terms in tall braces are
concentration gradients, and the geometrical factors are the
vertical distances across which the gas diffuses (which sum to
H ). While the gradient across the film is clearly 	φ/l, since
the film thickness is constant, the gradient across the surface
Plateau borders is not obvious. Therefore, Eq. (5) serves to
define e2 as an effective diffusive thickness that sets the size of
the average gradient in the surface borders. This term is absent,
as though e2 were infinite, in the border-blocking model of
coarsening.

The key task is to understand the value of e2. One might
guess that it is given by an average width of the Plateau

border, e2 ∝ (r + l). However, we shall demonstrate that the
correct value scales as e2 ∝ √

rl, which is much smaller and
hence implies a much greater flux of gas through the Plateau
border. We show this via rough calculation and then via
numerical solution of the steady-state diffusion equation. First,
by symmetry the actual vector gradient of the concentration
field at the midplane of the film border must point parallel
to the plates. Therefore, the total diffusive gas current across
one border may be found by integrating over the midplane:
D(	φ/e2)r = ∫ r

0 D(∇φ)dy. This equation is exact, but the
magnitude of the gradient is unknown. As an intuitive but
uncontrolled approximation, we take it as ∇φ ≈ 	φ/e(y),
where e(y) = l + 2[r −

√
r2 − y2] is the thickness of the

border at vertical distance y from the beginning of the film
(see Fig. 1). Since the resulting integral is intractable, but
is dominated by flux near y = 0 where e(y) is smallest, we
expand as e(y) = l + y2/r + O(y4). Dropping the higher-
order terms and evaluating the integral gives an effective
thickness of

e2 ≈
√

rl

arctan
√

r/ l
→

{
l r 	 l(dry),
2
π

√
rl r 
 l(wet).

(6)

In spite of approximations, the dry and wet foam limits are
actually both correct. The former is clear; the latter will be
demonstrated numerically next. The latter also agrees with
expectation based on the “thermal conduction shape factor”
that specifies the rate of heat transfer between two parallel
cylinders in near contact [see, e.g., Ref. [29] and Eq. (22)
below].

As an aside, we point out that it is natural to use the
steady-state diffusion equation since the time for a gas
molecule to diffuse between bubbles is small compared
to the time for bubbles to change size and to the time
between rearrangements—thanks to the usual separation of
length scales. In fact, even imposed shear does not affect the
coarsening rate of a wet foam, which implies that the diffuse
concentration field settles very quickly to steady state [30].

B. Numerical methods

To simulate the diffusive gas current for a given geometry,
as specified by values of {l,r,H}, we solve the steady-state
diffusion equation on a Cartesian grid of lattice sites {i,j} by
the method of successive relaxation [31,32]. By symmetry, it
is only necessary to simulate one quarter of the actual area. For
sites on the vertical midline between bubbles the concentration
is fixed to φ(0,j ) = 1/2, and for sites straddling the gas-
liquid interface it is fixed to φ(i,j ) = 0. The concentration
at interior sites is seeded with a profile that linearly ramps
between the boundary values. To solve ∇2φ = 0 in the interior,
the concentrations at interior sites are successively updated
according to

φavg = (φn + φe + φs + φw)/4, (7)

φ(i,j ) → (1 − ω)φ(i,j ) + ωφavg, (8)

where subscripts {n,e,s,w} specify sites to the north, east,
south, and west of the site being updated (per notation in
Ref. [32]); here ω is 1 for standard relaxation, or up to nearly
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2 for overrelaxation [31,32]. To enforce reflecting boundary
conditions along the southern boundary of the system, j = 0,
the update rule is

φavg = (2φn + φe + φw)/4, (9)

φ(i,0) → (1 − ω)φ(i,0) + ωφavg, (10)

since φs at a fictitious site j = −1 outside the system must
equal φn in order for the vertical flux to vanish at j = 0. The
northern boundary is treated similarly. Here, for a given system
geometry, successive updates are performed with ω = 1.5 until
the current (next) stops changing.

The total diffusive gas current, I , between the two neigh-
boring bubbles is computed by integrating the gradient of
the concentration field along the midline. As a check, the
gradient is also integrated along the curved gas-liquid interface
as follows. First, the gradient in both the x and y directions is
found at grid points closest to the curve. Second, the gradient
is dotted into the unit normal, and last, summed over boundary
points with arclength increments that themselves sum to the
length of the boundary. During relaxation, the current across
the midline increases while the current across the boundary
decreases, and the two converge to the same value to better
than 0.01%. This entire procedure is then repeated for several
grid spacings, and the final result for the diffuse current is
found by extrapolating to zero grid spacing using a linear fit.
The uncertainty in fitting parameters is typically 0.2%, too
small to display as error bars in later plots. Last, the current
Isb through one surface Plateau border is then found from the
total current I by rewriting Eqs. (4) and (5) as follows:

Isb = 1

2

[
I − D

	φ

l
(H − 2r)

]
(11)

≡ D
	φ

e2
r. (12)

The first expression subtracts away the contribution from the
unblocked portion of the film, and the second is the definition
of e2.

C. Expectation versus numerical results

Simulation results for the diffusive current Isb through
surface Plateau borders are plotted in Fig. 2 versus the
ratio r/ l of border curvature to film thickness, for several
different values of the gap H between the plates. As r

increases, i.e., as the foam becomes more wet, the surface
border current increases monotonically. And, as expected, the
data for different gaps collapse together onto a single curve.
The general behavior is seen to be Isb ∝ r/ l in the small-r
dry-foam limit, and Isb ∝ √

r/ l in the large-r wet-foam limit.
For comparison, the expectation from Eq. (6) is

Isb

D	φ
≈

√
r

l
arctan

√
r

l
→

{
π
2

√
r
l
− 1 l 	 r,

r
l

r 	 l.
(13)

The full expression, and the two special limits, are all plotted
along with the simulation data in Fig. 2. As seen, the agreement
is very good across the entire range of r/ l from very dry to
very wet. The large-r/ l wet behavior is isolated in the inset

FIG. 2. Diffuse gas current through a surface Plateau border ver-
sus border radius r divided by film thickness l. Data from numerical
solution of the diffusion equation are shown as symbols, for different
plate separations. The inset shows the same data along with a line fit
for

√
r/ l � 3, given by (1/2)(3.19 ± 0.02)

√
r/ l − (1.01 ± 0.04).

as a linear-linear plot of Isb versus
√

r/ l. Fit to a line for√
r/ l � 4 gives (1/2)(3.19 ± 0.02)

√
r/ l − (1.01 ± 0.04) in

close accord with the (π/2)
√

r/ l − 1 expectation. The good
agreement here, as well as in the main plot, demonstrate that
the physics of diffusion across surface borders is now well
understood. The key feature is that the effective diffusive
thickness scales as e2 ∼ √

rl for wet foams; this is a nontrivial
result and implies a much greater border-crossing current than
might have been expected.

III. BULK PLATEAU BORDERS

We now repeat the same program for the case of bulk
Plateau borders at which three bubbles meet. This includes
structures given by decoration of the pointlike vertices in a
truly two-dimensional foam, as well as the linelike borders
in a three-dimensional foam. As depicted in Fig. 3, a border
with radius r merges with a film of thickness l at distance
(r + l/2)/

√
3 from the undecorated vertex. Since each film

flares out into part of a border at each end, the total two-
dimensional current between two neighboring bubbles may be
written as the sum over film plus two part-border contributions
as

I = If + 2Ib (14)

= D	φ

l

(
L − 2r + l√

3

)
+ D	φ

e3

(
2r + l√

3

)
. (15)

Note that the geometrical factors in braces sum to the
undecorated film length, L, and that Eq. (15) serves to define
e3 as an effective border thickness that sets the average
concentration gradient. For comparison with simulation results
for the total current I between two bubbles, this can be
rewritten in terms of the current through part of one of the
Plateau borders:

Ib

D	φ
= 1

2

[(
I

D	φ

)
−

(L − 2r+l√
3

l

)]
(16)

≡ r√
3e3

(
1 + l

2r

)
. (17)
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FIG. 3. Schematic of the gas-liquid interfaces (solid blue curves)
for three neighboring bubbles, separated by films of thickness l and
an inflated Plateau border with radius r . For this geometry, the
length of the film is smaller than that in the dry limit according
to Lf = L − 2(r + l/2)/

√
3. The gray-scale image represents the

steady-state concentration field of dissolved gas diffusing out of the
bottom bubble.

Just as was done for surface Plateau borders, the first
expression subtracts away the contribution from the unblocked
portion of the film and the second isolates e3 in terms of its
definition.

To predict the diffuse current through bulk Plateau borders,
we again expand the thickness of the border away from the
end of the film as e(x) = l + x2/r . But now we integrate to a
variable distance:

Ib

D	φ
≈

∫ ar+bl

0

dx

l + x2/r
(18)

=
√

r

l
arctan

(
a

√
r

l
+ b

√
l

r

)
(19)

→ π

2

√
r

l
− 1

a
l 	 r. (20)

This is the same as the previous result for surface Plateau
borders, except for the correction to leading behavior given
by choice of cutoff, a. Thus, for r 
 l, the effective diffusive
thickness is expected to grow with wetness and film thickness
as e3 = e2/

√
3 ≈ (2/π )

√
rl/3. Based on the sketch in Fig. 3,

the expected parameters in the full form Eq. (19) are a = 1/
√

3
and b = 1/

√
12.

Numerical solutions of the diffusion equation for bulk
Plateau borders is performed following the same procedures
as for surface Plateau borders. An example concentration field
for gas leaving one of the bubbles is superposed onto the sketch
of the border-film geometry in Fig. 3. The diffuse currents are
computed across both the midline of the film, and across the
gas-liquid interface, and found to agree. Final results for the
diffuse current, extrapolated to zero grid size, are plotted versus
border radius r divided by film thickness l in Fig. 4. Data for
three different film lengths all collapse together, showing that
it’s a very good approximation to separately compute and sum

FIG. 4. Diffuse gas current through a bulk Plateau border versus
border radius r divided by film thickness l. Data from numerical
solution of the diffusion equation are shown as symbols, for different
film lengths. The inset shows the same data along with a line fit for√

r/ l � 3, given by y = (1/2)(3.137 ± 0.001)x − √
2.43 ± 0.03.

together the current across the film and the current across the
borders. Furthermore, the data agree very well with Eqs. (19)
and (20) for a = 1/

√
3 and b = 1/

√
12. The line fit in the inset

shows that a leading correction with a = 1/
√

2.43 ± 0.03
works slightly better. Fitting the entire dataset to Eq. (19)
gives a = 1/

√
2.70 ± 0.02 and b = 1/

√
27 ± 1. The observed

current is only slightly less than the simplest expectation,
most likely because the gradient tips away from normal to the
midline in moving from into the border from its junction with
the film. This effect is quite small. We conclude that, just as for
the surface Plateau borders, the physics of border crossing is
well understood and is captured by the same nontrivial result
that the effective diffusive border thickness scale with wetness
and film thickness as e3 ∼ √

rl.

IV. VERTICES

In three-dimensional dry foams, Plateau borders meet at
a fourfold vertex that can inflate to radius r with wetness.
In quasi-2D foams of bubbles squashed between plates, three
surface borders and a vertical border meet a fourfold surface
vertex. These are complicated structures, but we expect from
above that transport is dominated by the region where the
film begins to flare out into the vertex. This region has area
a = O(r2) and resembles a Plateau border that is bent in the
third dimension. Therefore, the basic scaling for the three-
dimensional current across both bulk and surface vertices must
be Iv ∼ D(	φ/e4)r2, where the characteristic concentration
gradient is set by the length e4 ∼ √

rl. It is beyond our scope
to find the numerical prefactor or corrections to this leading
behavior.

V. NEARLY KISSING CIRCLES AND SPHERES

In very wet foams and unjammed froths, gas transport
can occur between neighboring bubbles that are not actually
pressed into contact. For two-dimensional circular bubbles of
radii r1 and r2 and center-to-center distance r1 + r2 + l, the
diffusive current is given from the analogous problem of heat
conduction between two very long parallel cylinders (see, e.g.,
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Ref. [29]):

Ic

D	φ
= 2π

arcCosh
[ (r1+r2+l)2−r2

1 −r2
2

2r1r2

] , (21)

≈ π

√
2r1r2

(r1 + r2)l
. (22)

The latter (approximate) expression holds for nearly kissing
circles, where l is small compared to the bubble radii; for
r1 = r2, it reduces to twice the current through a surface
Plateau border in the wet limit [see Eqs. (5) and (6): Isb ≡
D(	φ/e2)r with e2 = (2/π )

√
rl]. The full expression is an

overestimate for circular bubbles in a foam, because their
surrounding neighbors take up some of the current. If an
effective diffusive thickness for the gap between two nearly
kissing circles is defined via Ic = D(	φ/ec)(2

√
r1r2), then

the leading behavior from Eq. (22) is ec = (2/π )
√〈r〉l, where

〈r〉 = (r1 + r2)/2.
For three-dimensional spherical bubbles, the analogous heat

conduction problem is well-known only for the case that the
center-to-center distance is greater than five times the larger
radius (see, e.g., Ref. [29]). We are unable to find prior results
for nearly kissing spheres. To investigate this case, we work
in cylindrical coordinates where ρ is the radial distance from
the axis of symmetry through the spheres’ centers. To leading
order, the surface-surface distance for small ρ is e(ρ) = l +
ρ2/[1/(2r1) + 1/(2r2)]. Making the same approximations as
the previous sections, we therefore estimate the diffuse current
as

Is ≈ D

∫ ρm

0

	φ

e(ρ)
2πρdρ, (23)

= D	φ
2πr1r2

r1 + r2
log

[
1 + ρ2

m(r1 + r2)

2r1r2l

]
, (24)

≡ D
	φ

es

πr1r2, (25)

where the integration limit ρm specifies the radial extent of
the contact region and an effective diffusive separation es is
conveniently defined based on the area πr1r2. For small l and
r1 ≈ r2 ≡ r , and taking ρm = O(r), the basic scaling is thus
es ∼ r/ log(r/ l). Instead of scaling as

√
rl per the effectively

two-dimensional examples above, there is now a logarithmic
factor.

To make Eq. (24) more concrete, we specify ρm in terms of
the length of the line segment that starts from the symmetry
axis halfway between the spheres and that intersects normal to
the cone that bounds the two spheres:

ρm = 2r1r2 + (r1 + r2)l/2

(r1 + r2) + l
, (26)

= 2r1r2

r1 + r2
+ (r1 − r2)2l

2(r1 + r2)2
+ O(l2). (27)

Combining this with Eq. (24), the leading behavior for l 	
r1 = O(r2) is predicted to be

Is

D	φ
= πr1r2

〈r〉 log

[
a + b

r1r2

〈r〉l + c

]
, (28)

FIG. 5. Cross section of the diffuse gas concentration field
between two spheres bounded by an absorbing cone (dashed lines).
In this example, the sphere radii are 10l and 12.5l, where l is the
surface-surface separation along the axis of cylindrical symmetry.

where 〈r〉 = (r1 + r2)/2 and {a,b,c} are fitting parameters ex-
pected to be of order {1,1,[(r1 − r2)/(r1 + r2)]2}, respectively.

To test Eq. (28), numerical solution of the three-dimensional
diffusion equation is performed in cylindrical coordinates
using a two-dimensional lattice. At i lattice steps from axis
of symmetry, the successive update rule then becomes

φavg =
(
1 + 1

2i

)
φe + φn + φs + (

1 − 1
2i

)
φw

4
, (29)

φ(i,j ) → (1 − ω)φ(i,j ) + ωφavg, (30)

where “north-south” is along the symmetry axis and “east” is
in the +i radial direction. For relevance to the case of foams,
where surrounding bubbles take up current, the spheres are
inscribed in an absorbing cone. An example concentration
field is depicted in Fig. 5.

The diffuse current between two spheres enclosed in an
absorbing cone is computed as before, with extrapolation to
zero grid spacing. The results are scaled according to the
expectation of Eq. (28) and plotted in Fig. 6. Indeed this
collapses the data to the expected form, and the fit gives
a = 0.8 ± 0.2 and b = 0.6 ± 0.2 with c set to zero.

As an aside, data are also included in Fig. 6 for the diffuse
current between spheres in free space. These are obtained by
enclosing the spheres more loosely in a series of absorbing
cylinders and extrapolating to infinite radius. The fit to Eq. (28)
gives a = 0 ± 1 and b = 3.4 ± 0.2 with c set to zero and is
shown by a dashed curve.

VI. MODIFIED VON NEUMANN LAWS

Now that the physics of border crossing is established, we
explore the consequences for the growth rate of individual
bubbles in wet foams. For this, the rate of change for the
volume of an n-sided bubble in a quasi-2D foam can be
written in terms of lengths Lj and radii of curvature Rj of the
undecorated films. In particular, the sum of diffusive current
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FIG. 6. Diffuse gas current Is between two spheres of radii r1,
r2, 〈r〉 = (r1 + r2)/2, which are separated by a small distance l.
Quantities are scaled to collapse the data according to the expectation
of Eq. (28). The larger data set and solid curve are for spheres enclosed
in an absorbing cone. The smaller data set and dashed curve are for
spheres enclosed in an absorbing cylinder, extrapolated to infinite
radius.

across each of the n sides is

dV

dt
= −

n∑
j=1

Dhγ

Rj

[
(Lj − 2r/

√
3)(H − 2r)

l

+ 2(Lj − 2r/
√

3)r

e2
+ 2(H − 2r)r/

√
3

e3
+ 4r2/

√
3

e4

]
,

(31)

where the four terms represent contributions from the film,
the two surface Plateau borders, the two vertical Plateau
borders, and the four surface vertices that comprise each side.
The effective diffusive thicknesses of these elements are all
ei = O(

√
rl) [recall from prior sections that e2 = (2/π )

√
rl

and e3 = e2/
√

3 hold for r 
 l]. See Fig. 15 of Ref. [19]
for a graphic illustration of the geometrical factors in the
numerators, and note that they sum to the undecorated film
area LjH . We now simplify using the identity

∑
Lj/Rj =

(6 − n)π/3, as in the original von Neumann argument:

dV

dt
= K0H

(
1 − 2r

H
+ 2rl

He2

)

×
{

(n − 6) + 6Cnr√
3πA

[
1 −

(
1 − 2r

H

)
l
e3

+ 2rl
He4

1 − 2 r
H

+ 2rl
He2

]
,

(32)

where K0 ≡ Dhγ/l and C is the dimensionless shape de-
scriptor defined by Eq. (3). In the dry limit of r = 0, the
bubble volume is V = AH and the usual von Neumann
law is recovered, dA/dt = K0(n − 6). More generally, the
factor in round braces represents an overall slowing of von
Neumann behavior, and the circularity term represents a size-
and shape-dependent violation of von Neumann behavior. By
contrast with the Ref. [19] border-blocking version, given here
in Eq. (2), the growth rate no longer vanishes in the limit of
r = H/2, where bubble-bubble contacts are along films with
infinitesimal height, since gas transport across inflated surface
borders is explicitly accounted for via the new e2 term. For

large bubbles and thin films, the full expression simplifies to

dA

dt
= K0

(
1 − 2r

H
+ π

√
rl

H

)[
(n − 6) + 6Cnr√

3πA

]
, (33)

since contributions from the vertical borders and the surface
vertices may be neglected, and both e2 = (2/π )

√
rl and V =

AH hold. For small bubbles, the relation of dV/dt and dA/dt

is more complicated, with leading correction due to the bubble
elongation (or compactness) as per Eq. (19) of Ref. [19].

The generalized von Neumann calculation [as per Eq. (32)]
can be repeated for bubbles in a truly two-dimensional foam,
where coarsening is due to diffuse gas current across only two
structural elements: the films and the threefold vertices. The
result is

dA

dt
= K0

[
(n − 6) + 6Cnr√

3πA

(
1 − π

2

√
l

r

)]
. (34)

Just as for quasi-2D foams, the usual von Neumann law is
recovered in the r = 0 dry limit. For r > 0 there is no overall
slowing of the growth rate, but there is a violation of von
Neumann behavior very similar to the quasi-2D case.

While our modified von Neumann laws clearly reduce to
the correct r = 0 dry-foam limit, they cannot be applicable in
the {r = √

A/π , C = 1} wet-foam limit where all bubbles are
circles and the foam is at the point-J jamming or unjamming
transition [33–36]. These laws hold only for those bubbles
for which each neighbor is pressed into contact across a film
of nonzero length that flares out at each end into separated
vertices. With increasing wetness, the decoration theorem
progressively breaks down across the sample as vertices merge
and give rise to noncontacting neighbors separated by a liquid
gap. At the wet limit that the bubbles are all close-packed
circles, the average number of contacting neighbors (with
infinitesimal film length) must be 〈n〉 = 4 by isostaticity
[33–36], which is down from an average value of 〈n〉 = 6
required in the dry limit by Plateau’s laws and the Euler
characteristic for the entire system [1]. For quasi-2D foams
the r = √

A/π wet/point-J limit is distinct from the r = H/2
wet-but-jammed limit where bubbles are pressed into contact
along films of zero height but nonzero length.

VII. AVERAGE GROWTH RATE

The rate of change of average bubble area 〈A〉 =∑
Ai/N = Atotal/N may be computed using the modified von

Neumann laws, assuming that decoration applies to each of the
N bubbles in the sample and that 〈A2〉/〈A〉2 is constant (i.e.,
that the system is in a self-similar scaling state [12]). Given
the latter, the identity [〈A2〉/〈A〉2]〈A〉 = ∑

A2
i /Atotal may be

differentiated and rearranged to

d〈A〉
dt

= 2
〈A〉2

〈A2〉
N∑
i

Ai

Atotal

dAi

dt
. (35)

Thus, the growth rate of the average is set by the area-
weighted average of the individual growth rates. Plugging in
the modified von Neumann laws then gives

d〈A〉
dt

= 2
〈A〉2

〈A2〉
〈〈

K

[
(n − 6) + Cnr√

3πA

]〉〉
, (36)
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where 〈〈· · · 〉〉 indicates area-weighted averaging, where K is
either K0 for a 2D foam or K0[1 − 2r/H + π

√
rl/H ] for

a quasi-2D foam, and the near-unity factor multiplying the
circularity term has been dropped assuming that the films are
thin. Obviously {n,C,A} all vary from bubble to bubble, and
this must be accounted for in the averaging. Less obviously
r also varies from bubble to bubble, and hence so does K

for quasi-2D foams, since the pressure difference between
contacting bubbles i-j is equivalently γ /Rij as set by film
tension and curvature, or σ (1/ri − 1/rj ) as set by surface
tension and border curvatures.

To simplify Eq. (36), we consider only fairly dry foams
where ri is fairly small compared to

√
Ai . This is not

a severe restriction, since Eq. (36) already assumes that
decoration holds for all bubbles in the sample (i.e., that
there are no noncontacting neighbors). Then the bubble-to-
bubble variation of r is small enough to have little effect
on gas transport per unit pressure difference, and we can
carry out the averages separately. Experimental values of
〈A2〉/〈A〉2 = 1.72 ± 0.25 and 〈〈n〉〉 = 6.53 ± 0.08 were re-
ported in Ref. [19]. The value of 〈〈Cn/

√
A〉〉 has not been

measured, but can be crudely estimated from tabulated data
[19] for the area-weighted side number distribution F (n)
and the average circularities and areas of n-sided bubbles:√〈A〉〈〈Cn/

√
A〉〉 ≈ ∑

n F (n)Cnn/
√〈An〉/〈A〉 = −0.86 [37].

This is negative because the average is dominated by large
bubbles, which have many sides and negative circularities.
Altogether, the approximate average growth rate is then

d〈A〉
dt

≈ α1K

(
1 − α2r√〈A〉

)
, (37)

where α1 ≈ 0.62 and α2 ≈ 3.2 are wetness-independent
numbers. With increasing wetness, the average growth rate
decreases due to the inflation of r and also, in a quasi-2D
foam, due to the resulting decrease in K . For increasing
dryness, the average growth rate approaches d〈A〉dt = α1K0.
If the films remain at their equilibrium thickness, then this
is constant; however, if the liquid pressure p is lowered too
far and too much liquid is sucked from the foam, then l will
decrease according to the stiffness of the effective interface
potential, γ will increase, and K0 = Dhγ/l will increase
without bound (or until the film ruptures). In this sense, the
{p = −∞,r = 0} dry limit of a mathematically perfect ideal
dry foam is physically pathological.

The solution of the growth law for 〈A〉 versus time is
different for 2D and quasi-2D foams, but is asymptotically
〈A〉 ∼ t . For truly 2D foams with thin films, the average border
radius scales with liquid area fraction and average bubble size
as r ∝ √

ε〈A〉, as discussed in the Introduction. Therefore, the
average area grows at a constant rate:

〈A〉 − 〈A0〉 = α1K0(1 − α3
√

ε)t, (38)

where 〈A0〉 is the average area at time zero (any arbitrary
time as long as the system is in a self-similar state) and
α3

√
ε comes from the α2 (circularity) term in the growth law.

Note that this result assumes that (a) the film thickness and
tension are constant, (b) the bubble-to-bubble variation of the
border radii does not affect the gas current per unit pressure
difference, (c) time zero is defined by when the foam reaches a

self-similar scaling state where 〈A2〉/〈A〉2 is constant, and
(d) decoration holds, so that there are no non-contacting
neighbors, throughout the entire sample. The latter two are
probably least-likely to be satisfied in principle, but all these
assumptions could be tested by simulation.

For a quasi-2D foam with these same assumptions, the
growth law is different and depends on the construction
of the sample cell. For a cell where the fluid pressure is
fixed by the distance d of the foam above a reservoir [19],
then the Plateau border radii are nearly constant with little
bubble-to-bubble variation around r0 = σ/(ρgd). In this case,
the growth law integrates to

〈A〉
(

1 + 2α2r0√〈A〉
)

− 〈A0〉
(

1 + 2α2r0√〈A0〉
)

+ 2(α2r0)2 log

( √〈A〉 − α2r0√〈A0〉 − α2r0

)

= α1K0

(
1 − 2r0

H
+ π

√
r0l

H

)
t. (39)

For a sealed sample cell with fixed liquid volume fraction,
the border size is r = O(ε0

√〈A〉H )1/2, as discussed at the
beginning of Sec. II. In this case, the average growth law
Eq. (37) is more complicated to integrate due to the variation
of K as well as r with bubble size. For thin films and ε0 	 1,
the result is

〈A〉
[

1 + αK

(
ε0

√〈A〉
H

) 1
2

+ αC

(
ε0H√〈A〉

) 1
2
]

−〈A0〉
[

1 + αK

(
ε0

√〈A0〉
H

) 1
2

+ αC

(
ε0H√〈A0〉

) 1
2
]

= α1K0t, (40)

where αK (· · · ) comes from the 2r/H term in K and αC(· · · )
arises from the α2 (circularity) term in the growth law. This
result is valid only if the ε0 terms are small. Thus, the average
area grows nearly linearly with time for both fixed-ε0 and
fixed-r0 sample cells, but with different characteristic features
and deviations from linearity.

VIII. CONCLUSION

In short, we elucidated the fundamental physics of diffusive
transport of gas through liquid-inflated structures in wet foams,
and then we explored consequences for the coarsening process.
Namely, the diffusive current across Plateau borders and
vertices is proportional to cross section times an average con-
centration gradient, 	φ/e, where e ∼ √

rl is a new emergent
length scale for the effective thickness of the inflated structure,
r is the border or vertex curvature (controlled by liquid content)
and l is the film thickness (controlled by interfacial surface
forces). Since e is much smaller than the arithmetic average
thickness, ∼ (r + l)/2, there is much more border-crossing gas
transport than might have been expected. This results in faster
coarsening, as seen by new terms in the modified von Neumann
laws we derived for both 2D and quasi-2D foams. These
new terms, which cause deviation from dA/dt = K0(n − 6)
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for individual bubbles, also cause deviation from d〈A〉/dt =
constant, as shown in the final section. It will thus be interesting
to test for border crossing physics in measurements of the
growth rates for both individual bubbles and for the average. It
will also be interesting to measure and simulate the evolution
of the bubble size distribution in the transient regime, before
the self-similar scaling regime is reached.
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