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Nucleation and superstabilization in small systems
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Phase transitions are known to present peculiarities in small systems that are related to depletion effects of
the ambient phase. Mass conservation affects the conditions of thermodynamic equilibrium between a nucleus
of the new phase and the matrix as compared with nucleation in infinite systems. This finite-size effect is known
to delay the phase transition but can also impede nucleation in very small systems as it stabilizes the initial state,
originally metastable in infinite systems. In this work, we investigate this superstabilization effect in the context
of classical nucleation theory in multicomponent solutions and we derive an analytical expression for the system
size below which nucleation becomes thermodynamically impossible. Comparing with the exact solution, our
simple result is shown to accurately predict the superstabilization effect, and can therefore be used, for instance,
as a guideline for the design of novel nanomaterials.
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I. INTRODUCTION

Nanoscience demands a reduction in the size of the systems
and in many cases the design of new materials involves a
phase transition. The initial and crucial step of a typical phase
transition is often the formation of a nucleus from a metastable
bulk phase. Thus, fabrication of novel nanomaterials requires
an accurate control over the formation of the embryo or nucleus
of the new phase. In this case, the fundamental mechanism of
the phase transformation is nucleation, which is known to
play a very important role in many different fields [1–18].
Small systems that are of scientific and technological interests
involve, for instance, nucleation of metallic or semiconductor
clusters that can form quantum dots [19–23], or crystallization
in small liquid droplets, as for nanowires grown by the vapor-
liquid-solid mechanism [24], to mention just a few examples.

Phase transformations in confined space can significantly
differ from bulk scenarios as depletion effects affect both the
thermodynamics and kinetics of first order phase transitions
[25–40]. For instance, in a closed cavity the phase diagram
of a binary mixture is modified [25]. As small systems
receive now increasing attention, many recent works have been
dedicated to the understanding of nucleation in a confined
space in various theoretical frameworks and contexts. The
problem of nucleation in confined systems has been studied
in molecular dynamics and Monte Carlo [26], in density
functional theory [27], solving the kinetic equations [28–30],
or in the context of both classical [31] and generalized Gibbs’
nucleation theories [32,33]. In the present work, we consider
the effect of depletion in small systems that contain only one
nucleus (as always in nucleation) but this effect is also of
major importance in large systems if the entire population of
clusters is considered, and these two aspects are closely related
[33]. The main peculiarity in small systems is the possibility
of stabilizing the metastable initial macroscopic phase, as a
new means to modify nanomaterial properties. Both the size
of the critical cluster and the nucleation barrier increase in
a confined space as compared with nucleation in an infinite
system, thus the phase transition is delayed but as the size
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of the system decreases nucleation is impeded and the initial
state becomes stable [33–35,39]. The finite available mass
prohibits nucleation when the system is too small and this
effect is known as superstabilization, but generally imposes a
maximal supercritical cluster size; this new extremum in the
thermodynamic potential associated with the formation of the
nucleus corresponds to a stable and final state, as growth is
stopped.

In this paper, we investigate the superstabilization effect
in multicomponent systems using the capillary model in
the context of classical nucleation; in other words we use
the macroscopic classical picture underlying the classical
nucleation theory and resort to a general thermodynamic
description. As mentioned earlier there are many papers that
deal with the problem of nucleation in small systems and
certainly better theoretical approaches have been employed
to determine the critical parameters [25,29,34–37] but they
require a numerical method. Our approach is different as our
goal is to derive an analytical and simple expression for the
system size below which nucleation is thermodynamically
prohibited, which can help in the design of nanomaterials.
Consequently we work with classical nucleation in the context
of macroscopic thermodynamics. The analysis is valid for
nondilute and nonideal solutions but is restricted to low
supersaturations. We find that our simple result compares
well with the exact solution and shows that the knowledge of
only a few thermodynamic parameters allows for an accurate
prediction of the superstabilization effect. Below we present
the main results of our analysis.

II. NUCLEATION IN THE NPT ENSEMBLE

Following the Wilhelmsen and Reguera treatment [37],
we consider nucleation in the NPT ensemble, where N is
the total number of atoms, P is the pressure, and T is the
temperature. The system consists of a spherical nucleus with
radius Rβ (β phase) in either an infinite matrix α or a spherical
domain of the α phase with radius Rα (see Fig. 1). The
present analysis is restricted to homogeneous nucleation. In
the capillary approach, the α and β phases are separated by a
sharp interface with surface tension σ .
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FIG. 1. The confined system consists of a spherical nucleus with
radius Rβ (β phase) in a spherical domain of the α phase with
radius Rα .

Due to matter conservation, an important sum rule on the
mole (or atomic) fraction of each species exists:

k∑
i=1

c
j

i = 1 j = α,β, (1)

where k is the total number of components. c
j

i = N
j

i /Nj is
the mole fraction of species i in the j phase. N

j

i and Nj are
respectively the number of atoms i and the total number of
atoms in the j phase. The total number of atoms of species i

in the system (Ni) is equal to Nα
i + N

β

i .
In the NPT ensemble the proper thermodynamic potential

to describe the system is the Gibbs energy G. At constant
external pressure P = P α and temperature T , the variation of
the Gibbs energy is given by

dG = dU − T dS + P αdV, (2)

where U is the internal energy and S is the entropy. The change
in internal energy in the α phase is

dUα = T dSα − P αdV α +
k∑

i=1

μα
i dNα

i , (3)

where μα
i is the chemical potential of species i and Vα is the

volume of the α phase. We assign the surface energy to the β

phase [29], thus

dUβ = T dSβ − P βdV β +
k∑

i=1

μ
β

i dN
β

i + σdAβ, (4)

where Aβ is the surface of the spherical nucleus and Vβ is the
volume of the β phase. The variation of the total Gibbs energy
of the system is given by [37]

dG = −
(

P β − P α − 2σ

Rβ

)
dV β +

k∑
i=1

(
μ

β

i − μα
i

)
dN

β

i .

(5)

The condition of thermodynamic equilibrium, dG = 0,
leads to the equality of the chemical potentials,

μ
α,∗
i = μ

β,∗
i (i = 1 . . . k) (6)

and to the Laplace relation,

P β,∗ − P α = 2σ

R∗
β

, (7)

where the stars represent equilibrium (dG = 0). Equations (6)
and (7) are the classical equilibrium conditions. The Gibbs-
Duhem equation for the β phase to which the surface is
assigned is

SβdT − V βdP β +
k∑

i=1

N
β

i dμ
β

i + Aβdσ = 0. (8)

We assume that the surface tension does not depend on
composition. For an incompressible β phase, the integration
of the Gibbs-Duhem relation leads to the following expression
of the chemical potential:

μ
β

i (P β) = μ
β

i (P α) + v
β

i (P β − P α), (9)

where we have used

∂μ
β

i

∂P β

∣∣∣∣∣
T ,N

β

i

= v
β

i (10)

with v
β

i the atomic volume of species i in β. Using the
equilibrium conditions required by Eqs. (6) and (7) yields

�μ∗
i = 2σv

β

i

R∗
β

, (11)

where �μi
∗ is the difference in chemical potential between

the α and β phases at equilibrium and at the pressure P α .
Equation (11) is the generalization of the Gibbs-Thomson
equation for multicomponent systems.

A. Infinite domain

We first consider the α phase as infinite. In this case,
the formation of the critical nucleus has no effect on the
composition in α that remains equal to the initial composition,
denoted c

α,0
i . The Gibbs-Thomson relation for the critical

nucleus writes

�μ∗
i = μ

α,0
i − μ

β

i

(
c
β,∗
2 ,c

β,∗
3 , . . . ,c

β,∗
k P α

) = 2σv
β

i

R∗
β

(12)

with μ
α,0
i = μα

i (cα,0
2 ,c

α,0
3 , . . . ,c

α,0
N ,P α) the chemical potential

of species i when the α phase contains no nucleus, i.e.,
cα
i = c

α,0
i and c

β,∗
i is the atomic fraction of species i in the

critical nucleus. In an infinite matrix, the stationary solution
is unique and corresponds to a saddle point of the change
in Gibbs energy, �G(Rβ,c

β

i ), associated to the formation
of a nucleus with radius Rβ at the composition c

β

i . Thus,
the Gibbs-Thomson relations [Eq. (12)] form a system of
k equations with k unknowns (k − 1 independent nucleus
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compositions and the nucleus size) and completely define
the composition and size of the critical nucleus. Rearranging
Eq. (12) leads to

�μ∗
i = v

β

i

v
β

1

�μ∗
1, i = 2 . . . k (13)

that gives the rule of parallel tangent (in binary) for no dif-
ference in atomic volume. Equation (13) sets the composition
of the critical nucleus, which is independent of the surface
tension; this is not the case for the critical radius. Another way
of determining the properties of the critical nucleus is to solve
the usual relations

∂�G

∂Rβ

= 0,
∂�G

∂c
β

i

= 0. (14)

The work of formation in the NPT ensemble is given by

�G = G
(
Rβ,N

β

i

) − G(0,0)

= −
(

P β − P α − 3σ

Rβ

)
V β +

k∑
i=1

N
β

i

(
μ

β

i − μα
i

)
. (15)

Using Eq. (9) in Eq. (15) leads to the following classical
expression for the work of formation:

�G = −4πR3
β

3vβ

k∑
i=1

c
β

i �μi + 4πR2
βσ, (16)

where vβ = ∑k
i=1 c

β

i v
β

i and where we recognize the driving
force for nucleation

∑k
i=1 c

β

i �μi with �μi the difference
in chemical potentials at the matrix pressure. In principle
the work of formation depends on the nucleus composition
[41–47]. The problem is simpler when nucleation can be
reduced to one dimension; the process is then investigated in
the size space only, {R}. In this case, the cluster composition
is in equilibrium during nucleation for either thermodynamic
or kinetic reasons as any deviations in composition instan-
taneously relax toward equilibrium. Such reduction to one
dimension is possible when, for instance in a binary mixture,
the Hessian of the Gibbs energy of the β phase is very large
[43]. In a more general case the properties of the clusters are
set by the thermodynamic path defined by the steepest descent
of the work of formation or any deviations from the minimum
energy path due to kinetic effects, such as the presence of a low
mobility component [42]. The work of formation of the critical
nucleus is obtained by introducing the stationary solutions in
Eq. (15),

�G∗ = 4πσR∗2
β

3
. (17)

B. Finite-size effects

So far, the above thermodynamic description of classical
nucleation in multicomponent systems does not include
depletion effects. In a confined system, as the one depicted
in Fig. 1, the formation of the nucleus affects the matrix
compositions cα

i , which are set by the k − 1 independent
mass conservation equations, Ni = Nα

i + N
β

i . In the following
we assume that both phases have the same atomic volumes

FIG. 2. Critical sizes of the nucleus in an infinite system (gray
dashed line) and in finite systems for various system sizes (10, 50,
and 500 nm), as a function of the initial composition in α. For
Rα = 10 nm, nucleation is prohibited when the initial composition
is below ∼0.228, the lower part of the curve corresponds to the
unstable solution (R∗

β = RSP
β ), and the upper part to the stable solution

(R∗
β = RSS

β ). The blue dashed line corresponds to the approximate
solution for the stable cluster [Eq. (28)] when Rα = 50 nm, strictly
valid when RSS

β � R0
β .

(denoted v), which are composition independent, so as to
conserve the total volume of the system described in Fig. 1
whatever the size and composition of the nucleus. Such an
assumption can be justified, for example, in the context of
solid state precipitation, as elastic effects that originate from
atomic volume differences are known to come into play, if
they are present, when clusters reach larger sizes, as compared
with the critical radius, and are thus often neglected during
the nucleation regime (as in Ref. [42]). In this case, the mass
conservation gives

c
α,0
i R3

α = c
β

i R3
β + cα

i

(
R3

α − R3
β

)
. (18)

This supplementary set of equations, combined with
Eqs. (6) and (7), or with Eq. (11), defines the stationary
solutions for confined multicomponent solutions. Note that the
chemical potentials of the matrix phase are no longer equal to
their initial values since the composition in α has changed.
Another difference is that there are in general two stationary
solutions for R∗

β , one corresponding to a saddle point of the
work of formation, denoted RSP

β , whereas the second solution
corresponds to a stable state, denoted RSS

β . This is depicted in
Fig. 2, where the stationary states [solutions of Eqs. (6), (7),
and (18)] are shown for various system sizes as a function
of the initial composition. For this illustration in a binary
system, we have used the regular solution model at a given
value of T/Tc (=0.8656), with Tc the critical temperature,
and for a given value of surface tension (0.025 J/m2). As
already mentioned, for a given supersaturation, nucleation is
prohibited when the system is too small. For the example of
Fig. 2, in the case Rα = 10 nm, nucleation is prohibited when
the initial composition c

α,0
2 is below ∼0.228.
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The work of formation in a confined system is now given
by

�G = −
(

P β − P α − 3σ

Rβ

)
V β +

k∑
i=1

N
β

i

(
μ

β

i − μα
i

)

+
k∑

i=1

Ni

(
μα

i − μ
α,0
i

)
(19)

and the nucleation barrier by

�G∗ = 4πσR∗2
β

3
+ 4πR3

α

3v

k∑
i=1

c
α,0
i

(
μ

α,∗
i − μ

α,0
i

)
, (20)

where μ
α,∗
i is the chemical potential in α at the stationary

matrix composition c
α,∗
i . These expressions coincide with the

results of Wilhelmsen and Reguera [37] in the NVT ensemble
when the matrix pressure is fixed. The last term in Eq. (20)
vanishes for infinite systems and the classical expression is
recovered [Eq. (17)].

In general, the equilibrium conditions [Eqs. (6) and (7)]
combined with the mass conservation equation [Eq. (18)] can
only be solved numerically (as done for the example of Fig. 2).

In the limit of small supersaturation, the radius of the critical
cluster can be written as [42,48–50]

R∗
β = 2σv∑k

i=2

∑k
j=2

(
c
β

i − c̄α
i

)
Gα

ij

(
c
α,∗
j − c̄α

j

) (21)

or in dyadic notation,

R∗
β = 2σv

(�c̄)T Gα
�cα,∗ , (22)

where Gα is the Hessian of the Gibbs energy of α evaluated
at equilibrium composition c̄α

i , �c̄ = c̄
β

i − c̄α
i for i = 2 . . . k

is the equilibrium tie-line vector, and �cα,∗ = c
α,∗
j − c̄α

j for
j = 2 . . . k is the vector supersaturation. Here we introduce
the vector �cα,0 = c

α,0
j − c̄α

j that represents the initial super-

saturation, c
α,∗
i = c

α,0
i . Therefore, any cluster in equilibrium

with the matrix at a given composition cα satisfies

2σv

R∗
β

= (�c̄)T Gα�c∗
dep + 2σv

R0
β

, (23)

where �c∗
dep = c

α,∗
j − c

α,0
j accounts for the depletion effects

and where we have introduced the critical radius for an infinite
system (in the low supersaturation limit) that is given by

R0
β = 2σv

(�c̄)T Gα
�cα,0

. (24)

Thus, the two solutions RSP
β (the unstable one) and RSS

β

(the stable one) obey Eq. (23) but for different vectors
�c∗

dep = �cSP
dep and �c∗

dep = �cSS
dep. We then introduce the

low supersaturation approximation in the mass conservation
equation. We first transform Eq. (18)

�cdep = −�c̄
(

Rβ

Rα

)3

(25)

with �cdep = cα
j − c

α,0
j and where we have used that c̄β −

c0
α ≈ �c̄ and both �cα � �c̄ and �cβ � �c̄ with �cβ =

c
β

j − c̄
β

j represents the deviation of the nucleus composition
from equilibrium, which can be related to supersaturation as
follows [42,43]:

�cβ = (Gβ)−1Gα�cα, (26)

where Gβ is the Hessian of the Gibbs energy of β evaluated at
equilibrium composition c̄

β

i . The deviation is therefore order
of supersaturation and the condition �cβ � �c̄ is guaranteed.
Moreover, the derivation of Eq. (25) also requires (Rβ/Rα)3 �
1, which is a very good approximation provided Rβ and Rα

differ by at least one order of magnitude. Finally, for both
R∗

β = RSP
β and R∗

β = RSS
β (the two solutions in confined space)

the equilibrium conditions together with the mass conservation
can be written as

2σv

(
1

R∗
β

− 1

R0
β

)
= −(�c̄)T Gα�c̄

(
R∗

β

Rα

)3

. (27)

The stationary solutions of the nucleation problem in a
confined system obey Eq. (27) in the limit of low super-
saturation. Equation (27) is the main result of the present
analysis as it relates the stationary solutions to the system size.
For Rα → +∞, Eq. (27) admits only one solution and the
critical cluster size in infinite system is recovered, R∗

β = R0
β .

Equation (27) presents another interesting limit: when the
system size is large enough, the stable solution is known to
be much larger than the unstable solution (which is in this case
very close to R0

β) and thus

RSS
β =

(
2σv

(�c̄)T Gα�c̄R0
β

)1/3

Rα. (28)

This approximate solution [Eq. (28)] compares well with
the exact result, as shown in Fig. 2, in the limit RSS

β � R0
β .

Equation (28) allows for the prediction of the final state with a
very good accuracy provided RSS

β � R0
β . We are interested in

FIG. 3. System size below which nucleation is prohibited as a
function of the initial composition.
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the superstabilization effect that takes place when Eq. (27) has
no solution rather than the previously mentioned two solutions
(see Ref. [51] for more details on quartic equations). Such a
criterion gives the system size, Rl

α , below which nucleation is
prohibited,

Rl
α =

(
a

(�c̄)T Gα�c̄
2σv

)1/3(
R0

β

)4/3
(29)

with a = 256/27, a constant. For Rα < Rl
α nucleation is

impossible as the initial supersaturation is not large enough;
combined with Eq. (24), the above condition also provides
the minimum supersaturation for a given system size Rα .
This criterion on size is compared with the exact result
in Fig. 3 and a very good agreement is found even for a
relatively high initial composition, provided the approximation
(R∗

β/Rl
α)3 � 1 remains valid.

III. CONCLUSION

In this work we have derived an approximate solution for
the container size below which nucleation is prohibited; this
allows for a very good prediction of the superstabilization
effect, one of the most interesting peculiarities of nucleation
in confined spaces. From our simple result, the prediction
of the superstabilization effect requires the knowledge of
only a few thermodynamic parameters: the equilibrium tie
line, the Hessian of the Gibbs energy density of the mother
phase evaluated at equilibrium, and the surface energy. Thus,
with the widespread availability of thermodynamic databases,
the present analysis could be used in the design of novel
nanomaterials.
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