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Chiral smectic-A liquid crystal elastomers are rubbery materials composed of a lamellar arrangement of
liquid crystalline mesogens. It has been shown experimentally that these materials shear when subjected to an
electric field due to the electrically induced tilt of the director. Experiments have also shown that shearing a
chiral smectic-A elastomer gives rise to a polarization. Roughly, the shear force tilts the directors which, in
turn, induce electric dipoles. This paper builds on previous works and models the electromechanical response of
smectic-A elastomers using free energy contributions that are associated with the lamellar structure, the relative
tilt between the director and the layer normal, and the coupling between the director and the electric field. To
illustrate the merit of the proposed model, two cases are considered—a deformation induced polarization and
an electrically induced deformation. The predictions according to these two models qualitatively agree with
experimental findings. Finally, a cylinder composed of helical smectic layers is also considered. It is shown that
the electromechanical response varies as a function of the helix angle.
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I. INTRODUCTION

Smectic-A liquid crystal elastomers are rubbery materials
composed of mesogens that are uniformly oriented and
organized in a layered structure. In their pioneering work,
Garoff and Meyer [1,2] found that low molecular weight
smectic-A* liquid crystals comprising chiral molecules exhibit
an electroclinic effect, i.e., there is a direct coupling between
the molecular tilt and an applied electric field. In smectic
elastomers comprising chiral mesogens, an electric field acting
along the layer plane induces a shear deformation. This
phenomenon directly emanates from the chirality of the meso-
gens. Specifically, the electric field couples to the transverse
dipole of the chiral mesogens and induces a tilt between
the mesogens and the layer normal. As a consequence, the
elastomer shears and contracts along the direction of the layer
normal. Typically, such elastomers are incompressible and
subsequently this deformation is accompanied by an expansion
along the transverse directions. Another consequence of the
chirality of the mesogens was demonstrated by Lehmann et al.
[3], where it was found that flipping the direction of the electric
field reverses the direction of the mechanical tilt.

Several experimental works were carried out to study the
response of a smectic-A elastomer subjected to an electric
field. Spillmann, Ratna, and Naciri [4] mounted a thin sheet
of elastomer in a tension clamp with the smectic layers
either perpendicular or parallel to the tension clamps and
applied an electric field normal to the sheet. An electric
field E = 16.7MV/m was applied to a film the layers of
which are parallel to the clamps, and a contraction of ~1%
was measured. Next, the sample was placed such that the
layers are perpendicular to the clamps. Upon application of
the electric field, an expansion of ~8.2% was measured.
Hiraoka et al. [5,6] prepared a smectic elastomer film with
an initial thickness 7y = 600 um and applied an electric field
E = 1MV/M. They measured an electrically induced tilt
angle of ~4°, a contraction along the layer normal of ~0.2 %,
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and a shear angle of ~0.08°. A recent experiment by Spillmann
et al. [7] demonstrated that smectic elastomers can also twist
in response to an electric field.

Previous works have also investigated the purely me-
chanical behavior of smectic elastomers. The experimental
work of Nishikawa, Finkelmann, and Brand [8], Nishikawa
and Finkelmann [9], and Spillmann, Ratna, and Naciri [4]
demonstrated that the mechanical modulus of smectic-A
elastomers parallel to the layers normal is significantly higher
than that along the layer plane. This anisotropy emanates from
the lamellar microstructure of the elastomer. Interestingly, the
experiments of Nishikawa and Finkelmann [9] revealed that
the elastomer becomes significantly softer above a threshold
of ~3% strain along the layers normal.

On the theoretical side, Adams and Warner [10] developed
an energy-based model for smectic-A elastomers which as-
sumes that the layer normal and the director are locked
and may only rotate in response to an external force. This
assumption prevents a tilt and a smectic-C like ordering. The
work of Stenull and Lubensky [11] argued that the director is
not rigidly coupled to the layer normal and, as a consequence, a
shear deformation can rotate the smectic layers and the director
with respect to the layer normal. The later works of Adams
et al. [12] and Stenull et al. [13] provided another model
that accounts for the stiffness of the smectic layers and the
resistance to the tilt by adding appropriate contributions to the
free energy.

From an electric viewpoint, the work of Corbett and Warner
[14] theoretically examined the electromechanical behavior of
anematic elastomer subjected to electric fields. In this paper, it
was shown that the mechanical and electrical anisotropies can
cause a thin film to expand in the direction of the electric field
rather than contract. As a result of the Poisson effect, the film
shrinks along the two directions in the plane of the electrodes.
Selinger et al. [15] found that under high electric fields the
state of uniform induced tilt can become unstable and lead to
chiral modulations. In their work, they modeled and simulated
this phenomenon.

The aim of this paper is to model the coupled behavior
of smectic-A elastomers under finite deformations resulting
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from the electroclinic effect. To this end, we characterize the
chirality of the mesogens by a chirality vector which couples
to the tilt of the director. The proposed model, presented in
Sec. II, is based on the minimization of the free energy of the
smectic elastomer. To demonstrate the behavior predicted by
the model, two cases are examined in Sec. I[II—an electrically
induced deformation and a deformation induced polarization.
In the first case, an electric field is applied to the smectic-A
elastomer and the resulting deformation is determined through
the minimization of the free energy. Subjected to this loading,
the tilt angle is larger than the shear angle. This trend is in
agreement with the experimental findings of Hiraoka et al.
[6]. We also show that the orientation of the chirality of the
mesogens can either enhance or diminish the polarization.
In the second case, we follow the experimental work of
Kramer and Finkelmann [16] and consider the response of a
smectic-A elastomer subjected to a simple shear deformation.
The proposed model predicts that the prescribed deformation
rotates the director with respect to the layer normal and
therefore induces a tilt of the mesogens. Subsequently, the
inherent chirality gives rise to spontaneous dipoles which, in
turn, induce a polarization in the elastomer. In accordance
with experimental findings, the proposed model predicts that
the shear angle is larger than the tilt angle. A cylindrical setup
of a smectic-A elastomer with helical layers is considered
in Sec. IV. The electromechanical response of an elastomer
with various pitches and helix angles is computed. The main
conclusions are summarized in Sec. V.

II. A COUPLED ELECTROMECHANICAL MODEL

Consider a smectic-A elastomer that deforms from a refer-
ence to a current configuration due to a coupled electromechan-
ical loading. The material points are denoted x and current po-
sitions are denoted as y(x), so that the deformation gradient is
defined as F = Vy(x), where V denotes the gradient operation
with respect to the referential coordinate system. The smectic
order is characterized by two order parameters—the director
and the chiral vector. These are denoted fiy and qg in the ref-
erence configuration and fi and q in the current configuration.
Note that bold letters with hats on top denote unit vectors. The
chirality vector is perpendicular to the director such that q -
fi = 0. The layer normal at the current configuration is given as

k=V1—-¢2f—nxq, (1)

where ¢ is the magnitude of the chirality vector q. Note that
q = 0 gives k = fi and characterizes smectic-A while q # 0
gives rise to smectic-C. This smectic order gives rise to a spon-
taneous elongation along the director given by the step-length
tensor £ = r~'3[I + (r — 1)fi ® A], where r is a parameter
related to the strength of the ordering [12]. It also gives rise to
a spontaneous polarization P* = C q, where C is a parameter.

We assume that the free energy-density function of an
elastomer subjected to a uniform electric field by surface
electrodes can be viewed as the sum of five contributions:

W=Wtr+Wl+Wt+We+VVm' (2)
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The first contribution is the classical elastic free energy of an
anisotropic elastomer [17]:

W, = %Tr(F LFT ¢, 3)

where pu is the shear modulus and {5 =
r~ B3I+ (r — Dy ® ] is the step-length tensor before the
deformation. Here, I is the identity tensor.

The second contribution to the free energy in Eq. (2)
concerns the change in the layer thickness:

14 5 ! 1 2 4)
T2\ FTRIVI—2 )

where B is a measure of the stiffness of the layers. This is
identical to the free energy contribution in the works of Adams
and Warner [10] and Adams et al. [12], but written in terms
of the magnitude of the physical chirality vector g. Above, F”
and F~! denote the transpose and inverse of F, respectively.
This formulation is advantageous because it is indifferent to
the sign of the director fi and therefore satisfies the objectivity
requirements associated with the energy-density function.

The third term in Eq. (2) concerns the change in chirality,
or equivalently the tilt (or rotation) of the director with respect
to the layer normal:

Wo=2g ®)
r = ) q,

where A is the resistance of the mesogens to tilt. This is again
the same as Adams and Warner [10] and Adams et al. [12], but
written in terms of the magnitude of the chirality vector. Note
that Eq. (5) assumes that the ground state is smectic-A, but it
can be modified if the ground state is smectic-C.

The fourth term in Eq. (2) pertains to the energetic
contribution of the electrical sources to the total energy (see,
for example, Shu and Bhattacharya [18]). Specifically,

1
We:_@E.E_P.E—I——(P—P‘Y)'(P_Ps)y (6)
2 2e0x

where P is the polarization, x is the susceptibility, and &y is
the permittivity in vacuum.

To determine the polarization and the deformation under
a prescribed coupled electromechanical loading, the energy-
density function is minimized with respect to P, F, and the

T . aW
chirality vector q. By computing 55 = 0, we find that
P=¢gyxE+P° =¢xE+ Cq. @)

The last term in Eq. (2) concerns the external mechanical
loading:
W, =—-S-F, (3)
where S is the first Piola-Kirchhoff stress tensor.

For convenience, we normalize the energy-density function
by 4 and substitute Eq. (7) into Eq. (2) to obtain

2
2W Tr(FLFT ¢ + b ! 1
w=—W = lik& — .
% IF-Tko| /1 — g2

2 go(l+x) c S
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where b = £ anda = 2 are the normalized layer stiffness and

the normalized resistance to tilt, respectively.

The constants in the proposed model can be determined
through experiments. The order of magnitude of the shear
modulus and the layer stiffness are 4 ~ 0.1-1 MPa and B ~
10 MPa, respectively [12]. Fitting to experimental findings
resulted in a resistance to tilt parameter A ~ 0.1-1 MPa
[19,20]. The anisotropy parameter r has been measured
between 1.05 and 60 in elastomers composed of prolate chains
[10,17]. Lastly, we can deduce the order of magnitude of the
chirality related parameter from experimental findings. It is
found that C ~ 1073-10~* C/m>.

III. THE ELECTROMECHANICAL RESPONSE
OF SMECTIC-A ELASTOMERS

To examine the predictions of the proposed model, consider
a thin film of a smectic- A elastomer with an initial thickness #;.
We prescribe a global coordinate system {X,Y,Z} such that at
the reference configuration the director and the layer normal
are along the 7. direction, i.e., ny = 7 and ﬁo =7 (see Fig. 1).
The faces of the film are covered with flexible electrodes such
that an applied voltage induces an electric field E = /\V X,
where Ag is the stretch along the thickness of the sheet.
Mechanically, an applied stress s = SZ - Y shears the film.
The elastomer experiences the general deformation gradient

A 00
F=|0 i Al (10)
0 0 »

where A, = %, Ay = £, Ay, = A tan¢, and ¢ is the shear
angle (see F1g l) Due to the incompressibility constraint,
Agp = . As a result of an electromechanical loading, the

dlrector rotates such that at the current configuration h =
sin@ Y + cos 6 Z. The chirality vector is q = sin (Q)X, where
0 is the tilt angle between fi and k, in accordance to Eq. (1).
Note that in accordance with its definition, the chirality vector
is zero when the layer normal is parallel to the director. By
making use of Eq. (1), we find that the layer normal at the
current configuration k = Z.

With the above definitions, the normalized energy-density
function in Eq. (9) can be written as

1 1

lw()\‘,V’)\'z’)\'yZ’e) = )\. )\. + r;. [)\3 + r()\'il + )\'z)]
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FIG. 1. A schematic of the electromechanical response of a
smectic-A elastomer. The chirality vector q points out of the plane.
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where ¢ = —= and V; = 7——. We also normalize the
a0 (+)e0
polarization [Eq. (7)]:
! LV %y (12)
= — = — — C ,
P nto AE %% 1

2
where V2 = ‘ =L The constants V,; and V, have units of voltage
1 £

and are related via —5 V V= e
d P 0
In order to demonstrate the merit of the model, we adopt
the typical valuesa =1, b =5, c = 1074V~! and r = 1.5.
The constants V; = 13.7kV and V,, = 15kV correspond to a

film with a thickness 7y = 0.1 mm and a susceptibility x = 5.

A. Voltage induced deformation

Due to the electroclinic effect, smectic-A elastomers
deform in response to an applied electric field [1,3,4,6,7].
The aim of this section is to examine the voltage induced
deformations according to the proposed model. To this end,
we take s =0 and minimize the energy-density function
w(Ay,Az,Ay2,0) [Eq. (11)] with respect to Ay, A, Ay, and 6 to
obtain the equilibrium state. This leads to nonlinear equations
which can be solved numerically. We can also gain insight by
simplifying the expressions for small voltages and retaining
only the leading order terms in V. We obtain

o~ EV, (13)
r—1
o~ ""Ley, (14)
r
. 1 [b+2[ 1
y” +(2<3+b)l > lvd”(c"g)l
-2 ey (1s)
~ 1 § _ 2 2
A, +{2(3+b)|:vdz+§<c+ s)l e}v,
(16)
p-X = (%wé)v, (17)
P

where & = ¢ is the initial slope between the tilt angle and

the applied Voltage. This quantity is related to the electroclinic
coefficient o = 2 Speciﬁcally, in the examined parallel plate
geometry £ & o Subjected to relatively low voltages, Kohler
etal. [21], Sp1llmann Ratna, and Naciri [4], and Hiraoka et al.
[6] measured an electroclinic coefficient @ = 0.045 m/MV,
a = 0.006m/MV, and o = 0.07m/MV, respectively. These
findings correspond to tilt angles in the range 4—10°. Since
the thickness of the smectic-A elastomers is around #y ~
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FIG. 2. (a) The shear angle ¢ and (b) the tilt angle 6 as a
function of the applied voltage V. The inset plots depict the predicted
response subjected to high voltages. The continuous and the dashed
curves correspond to the exact and the approximated predictions,
respectively.

0.01-1 mm, we approximate the order of magnitude of the
initial slope & ~ 0.01-1kV~'.

The parameters b and ¢ can be determined from a curve fit
of A, and A as a function of the voltage via Egs. (15) and (16)
in the low voltage regime. The quadratic dependency of A, and
A, on the applied voltage stems from the initial microstructural
alignment of the director and the layer normal in the smectic-A
elastomers.

Figures 2(a) and 2(b) depict the shear angle ¢ and the tilt
angle 0 as a function of the applied voltage. The insets plot
the electromechanical response of the smectic-A elastomers
under high voltages. The continuous and the dashed curves
correspond to the exact predictions and the approximations
[Egs. (13) and (14)], respectively. A close inspection of the
insets shows that the approximations hold for voltages up to
V & 5kV. It is noted that the application of the electric field
leads to a tilt angle that is larger than the shear angle.

To explain this, note that Egs. (13) and (14) reveal that in the
range of small voltages the ratio between the shear and the tilt

angles is % = ”;1 Interestingly, in smectic- A elastomers with

r > 1 theratio Zﬁ < 1. This implies that the electrically induced
deformation is characterized by a tilt angle 6 that is greater
than the shear angle ¢. This observation is supported by the
experimental findings of Hiraoka et al. [6], where the measured
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FIG. 3. p-X as a function of the applied voltage V. The inset
depicts the predicted response as a result of high voltages. The
continuous and the dashed curves correspond to the polarization
[Eq. (12)] with ¢ = 10~* and 0 V!, respectively.

ratio % ~ 0.02 led to the anisotropy parameter r = 1.02. It
should also be noted that the obtained value of the anisotropy
parameter is very low.

The predicted polarization is plotted as a function of the
voltage in Fig. 3. As before, the inset plots the predicted
polarization as a result of high voltages. The continuous and
the dashed curves correspond to the polarization withc = 10~*
and 0 V™!, respectively. It is shown that the electrically
induced tilt leads to an enhancement of the polarization of
the elastomer by as much as 1.8 times. We also find that
reversing the electric field flips the direction of the polarization,
as seen in the experimental findings of Hiraoka et al. [6]. As
previously discussed, this effect emanates from the chirality
of the mesogens. We emphasize that since the direction of the
chirality parameter q is linearly coupled to the polarization, the
spontaneous dipoles in a smectic-A elastomer with q — —q
decrease the polarization.

B. Deformation induced polarization

Next, we follow the experiment of Kramer and Finkelmann
[16] and the theoretical work of Stenull et al. [13] and apply
a shear stress s along the Y direction which deforms the
elastomer such that A, = A, = 1, corresponding to simple
shear. By setting V = 0, the normalized energy density is

w=wy = 1,2, = 1,A,..6). (18)

To determine the equilibrium state, we minimize Eq. (18) with
respect to the shear A, and the tilt angle 6.

Figures 4(a) and 4(b) depict the shear angle ¢ and the tilt
angle 6 as a function of s, respectively. We emphasize that the
nonlinear dependence of the shear angle ¢ on the shear force
s corresponds to a linear dependence between the shear A,
and s. It is demonstrated that the mesogens tilt in the direction
of the external shear force, as expected, and negating the force
simply flips the direction of the tilt angle 6.

Interestingly, as opposed to the previous case the proposed
model predicts that under the examined deformation the shear
angle is always greater than the tilt angle. Furthermore,
since A, = 1 is fixed and layer rotation is not permitted, the
tilt of the mesogens is not accompanied by a reduction in
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FIG. 4. (a) The shear angle ¢ and (b) the tilt angle 8 as a function
of the normalized nominal stress s.

the layer thickness. These observations are in accord with the
experimental work of Kramer and Finkelmann [16], where the
elastomer was subjected to a pure shear deformation such that
the maximum imposed shear angle was ¢ = 21°.

An examination of Fig. 4(b) reveals that the dependence
between the tilt of the mesogens and the applied shear force
can be divided into two regimes. Initially, a small increase
in the applied force leads to a large variation in the tilt angle.
Beyond a threshold s & 5, the cost of further tilting the director
becomes very high. Specifically, a large increase in the shear
force is required to attain a small increment in the tilt of the
mesogens. Practically, elastomers fail at a shear angle ¢ < 90°
and may not reach the second regime.

From Eq. (7) we deduce that the polarization in the absence
of an electric field is directed along the chirality parameter q,
which is perpendicular to the plane spanned by i and k.
Figure 5 plots the normalized polarization component p - X
as a function of s. It is demonstrated that the direction
of the applied shear force determines the direction of the
polarization. Two reasons lead to this behavior—the first is
the antisymmetric dependency of the tilt angle on the applied
force. As discussed in relation to Fig. 4(b), the directions of
the shear force and the tilt are linearly dependent. Second, the
observed trend is enforced by the direct coupling between the
director and the chirality parameter q. This coupling is defined
such that the magnitude of the polarization is proportional
to sin (f). We emphasize that the chirality of the mesogens
determines the direction of the polarization. Specifically, a
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FIG. 5. p - X as a function of the normalized nominal stress s.

shear force along the Y direction induces a polarization along
the —X direction in elastomers characterized by a flipped
chirality vector (i.e., q & —q).

IV. THE ELECTRICALLY INDUCED DEFORMATION
OF A CYLINDER WITH HELICAL LAYERS

To illustrate the capabilities of the electroclinic effect,
we explore the electromechanical response of a cylindrical
smectic-A elastomer with helical layers. Consider a hollow
thin-walled cylinder with an initial radius R, a wall thickness
to, and a height H. The cylinder is made of a thin incompress-
ible smectic-A elastomer film with helical layers. We prescribe
a global cylindrical coordinate system {R,®,Z} such that at
the reference configuration the director and the layer normal
are

fip = ko = sin(y9)® + cos(y)Z, (19)

where v is the initial helix angle (see Fig. 6). The positions
of the referential material points are denoted by {R,®,Z}. The
inner and outer faces of the cylindrical film are covered with
flexible electrodes such that an applied voltage induces a radial
electric field E ~ % R. In addition, an internal pressure p is
exerted on the inner surface. As a result, the cylinder deforms

10

N

X¥ g N\g

FIG. 6. A schematic of the electromechanical response of a
cylinder with helical layers.
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FIG. 7. (a) The twist § and (b) the change in the enclosed volume :72 as a function of the applied voltage for various helix angles at p = 0.

such that at the current deformation

1
r=VAR +B, 6=0+57Z, Z=XZ, (20)

where {r,0,z} denote the material points at the current config-
uration. Accordingly, the deformation gradient in cylindrical
coordinates is

a0 0 AR 0 0
F=10 £ r&|=(0 % sr| @D

il 1

o o & 0 0

At the current configuration, the chirality vector is
q = sin(p)R, (22)
and the director is
fi = sin(y + ¢)O + cos(Y + ¢)Z, (23)
where ¢ is the angle between the director fi and the layer
normal k and  is the helix angle at the current configuration.
By employing Eq. (1), we find that
k = sin(y)® + cos(y)Z. (24)
The layer normal at the current configuration is directly
dependent on the deformation gradient via [10,12]

FT RO
F~Tko|
and therefore one finds that the helix angle at the current
configuration is

k= (25)

R sin (o)
Y = arctan - . (26)
Ar[cos () — RS sin (Yp)]
0.00[—————o——9—o—o—90—¢
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The energy-density function can be written as

@ . 2 ry\21
whGB.0.8) = w0 ped) ~ = p(%) 7 @D

nw R/ A
where w(A, B,¢,8) is computed with Eq. (9), p is the pressure
inside the cylinder, and (%)2 % accounts for the change in
the enclosed volume of the cylinder. The electromechanical
response of the cylinder is determined by minimizing the

energy w(h)()»,,B,(p,(S) with respect to A, B, ¢, and §.

Figures 7(a) and 7(b) depict the twist § and the change in the
enclosed volume UV’, == 1;2’1’1 , where h is the current height of
the cylinder, as a function of the applied voltage, respectively,
for various initial helix angles at p = 0. It is shown that
elastomers with cylindrical layers (or helical layers with an
angle ¥y = 0°) experience twist with a minor increase in the
enclosed volume. As the helix angle increases from vy = 0 to
45°, the twist § decreases while the enclosed volume increases.
Interestingly, the twist angle in the smectic-A elastomers witha
helix angle ¥y = 45° is extremely small. The proposed model
also predicts that such an elastomer experiences the largest
volumetric expansion. The trend is reversed as the helix angle
increases from 1y = 45 to 90°. Specifically, the cylinder twists
in the other direction and the enclosed volume decreases.

We highlight that the volumetric expansion of the smectic- A
elastomers is due to the radial expansion and the longitudinal
compression resulting from the amplification of the voltage.
Additionally, it is important to note that, due to the low voltages
that are practically applied in the actuation of these materials,
the twist and the volumetric expansions are small.

Next, we study the effects of pressure on the actuation of
smectic-A elastomers with helical layers at an angle vy = 45°.

1.006} 1 —e- p=0[kPa]

p =1 [kPa]
p =5 [kPa]

0 20 40 60 80 100
\

FIG. 8. (a) The twist § and (b) the change in the enclosed volume ”7" as a function of the applied voltage for a cylinder comprising helical

layers with a ¥y = 450 angle for various pressures.
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Figures 8(a) and 8(b) plot the twist § and the change in the
enclosed volume UV’/ as a function of the applied voltage,
respectively, for a cylinder subjected to various pressures.
Figure 8(a) reveals that the pressure causes the elastomer to
twist. However, the increase in voltage does not significantly
change the twist angle.

As shown in Fig. 8(b), the enclosed volume increases
with pressure. This stems from the radial expansion and the
longitudinal elongation of the cylinder in response to the
internal pressure. As the voltage is amplified, a linear increase
in the enclosed volume is observed. Interestingly, we find
that the linear dependence between UVI, and V is independent
of the pressure in the examined range of voltages. It is
again noted that, even under an applied pressure, an increase
in voltage leads to a radial expansion and a longitudinal
compression.

V. CONCLUDING REMARKS

This paper proposes a new model that captures the behavior
of smectic-A elastomers subjected to an electromechanical
loading. Specifically, the energetic formulation of Adams et al.
[12] is rewritten in terms of a new variable q, that describes
the chirality of the mesogens composing the elastomer, and
an additional term is added to account for the effects of an

PHYSICAL REVIEW E 96, 032701 (2017)

electric stimulus. The current configuration of the elastomer is
determined by minimizing the energy.

To demonstrate the merit of the model, two simple cases
are presented. In the first case, an electric field is applied
to the smectic-A elastomer. In accordance with experimental
findings, the proposed model predicts a shear deformation of
the sample. In the second case, a mechanical shear deformation
is imposed. As a consequence, the mesogens tilt and their
inherent chirality gives rise to a polarization. The predictions
qualitatively capture several experimental observations.

The potential of these elastomers is exhibited in Sec. IV,
where a thin-wall cylindrical configuration of a smectic-A
film with helical layers is considered. Upon application of an
electric field, we show that the pitch and the helix angle control
the macroscopic behavior. Specifically, the enclosed volume
and the twist depend on the formation of the lamellar structure.
It is also shown that the application of internal pressure in the
tube can effectively change the macroscopic response.
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