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General quadratic Hamiltonian models, describing the interaction between liquid-crystal molecules (typically
with D2h symmetry), take into account couplings between their uniaxial and biaxial tensors. While the attractive
contributions arising from interactions between similar tensors of the participating molecules provide for eventual
condensation of the respective orders at suitably low temperatures, the role of cross coupling between unlike
tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling)
showed clearly the increasing relevance of this cross term in determining the phase diagram (contravening in some
regions of model parameter space), the predictions of mean-field theory, and standard Monte Carlo simulation
results. In this context, we investigated the phase diagrams and the nature of the phases therein on two trajectories
in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the
real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion
approximation. In both cases, we find the destabilizing effect of increased cross-coupling interactions, which
invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as
a small, but unmistakable, contribution of biaxial order in the uniaxial phase. The free-energy profiles computed
in the present study as a function of the two dominant order parameters indicate complex landscapes. On the one
hand, these profiles account for the unusual thermal behavior of the biaxial order parameter under significant
destabilizing influence from the cross terms. On the other, they also allude to the possibility that in real systems,
these complexities might indeed be inhibiting the formation of a low-temperature biaxial order itself—perhaps
reflecting the difficulties in their ready realization in the laboratory.
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I. INTRODUCTION

The biaxial nematic phase, proposed initially in the work
by Freiser and Straley [1,2], has been the subject of many
theoretical [3–9] and experimental [10–14] investigations in
recent years, and it was investigated extensively via Monte
Carlo (MC) simulations [15–24]. However, experimental
realization was not so readily possible and is still a matter
of debate [25–27].

According to recent mean-field (MF) treatments [28–
34], the relevant Hamiltonian parameter space conducive to
the formation of a stable biaxial phase is comprised of a
triangular region (say, �) in the (γ,λ) plane (the essential
triangle) shown in Fig. 1 [32], the long axes of the molecules
defining the primary director. The quadratic Hamiltonian for
the biaxial system adds two more terms to the dominant
attractive interaction between the major molecular axes of the
neighboring molecules (i.e., the Lebwohl-Lasher interaction
term [35]): a coupling between the two molecular biaxial
tensors with strength λ, and a cross coupling between the
biaxial and uniaxial tensors of the two molecules, through
γ . The MF predictions and our earlier MC work [23,24]
focused on two specific paths in this plane that have axial
symmetry of the torques: along the λ axis (D4h symmetry
of molecular pairwise interactions around the molecular z

axes), and the diagonal IV (with similar symmetry around
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the molecular x axes); see Fig. 1. The deviations from the
MF work become discernible when γ is appreciable, with the
corresponding interactions competing with those of λ, along
the path IV (Fig. 1). Earlier MC simulations based on standard
METROPOLIS sampling methods [34], while being generally
supportive of MF results, were qualitatively deviating from
our MC data, obtained through entropic sampling methods.
We reported an additional intermediate biaxial phase in the
MF predicted direct (NB-I ) transition sequence, starting from
the point K and extending up to the point V encompassing
the Landau point T [24]. T is special since it represents a pure
biaxial interaction between the two major axes (y and z) with
D4h pair-interaction symmetry and with no uniaxial coupling
between the minor axes (x axes). Incidentally, it also represents
a crossover point on the dispersion parabola (OT ) from the
prolate to oblate molecular symmetry.

The more realistic choices for (γ,λ) values appear more
likely to be within the � region, as has been reported experi-
mentally recently [36]. Also of particular interest in the earlier
literature are models that correspond to systems satisfying
the London dispersion approximation [4,15], reducing the
number of independent model parameters to one, with λ = γ 2.
The phase diagram along the parabolic trajectory has been
extensively studied [17,19], and it has been used as a prototype
for several investigations [37–41]. The dispersion parabola
also defines an interesting boundary separating regions of
(γ,λ) parameter space: one region that makes the Hamiltonian
fully attractive above the parabola and the other that makes it
partly repulsive (below the parabola) [32]. Investigation of the
nature of the phases with entropic sampling techniques as one
traverses the parabola from the Lebwohl-Lasher limit (origin)
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FIG. 1. Essential triangle: Region of biaxial stability. OI and
IV are uniaxial torque lines intersecting at the point I. OCT is the
dispersion parabola which meets line IV at the Landau point T. Base
OV is the limit of biaxial stability for the interaction [33]. IW and
OCT are the trajectories along which present simulations have been
carried out. Points A (0.048, 0.269), B (0.166, 0.111), B′ (0.204,
0.061), C (0.215, 0.047) and D ( 0.225, 0.033) are points of particular
interest (see text).

to the Landau point T could be interesting from the standpoint
of understanding the destabilizing influence of γ along this
path, if any.

In this work, we carried out a detailed entropic sampling-
based MC study of the phase diagram on a straight line
path within the triangle (IW in Fig. 1), where W is the
midpoint of OV. The relative importance of the cross-coupling
γ term increases along the path IW, which intersects the
parabola at point C, beyond which the γ term provides a
repulsive contribution to the Hamiltonian. We supplement
these data with results from standard Boltzmann ensembles
for comparison. With the density of states obtained from
the entropic method, we compute the free-energy profiles
as functions of order parameters, with a view to correlating
them with the observed thermal behavior of these variables. A
similar study was carried out at several points on the parabola.
It is interesting to observe the curious changes that the model
induces on the macroscopic behavior, as it starts with a small
perturbation on the LL model near the origin and moves all
the way to the Landau point T . This paper discusses the MC
results along these two trajectories.

The paper is divided into five sections. The mean-field
Hamiltonian model and its representation for purposes of
simulation are outlined in Sec. II. The details of entropic
sampling-based simulation are described in Sec. III. The
results are presented and discussed in Sec. IV. We summarize
the salient features of the work in Sec. V.

II. HAMILTONIAN MODEL

The general interaction between two liquid-crystal
molecules with D2h symmetry limited to quadratic terms,
each described by two symmetric traceless tensors (q,b) and
(q ′,b′), is expanded as H = −U [ξq · q ′ + γ (q · b′ + q ′ · b) +
λb · b′]. Here q and b are the irreducible components of
the anisotropic parts of the molecular susceptibility tensor,

which can be represented in its eigenframe (e,e⊥,m) as q =
m ⊗ m − I

3 and b = e ⊗ e − e⊥ ⊗ e⊥. Similar representation
(for a neighboring molecule) holds for q ′, b′ in the eigenframe
(e′,e′⊥,m′), following the notation used earlier [28]. MF
analysis of the Hamiltonian predicts a triangular region OIV
(Fig. 1) [32] as the region of stability for the biaxial phase in
the interaction parameter (γ,λ) space, assigning the primary
director to the orientation of the long molecular axes. The
dispersion parabola (λ = γ 2) OCT divides the parameter space
into two regions: the region above within the triangle, OIT—
where the interaction Hamiltonian is globally attractive, and
the one below OTV—where the interaction is partly repulsive
due to the γ term. The points C1 and C3 are tricritical points
of the uniaxial nematic-biaxial nematic transition, and C2 is a
triple point hosting the three phases of the medium: isotropic
(I), uniaxial nematic (NU ), and biaxial nematic (NB) [32]. (K
is a point where the NB-I phase sequence has been found to
change to NB-NB1 -I [23], deviating from the MF prediction).
MF also predicts a direct NB-I transition inside the parameter
region IC2C3, and tricritical nature for the NU -NB transition
along C1C3 [32]. The MF analysis based on the minimax
principle involving only the two dominant order parameters
(out of the four) permits the existence of a biaxial phase even
at the base point V of the triangle (λ = 0), though such a phase
is forbidden on the grounds of biaxial stability [33].

For the purpose of simulations, the mean-field Hamiltonian
is conveniently recast in terms of a biaxial mesogenic lattice
model, where two molecules of D2h symmetry at distinct
lattice sites, represented by an orthonormal triplet of three-
component unit vectors ua,vb (a,b = 1,2,3), interact through
a nearest-neighbor pair potential [20],

U = −ε{G33 − 2γ (G11 − G22) + λ[2(G11 + G22) − G33]}.
(1)

Here fab = (ua.vb) and Gab = P2(fab), with P2 denoting the
second Legendre polynomial. ε is a positive quantity setting
the reduced temperature T ′ = kBT/ε, where T is the absolute
temperature of the system. In these simulations, ε is set to
unity.

III. DETAILS OF SIMULATION

The Wang-Landau (WL) algorithm [42] addresses the
problem of efficient entropic sampling of the configuration
space to construct ensembles (in discrete spin systems) that
are uniformly distributed with respect to energy through an
accurate estimation of the density of states (DOS) of the
system. This has been successful in tackling various problems
in statistical physics [43,44] as diverse as polymers and
protein folding [45–47] and self-assembly [48], and it is
being continually updated for application to more complex
systems [49–55]. The algorithm was suitably modified for
application to systems with continuous degrees of freedom,
such as liquid crystals [56], and this procedure is further
augmented with the frontier sampling technique [57,58] in
order to simulate the bulk biaxial liquid crystal [24]. The
WL simulation [42] estimates the DOS, while updating a trial
density g(E) iteratively by performing a random walk in the
energy space with a probability proportional to the inverse
of the instantaneous g(E), until a flat histogram of energy
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FIG. 2. The temperature variation of order parameters R2
00,R

2
22

(superimposed on the specific-heat curves) and R2
02(inset) illustrates

the phase behavior at the four representative points A, B, C, and D
with values of λ′ = (a) 0.414 (point A), (b) 0.610 (point B), (c) 0.692
(point C), and (d) 0.709 (point D) (L = 20).

is achieved as the updating of g(E) is gradually withdrawn.
The frontier sampling technique introduces additional algo-
rithmic guidance to the WL routine, so that lower entropic

regions are more efficiently accessed. An entropic ensemble
of microstates, collected by a random walk guided by the
well-converged DOS, is fairly uniformly distributed over the
energy region of interest, and it is adequate to calculate the
required thermodynamic properties at the desired temperature
resolution by constructing equilibrium canonical ensembles
(say, RW ensembles) through a reweighting procedure. The
free-energy profiles, obtained as a function of energy, and
the system order parameters, using the computed DOS,
provide further physical insight. We employ here this modified
algorithm, described in detail elsewhere [24].

We consider a cubic lattice (size: L × L × L,L = 15,20)
with periodic boundary conditions. The biaxial molecules
on each lattice site interact through the nearest-neighbor
interaction potential in Eq. (1). The parameters γ and λ are
chosen such that we traverse along a trajectory IW passing
through the apex I and bisecting the base OV at point W
(Fig. 1). The uniaxial-biaxial coupling coefficient γ on IW is
half of the value on the diagonal IV for identical λ values. We
denote the arclength of the path OIW as λ′, given by λ′ = λ

on segment OI, and λ′ = 1
3 (1 + 5γ ) where γ = (1−3λ)

4 on the
segment IW. As we traverse along the trajectory IW, the arc
length λ′ varies from 1

3 at I to 0.75 at W. The simulations are
done at various values of λ′ on the path IW, starting from
the point I (λ′ = 1/3 at γ = 0.0, λ = 1/3) and ending at
W (λ′ = 0.75 at γ = 0.25, λ = 0.0). Points A (λ′ = 0.414
at γ = 0.048, λ = 0.269), B (λ′ = 0.610 at γ = 0.166, λ =
0.111), and B ′ (λ′ = 0.674 at γ = 0.204, λ = 0.061) lie in the
attractive region for the Hamiltonian, while C (λ′ = 0.692 at
γ = 0.215, λ = 0.047) lies on the dispersion parabola, and
D (λ′ = 0.709 at γ = 0.225, λ = 0.033) lies in the partly
repulsive region, below the parabola.

We start the simulation at a chosen value of λ′ with a random
orientation of spins on the lattice, and the corresponding values
of (γ,λ) are inserted in Eq. (1) for calculating the system
energy. An entropic ensemble comprised of (∼ 4 × 107)
microstates is constructed using the Wang-Landau algorithm,
with a fairly uniform distribution of energy at the end of the
simulation. Using the computed DOS, canonical ensembles are
extracted with the reweighting procedure [59,60] at the chosen
temperatures (RW ensembles). Average values of physical
variables are then computed at the required temperature
resolution. Information on the system energy and the DOS
facilitate the determination of free energy as a function of
energy as well as order parameters, at different temperatures.

Conventional MC simulations based on the METROPO-
LIS algorithm (Boltzmann sampling) leading to equilibrium
canonical ensembles (B ensembles) were also carried out
at chosen points on the trajectory IW in order to compare
the results from both simulation methods. These ensembles
were collected, after equilibration, with production runs of
typically 6 × 105 MC lattice sweeps (Monte Carlo steps).
Temperature variations of the equilibrium averages from B
and RW ensembles are compared to assess the efficacy of the
respective sampling in the presence of curious free-energy
terrains in the configuration space offered by the biaxial
system.

The physical observables of interest, calculated at each
value of λ′, are the average energy 〈E〉, the specific heat
〈Cv〉, the energy cumulant V4 [=1 − 〈E4〉/(3〈E2〉2)], which
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is a measure of the kurtosis [61], the four order parameters
of the phase calculated according to [17,62], and their
susceptibilities. These are the uniaxial order 〈R2

00〉 (along the
primary director), the phase biaxiality 〈R2

20〉, the molecular
contribution to the biaxiality of the medium 〈R2

22〉, and the
contribution to uniaxial order from the molecular minor axes
〈R2

02〉. The averages are computed at a temperature resolution
of 0.002 in the temperature (T ′) range of interest [2.05, 0.05],
all in reduced units. The error bars for the observables were
estimated after minimizing possible correlations using the
jackknife method [63]. The relative errors in the averages of
energies are found to be typically one part in 105, while those
in the estimation of the averages of the order parameters are 1
in 104.

IV. RESULTS AND DISCUSSION

We carried out a detailed simulation study employing the
entropic sampling technique at 30 values of λ′ with a view
to obtaining a generic phase diagram inside � along IW. We
examined the temperature dependence of the Cv profiles, of
the two dominant order parameters 〈R2

00〉,〈R2
22〉 as well as

R2
02 and the Binder’s energy cumulant V4 to determine the

phase-transition temperatures and identify the phases. Typical
data such as these at four representative points—at A and B in
the fully attractive region, at C on the parabola, and at D in the
partly repulsive region (Fig. 1)—are presented in Fig. 2, with
a system size L = 20 for point A, B, and C and L = 15 for
point D.

The order profiles superimposed on the specific-heat peaks
shown in Fig. 2 indicate that a direct isotropic-biaxial phase
transition occurs at point A [Fig. 2(a)]. At all other points, two
specific-heat peaks are observed upon cooling, at temperatures
T1 and T2. As the system is cooled from the isotropic phase, the
uniaxial order R2

00 shows a sharp increase at T1, indicating the
onset of an intermediate uniaxial phase NU . It is of interest to
note that this intermediate phase also exhibits a small amount
of biaxial order, which increases to a value of ∼0.03, together
with the expected significant increase in the uniaxial order as
the temperature decreases. The magnitude of R2

22 in this phase
seems to be independent of the λ′ value in the attractive region
(i.e., of the path from I up to C). However, on the bordering
trajectory between the two distinct regions of the Hamiltonian
(i.e., point C) and in the partly repulsive region (point D), the
R2

22 value actually dips upon cooling in this intermediate phase
after the initial onset [Figs. 2(c) and 2(d)]. The R2

22 value then
increases rapidly at the second transition (at T2) for all values
of λ′, signaling the onset of a low-temperature biaxial phase
NB . Temperature variation of R2

02 in each case is shown as an
inset [Figs. 2(a)–2(d)].

Based on such study along the trajectory IW, we obtain
the phase diagram as a function of the arc length λ′, shown
in Fig. 3. The actual temperature T ′ of the simulation needed
to be scaled by a factor of 9 [for direct comparison with the
Lebwohl-Lasher (LL) model [35]], as 1

β ′ = T ′
9 .

Beyond the value of 0.709 of λ′, the parameter region
presents the dominant cross-coupling term, inducing signif-
icant repulsive interactions between the uniaxial and biaxial
molecular terms of the neighboring molecules, thus frustrating
the system to find a single, stable, and unique free-energy

FIG. 3. Phase diagram inside the essential triangle along path IW.

minimum. In this scenario, the computational times for the
convergence of the DOS were found to be impractical at this
size (L = 20). We are thus constrained to report data in this
region at L = 15.

We note from the phase diagram (Fig. 3) that the biaxial
medium undergoes a direct I -NB phase transition for λ′
values in the range 1/3–0.455. Thereafter, two transitions were
observed in the λ′ range 0.462–0.709. The system undergoes
an I -NU transition at high temperature T1, followed by an
NU -NB transition at lower temperature T2. It may be seen that
the second transition occurs at progressively lower values of
T2, which approaches zero asymptotically as the point W (on
the base OV) is reached, in conformity with the previous MC
simulation results in this limit of λ → 0 [15].

The nature of the transitions can be gleaned from the plots
of the fourth-order energy-cumulant (V4) data shown in Fig. 4
for some typical values of λ′. The sharp dip in the cumulant
value shown in Fig. 4(a) at λ′ = 0.345 is indicative of a
strong first-order nature of the NB-I transition in the λ′ range
0.345–0.45. Figures 4(b)–4(d) depict the nature of the two
transitions in the range of λ′ from 0.463 to 0.692. The I -NU

transition at T1 shows a progressively weakening first-order
nature [relative to Fig. 4(a)], whereas the NU -NB transition
seems to be continuous over the trajectory. The trajectory in the

FIG. 4. Energy cumulant V4 for certain values of λ′ in the range
0.345–0.692 (point C).
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FIG. 5. Energy cumulant V4 for values of λ′ in the range 0.709
(point D) to 0.747 at (L = 15).

repulsive region also shows the similar nature of the transitions
(Fig. 5).

We computed the equilibrium averages of the observables
using B ensembles obtained from MC sampling at randomly
chosen points on the trajectory IW. A comparative study of
the WL and MC simulation results at four such representative
points (at λ′ = 0.566, 0.656, 0.692, and 0.709) are shown in
Figs. 6(a)–6(d).

It is observed that qualitative agreement exists between
the averages computed from RW and B ensembles up to
(and including) λ′ = 0.566. Thereafter, the results vary in the
behavior of R2

22 in the uniaxial phase. While the B-sampling
results point to a pure uniaxial phase (i.e., R22

22 ∼ 0 within
the error bars) for all values of λ′ along the path IW, the
RW-sampling results show an unmistakably nonzero and
constant value of R2

22 (∼0.03) in the uniaxial phase for values
of 0.566 < λ′ � 0.709.

We show the representative free energy plotted as a function
of energy (per particle) E and the order parameters R2

00 and R2
22

at λ′ = 0.610 (point B ′) in the attractive region, in Fig. 7, at
different temperatures bracketing the two transition points T1

and T2. We observe that the free-energy minima with respect
to energy shift toward lower values of energy, while they shift
toward higher values of order parameters progressively as the
system is cooled. We also note in Fig. 7(c) that the free-energy
profile confines the value of R2

22 to ∼0.03 in the intermediate-
temperature region, before allowing its access to higher-order
values at the onset of the NB phase at T2. Further, the free-
energy profile thus confirms that the intermediate phase has to
sport in principle a biaxial symmetry, though with a marginal
value.

However, as we traverse from this fully attractive region
of the Hamiltonian toward the dispersion parabola bordering
the repulsive region, the free-energy profiles with respect the
biaxial order display curious deviations, and these persist upon
entering into the partly repulsive region of the Hamiltonian
as well. Figure 8 compares the temperature dependence of
free-energy profiles plotted as a function of R2

22, at different
points B ′, C, and D in the triangle (Fig. 1). Temperatures are
chosen to represent the profiles in different LC phases. We note
from Fig. 8(a) that the free-energy curves at λ′ = 0.674 (point
B ′) show shallow minima at finite values of R2

22 (ranging from
0.03 in the NU phase to 0.24 at the onset of the NB phase). In
contrast, free-energy curves at λ′ = 0.692 [Fig. 8(b) at point
C located on the parabola] and 0.709 [Fig. 8(c) at point D, in
the partly repulsive region] show a rather curious behavior. We
observe that the free energy is a multivalued function of R2

22
(�0.04) whenever it shows a nonmonotonic behavior near T2.

(a)

(b)

(c)

(d)

FIG. 6. Comparison of results obtained from RW ensembles
(hollow black squares) and B ensembles (hollow red circles).
Temperature variation of the specific heat (continuous lines) and the
order parameter profiles is shown for four values of λ′ along the
path IW: (a) 0.566, (b) 0.656, (c) 0.692, and (d) 0.709. It is seen
that thermal averages of R2

22 from RW ensembles differ from the B
ensembles in the intermediate NU phase for values of λ′ > 0.566.

We interpret this as an indication of the occurrence of distinct
sets of plausible microstates with different free energies at the
same biaxial order. We also find that the global minimum point
of this curve coincides with the thermal equilibrium value of
R2

22 obtained from a canonical ensemble at the corresponding
temperature.
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FIG. 7. Free energy shown as a function of (a) energy per particle
E, (b) R2

00, and (c) R2
22 on cooling from the isotropic phase to the

biaxial phase at λ′ = 0.610.

Noting the established accord between the temperature
variation of average values of order parameters and the
corresponding free-energy profiles in this parameter region,
and also keeping in view the observation that the free
energy, on the other hand, shows a smooth variation with
the energy of the system, the obvious conclusion is that
there are subtle changes in the relative contributions of the
different orders to the entropy of the system. It seems to show
rather pointedly that in the neighborhood of the parabolic
boundary, the increased contribution of the cross-coupling
term (γ ), at the expense of the biaxial-biaxial coupling (λ)
attempting to promote macroscopic molecular biaxial order,
does not leave the intermediate uniaxial phase in its pristine
form (compared to, say, the nematic phase in the LL model
or even in the biaxial system on the λ axis, for example).
It may be noted that the presence of such inhomogeneous

FIG. 8. Representative free energy plotted as a function of R2
22

for different values of λ′: (a) 0.674, (b) 0.692, and (c) 0.709 [L = 20
for (a) and (b) and L = 15 for (c)].

FIG. 9. Correlation function G(r) of x, y, and z molecular axes
plotted as a function of the distance r at the point C (λ′ = 0.692) at
two temperatures in the NU phase.

structures and their contribution to the macroscopic averages
of order have been investigated, and the presence of “clusters”
was alluded to, in the biaxial cluster model of nematics by
Vanakaras [64,65] (which was proposed to explain the recent
experimental observation of phase biaxiality in bent-core
nematics). Indeed, this specific uniaxial phase seems to host
local inhomogeneities catering to increased γ contribution and
thus shows a nonzero macroscopic R2

22 initially originating
from such clusters. The subsequent decrease of biaxial order
upon further cooling in the uniaxial phase appears to be
an indication of the increasing role of the primary order
parameter R2

00 in effectively contributing to the free-energy
minimization in the process, making the system perhaps a
more homogeneous uniaxial medium.

Taking advantage of the nonmonotonic variation of R2
22

within the NU phase at the point C (on the parabola), we chose
two temperature points (0.628 and 0.324) at which the average
value of R2

22 is the same [Fig. 2(c)]. We collected microstates
within a narrow range centered at the corresponding aver-
age energy values per site (−2.331 ± 0.001 and −2.784 ±
0.001, respectively), constituting effectively microcanonical
ensembles located at the most probable energy values at
the respective temperatures. We computed the orientational
correlations of different molecular axes with distance (in lattice
units) to obtain their spatial correlation functions at the two
temperatures. These variations are shown in Fig. 9. Obviously,
R2

00 has increased significantly over this temperature range
and is reflected in the long-range correlation values of the z

axes. The minor axes (x and y), however, have qualitatively
different decays, flattening to two different plateau values,
even though the corresponding macroscopic averages of R2

22
are chosen equal. This clearly brings out the subtle differences
in the microscopic organization in the two biaxial phases
at the two temperatures: the low-temperature phase hosts a
higher long-range R2

00 order as expected, but interestingly
also a relatively higher long-range R2

22 order. It may also be
seen from the initial decay profiles of the minor axes at the
low temperature (Fig. 9) that this hosts biaxial clusters that
are correlated over a larger range than their counterparts at
the high-temperature point. The low-temperature phase seems
to correspond to an emerging homogeneous biaxial phase,
homogeneity being perhaps imposed through free-energy
considerations, by the inherent degree of the dominant uniaxial
order R2

00. The fact that these two temperatures had the same
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macroscopic R2
22 order, despite having qualitatively differing

correlation profiles, also confirms the presence of contributions
to R2

22 possibly arising from geometrical averages over
inhomogeneous regions, at high temperature.

We observe from Figs. 2(c) and 2(d), corresponding to
points C and D in Fig. 1, that the discernible dips in R2

22 values
just above T2 are also accompanied by sharp increases in the
corresponding R2

00. Similarly, a significant increase in R2
22 at

the subsequent onset of the biaxial phase at T2 is seen to lead to
an abrupt decrease in R2

00, retracing to its original extrapolated
value. Interestingly, such complementary rebounds of the two
major order parameters are observed only in systems described
by regions of parameter space where the repulsive term
is dominant, manifesting as inhomogeneous uniaxial media
hosting small biaxial clusters. As the energy of the system
is found to be a smooth function of T in this region, such
curious rebounds should be due to the compulsions imposed
on the system arising from free-energy considerations, with
temperature switching the relative importance of the ordering
and disordering influences of one or the other of the ordering
(mean) tensor fields. As was discussed in [66], the ordering
effects of the tensor field B [28] coupling to the system at lower
temperatures, and thus promoting the ordering of the minor
axes, leads also to a rebound of the secondary contribution to
the uniaxial order R2

02 (along with a small decrease in R2
00), as

may be seen in the insets of Fig. 2.

A. Study along the parabolic path OCT

The parabolic path within the triangle extends from the
origin O (γ = 0, λ = 0, corresponding to the LL model) to
the Landau point T (γ = 1/3, λ = 1/9), and the interaction
parameters are related within the dispersion approximation as
λ = γ 2. We carried out an entropic sampling-based MC study
at 13 closely spaced points on the parabola (excluding the
origin), and we observed that the phase sequence remained the
same, I -NU -NB , at all points except at T. The Landau point was
found to be qualitatively different, hosting two distinct biaxial
phases instead, as reported in a recent entropic sampling-based
MC study [23,24]. It may be noted that this finding, however,
differs from the mean-field prediction [1,3,32] as well as MC
results from Boltzmann sampling [17]. The latter studies point
to a single low-temperature NB phase after a direct transition
from the isotropic phase. We present the order-parameter
profiles at various points on the parabola starting from γ =
0.131 to 1/3 in Fig. 10 (at L = 20). It is observed from
Fig. 10(a) that the biaxial order parameter shows an initial
small increase at the onset of the I -NU transition, followed
by a decrease in its value in the deeper uniaxial nematic
phase. This anomalous behavior is more pronounced for values
of γ ranging from 0.163 to 0.212. The R2

22 temperature
profiles for γ values in the range 0.245–0.333, on the other
hand, increase continuously in the NU phase [Fig. 10(b)],
exhibiting a monotonic behavior. It is observed from both
graphs that the temperature range of the uniaxial nematic phase
decreases and the biaxial phase appears at progressively higher
temperatures as the γ value increases along the parabola. A
curious observation from this study is that the intermediate
NU phase is not strictly uniaxial with R2

22 = 0 (as expected
from the earlier studies), but hosts a small degree of biaxial

FIG. 10. Uniaxial order (R2
00) and biaxial order (R2

22) plotted as
a function of reduced temperature for values of γ ranging from (a)
0.131–0.228 and (b) 0.245–0.333. The inset in (a) shows a magnified
version of the R2

22 vs T plot where the decrease of R2
22 at lower

temperatures is seen.

order in the intermediate temperature range. This feature
becomes prominent as γ increases beyond ∼0.2, indicating the
increasingly competing role of the cross-coupling interaction
on this very special boundary. The free-energy profiles (plotted
against R2

22) shown in Fig. 11 at temperature T = 0.5 for
values of γ between 0.163 and 0.212 on the parabola show
the presence of looplike structures, similar to the earlier
observations at point C [Fig. 8(b)], and consistent with the
temperature variation of average R2

22 values. For higher values
of γ (0.228–0.333, Fig. 12), however, these show variations
upon cooling, which are in accord with the behavior of R2

22 in
this region of the parabola.

Thus it emerges that the intermediate NU phase hosts
distinct molecular organizations as the medium is transformed
in terms of the symmetry of its molecular interactions from the

FIG. 11. Free energy plotted as a function the biaxial order
parameter R2

22 for four values of γ in the neighborhood of point
C (including C, γ = 0.212).
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FIG. 12. Free energy shown as a function of R2
22, on cooling in the

uniaxial nematic phase for values of (a) γ = 0.228, (b) γ = 0.294,
and (c) γ = 0.333.

LL model to the Landau point along the parabola. Discernible
degree of biaxial order and its curious temperature variations
along the path starting from the origin (LL model) hint at the
possibility that the parabola is in fact a very special trajectory
having differing types of NU phases as the Landau point
is reached. The parabola serves as an interesting boundary
between distinct natures of the Hamiltonian, and it transforms
the system interaction symmetry while simultaneously pro-
moting the influence of the cross-coupling terms as one moves
from the LL limit. Obviously the nonmonotonic temperature
dependence of R2

22 is associated with the complex free-
energy terrain exhibited by the system in the R2

00-R2
22 space,

originating from an increasing degree of the cross-coupling
term. Viewed from this perspective, the present data provide
an insight into the role of γ and λ as their relative importance
changes on this trajectory.

V. CONCLUSIONS

We report the results of detailed MC simulations (based
on the Wang-Landau technique) along two trajectories inside
the triangle �. In the first case, along the line IW, we find

that our results are in accord with MF predictions in terms
of the phase sequences expected. We observe, however, that
as we progressively move toward the base point W, in the
process changing the relative importance of γ and λ terms
in Eq. (1), the uniaxial phase develops a marginal degree of
biaxial order R2

22 that is sustained through the uniaxial range.
This is similar to our earlier observation on the diagonal IV
as one progressively traverses toward V [23,24]. The onset of
a biaxial phase with significant order at the low-temperature
transition is preceded by a dip in R2

22 from its small value
(∼0.03).

The trajectory IW encompasses two distinct regions from
the point of view of the nature of the Hamiltonian. Up to the
point C where IW intersects the dispersion parabola, H is fully
attractive. The segment CW corresponds to a partly repulsive
region, making the stability of the biaxial phase untenable
asymptotically as the point W is reached. We make use of the
DOS estimates in our simulation to plot the free-energy profiles
as a function of the order parameters (R2

00,R
2
22) as well as the

energy. The observed interesting temperature variation of R2
22

within the “uniaxial” phase is consistent with the requirements
of the free-energy profiles at different λ

′
values along the

trajectory.
The parabolic trajectory OCT, very well studied earlier

for its simplifying dispersion approximation, is revisited with
the present MC technique to examine if the intermediate
uniaxial phase retains its pristine symmetry (R2

22 = 0 in this
phase) throughout its path. The present data indicate that the
intermediate uniaxial phase exhibits a small degree of biaxial
order as γ increases, and as the Landau point is reached it
indeed seems to transform into a biaxial phase in its own right
[23,24].

The appearance of a small degree of biaxial symmetry
within the uniaxial phase, whenever γ assumes a domi-
nant role, has its origin in the presence of local biaxial
inhomogeneities (referred to as “clusters” in [64,65]). Their
formation and sustenance is facilitated by the corresponding
cross-coupling interaction, which eventually interferes with
the homogeneous onset of the two orders. This inference may
well have implications in the observed difficulties in realizing
readily a biaxial phase in the laboratory.
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