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Phase diagrams for sticky rods in bulk and in a monolayer from a lattice free-energy functional for
anisotropic particles with depletion attractions
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A density functional of fundamental measure type for a lattice model of anisotropic particles with hard-core
repulsions and effective attractions is derived in the spirit of the Asakura-Oosawa model. Through polymeric
lattice particles of various size and shape, effective attractions of different strength and range between the colloids
can be generated. The functional is applied to the determination of phase diagrams for sticky rods of length L

in two dimensions, in three dimensions, and in a monolayer system on a neutral substrate. In all cases, there is a
competition between ordering and gas-liquid transitions. In two dimensions, this gives rise to a tricritical point,
whereas in three dimensions, the isotropic–nematic transition crosses over smoothly to a gas-nematic liquid
transition. The richest phase behavior is found for the monolayer system. For L = 2, two stable critical points
are found corresponding to a standard gas-liquid transition and a nematic liquid-liquid transition. For L = 3, the
gas-liquid transition becomes metastable.
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I. INTRODUCTION

Quite often, lattice models are used to investigate general
aspects of the statistical mechanics of phase transitions. Also,
a lattice specific model may be constructed as a simplified
version of a certain continuum model of interest which is, in
general, harder to study with analytical methods. The textbook
example is the lattice gas of particles whose hard cores occupy
one lattice site, respectively, and nearest neighbors attract each
other with a finite energy ε, see, e.g., Ref. [1]. This model
shows a gas-liquid transition similar to simple liquids with
isotropic, pairwise attractions between atoms and it can be
mapped to the Ising model.

Anisotropic particles with mutual attractions (e.g., rods on
cubic lattices) may show ordering transitions such as a nematic
transition which will compete with a gas-liquid transition.
This is a quite relevant class of model systems considering
the advances in the preparation of colloidal solutions with
well-defined particle anisotropy [2,3]. But also the phase
behavior of molecular systems where anisotropic molecules
interact noncovalently (mostly true for organic molecules)
may be understood in terms of such basic lattice models.
However, while pure hard-core lattice fluids have received
some attention, surprisingly few results on attractive lattice
rods are available in the literature.

Theoretical studies of lattice hard rods in two dimensions
(2D) and three dimensions (3D) were sparked by DiMarzio [4],
having approached the problem from the context of polymer
theory. DiMarzio calculated the number of possible packings
of rods—thus evaluated the entropy—through approximating
the probability of inserting a new rod into a system already
containing other rods in a mean-field fashion. DiMarzio’s free
energy for rods of length L × 1 × 1 on cubic lattices leads
to a strong first-order nematic transition for L � 4 [5] and
for rods of length L × 1 on square lattices to a continuous
nematic transition for L � 4 [6]. Furthermore, DiMarzio’s free
energy is the same as the one from an exact solution on Bethe-
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like lattices [7,8]. Not unusual for mean-field approaches
to the nematic transition, the tendency towards ordering is
overestimated in comparison to simulations. In 2D, these show
a nematic transition (demixing between x- and y-oriented rods)
for L � 7 [9], which is a critical one. In 3D a transition to
a nematic state with negative order parameter (one minority
species) for L = 5,6 and a transition to an “ordinary” nematic
state (with one majority species) for L � 7 [10,11] is found
which is very weakly first order.

Attractions have been considered in the literature mainly
for the case of sticky rods (attractions proportional to the
number of touching sites between neighboring rods). For
L = 1, this system is the lattice gas where different types
of approximations have become textbook material [12]. The
simplest one, the Bragg-Williams approximation, treats the
distribution of particles randomly and leads to a quadratic
dependence of the attractive part of the free energy on the
particle density. It is completely equivalent to the van der Waals
approximation for simple fluids and accordingly displays a
gas-liquid transition. A more sophisticated one, the Bethe-
Peierls or chemical approximation, treats the distribution of
pairs of next-neighbor sites randomly and gives a phase
diagram closer to exact results (the Onsager solution in 2D or
simulations in 3D) than the Bragg-Williams approximation.
For L > 1, the literature focuses on 2D systems (surface
adsorption of flat-lying rods) with approaches combining
the DiMarzio entropy with the quasichemical approximation
[13] or employing simulations [14]. An interesting variant of
surface adsorption considers flat-lying and standing molecules
[we will call this a (2+1)D system] which has been treated in
Ref. [15] using the DiMarzio-Bragg-Williams approximations
and in Ref. [16] also by simulations. For 3D systems of
attractive rods we have not found results in the literature.

In this paper, we approach the problem of attracting
lattice rods somewhat differently, aiming at a free-energy
functional which should be applicable to homogeneous and
inhomogeneous situations. Effective attractions between the
rods are induced by fictitious polymer particles in the spirit
of the Asakura-Oosawa (AO) model [17,18]. These polymer
particles interact hard with the rods but have no interactions
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FIG. 1. (a) A representation of the lattice model in 2D. Particle Li is fully specified by its size vector Li = (Li
x,L

i
y) and its position (blue

dot) at si = (xi
min,y

i
min). (b) Overlap of two or more particles is forbidden due to their mutual hard-core interaction. (c) Short-ranged, sticky

attraction between the particles. The strength of the attractive interaction is proportional to the number of neighboring lattice sites (length of
bold red lines).

among each other (ideal gas). Consequently there is an
exclusion volume around each lattice rod which polymers
cannot occupy. Effective attractions between rods arise from
overlapping exclusion volumes around the rods which release
free volume to the polymers, increase their entropy, and
decrease the free energy of the system.

From the technical side, we will derive the free-energy
functional for such a lattice AO model with methods known
from the continuum [19,20]. Starting from a free-energy
functional for a general hard-rod mixture (lattice rods +
polymer particles), the functional is linearized with respect
to the polymer species such that the polymer-polymer direct
correlation function is zero (ideal gas). Variable attractions
between the lattice rods can be induced (such as face and
edge interactions with variable strength) through the selection
of size, shape, and density of the polymers. For actual
analytical and numerical results, we use the Lafuente-Cuesta
(LC) hard-rod functional [21,22], derived from fundamental
measure theory (FMT) as a starting point and consider next
neighbor (sticky) interactions. In the bulk, the LC functional
is equivalent to DiMarzio’s entropy [6,10]. For L = 1 (lattice
gas), the AO treatment is equivalent to the Bragg-Williams
approximation (which we call the “naive mean-field approx-
imation” [23]) but for L � 2, the AO model accounts for the
limited free volume available to the rods and goes beyond
it. Phase diagrams for sticky rods in 2D, 3D, and (2+1)D
are calculated which show the interplay of ordering (nematic)
transitions and liquid-gas transitions. However, the topology
of the phase diagrams differ, since the nematic transitions are
either Ising critical (2D), first order (3D), or continuous with
an onset at zero density [(2+1)D].

The paper is structured as follows. Section II introduces the
AO lattice model and presents a general derivation of an FMT-
AO functional. In Sec. III, the Lafuente-Cuesta functional is
used to derive explicit functionals for sticky rods in 2D, 3D,
and (2+1)D. The resulting bulk phase diagrams are presented.
Finally, Sec. IV gives a short summary and an outlook.

II. THE MODEL

A. The lattice model

Consider a simple cubic lattice in d dimensions where a
lattice point s = (s1, . . . ,sd ) is specified by a set of d integers

si [Fig. 1(a)]. The lattice constant sets the unit of length. The
particles of interest are rectangles in 2D and parallelepipeds
in 3D. The state of a particle of species i, denoted by Li ,
is fully determined by its position si and its size vector Li .
The size vector Li = (Li

1, . . . ,L
i
d ) specifies the extent of the

particle along each Cartesian direction. The position vector si

is given by the corner whose lattice coordinates are minimal
each. The particles are assumed to have entropic interactions as
well as energetic attractions. The entropic interaction prohibits
overlapping of two or more particles [Fig. 1(b)]. A pairwise
attraction uatt,ij can be expressed as a function of distance
si − sj between particles of species i and j . We will consider
effective attractions between particles induced by polymeric
depletants of general type, but in actual numerical calculations
we will only consider the limit of sticky rods where the
attractive interaction between two particles is proportional to
the number of their neighboring lattice sites [Fig. 1(c)].

B. Classical density functional theory

We will employ classical density functional theory (DFT)
to investigate the system. In classical DFT, the grand potential
functional for a ν-component mixture is a unique functional
of the set of one-body density profiles {ρi(s)} where i is the
species index. Densities are computed as number of particles
per lattice site. The equilibrium density profiles ρ

eq
i minimize

the grand potential functional [24],

δ�[{ρi}]
δρi

∣∣∣∣
ρi=ρ

eq
i

= 0. (1)

The grand potential functional is the Legendre transform of
the total free energy of the system, i.e., the sum of the intrinsic
free-energy functional F and the interaction energy of each
species with an external potential V ext

i . For a lattice model the
grand potential reads,

�[{ρi}] = F[{ρi}] +
ν∑

i=1

∑
s

ρi(s)V ext
i (s)

−
ν∑

i=1

μi

∑
s

ρi(s), (2)

where μi is the chemical potential of species i and the integrals
appearing in the continuum become sums over discrete lattice

032608-2



PHASE DIAGRAMS FOR STICKY RODS IN BULK AND IN . . . PHYSICAL REVIEW E 96, 032608 (2017)

(a) L2

Lp,1L1

Lp,2

(b) L2

L1

(c)

L1

L2

(d)

Lp,3

L1

L2
(e)

L1

L2
(f) L2

L1

FIG. 2. A representation of a mixture of colloidal rods and polymers in the lattice model in 2D. Since a polymeric rod occupying only one
lattice point does not induce a depletion layer, the minimum allowed polymer size is Lp = 2. Here we have shown two types of such polymers,
Lp,1 and Lp,2 with Lp,1 = (1,2) and Lp,2 = (2,1) in (a) and Lp,3 with Lp,3 = (2,2) (d). Due to our convention on specifying the position
of a particle, the depletion layers around the blue colloidal rods are asymmetric as shown in (b) and (e). Overlap of the excluded volumes
corresponding to one polymeric rod species increases their available free volume and results in an effective attraction between colloidal rods.
The effective attraction is proportional to the overlapping area as well as the corresponding polymer reservoir density ρr

p,j . The anisotropic
polymeric rods, i.e., Lp,1 and Lp,2, induce solely sticky attractions along the rod axis as shown in (c) (the corresponding overlap area is shown
by the dark green area), while Lp,3 induces an edge-edge attraction as well (shown in (f) by the corresponding overlap area in dark brown).

positions s. The intrinsic free-energy functional is further
decomposed into an ideal gas contribution F id,

βF id[{ρi}] =
ν∑

i=1

∑
s

βf id[ρi(s)],

with βf id(ρ) = ρ(log(ρ) − 1) (3)

and an excess (over ideal) part F ex due to the interaction
between the particles. Here, β = 1/(kBT ) is the inverse
temperature. For the following, we need to assume that we
know an excess functional for a multicomponent system of
hard particles. In the continuum, fundamental measure theory
(FMT) provides such functionals (for a review see Ref. [25]),
and a lattice extension to multicomponent hard rods has been
derived by Lafuente and Cuesta [21,22]. In the framework of
FMT, the excess free-energy density � = βf ex is expressed
as a function of a set of weighted (smeared-out) densities nα .
Each weighted density is computed as the sum over species of
convolutions of a corresponding weight function wα

i and the
density profile ρi . For the lattice model, we assume F ex can
be expressed in the following FMT form:

βF ex[{ρi}] =
∑

s

�({nα}),

with nα(s) =
ν∑

i=1

∑
s′

ρi(s′)wα
i (s − s′)

=
ν∑

i=1

(
ρi ∗ wα

i

)
(s), (4)

where ∗ denotes the discrete convolution.

C. The AO model

The short-ranged attractions between the lattice particles
are induced by depletion interactions as in the AO model
[17,18]. Consider nonadsorbing polymeric particles which do
not have any mutual interaction but a hard-core interaction
with the particles in the system (we refer to the latter as
colloidal particles). Due to the hard-core interaction of the
polymeric and colloidal particles, there exists an excluded
volume enclosing the colloidal particles which is composed
of the proper volume of a colloidal particle itself together with
a depletion layer and which the polymers are not allowed to
enter. Note that polymeric particles occupying only one lattice
site (i.e., with size Lp = 1 in all lattice directions) do not
induce an extra depletion layer. Hence a minimal polymeric
particle inducing attractions is a rod with length Lp = 2 in
one direction and length 1 in the other directions. Such a
polymer species will induce depletion attractions only along
the direction where its length is 2. Hence one needs additional
polymer rod species with length greater than one in the other
lattice directions to induce corresponding depletion attractions.
Due to our convention of specifying the position of a particle,
the depletion layers are asymmetric in the lattice model (see
Fig. 2). Overlap of the excluded volumes (corresponding to
polymer species j ) of two colloidal particles of species i

and i ′ increases the available free volume for them, hence
their entropy. This results in an effective attraction between
colloidal particles uii ′

j,att associated with polymer species j . The

induced effective attraction uii ′
j,att is proportional to the overlap

volume V ii ′
ov,j of the corresponding excluded volumes, as well

as to the osmotic pressure of polymer species j . Assuming
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that the system is coupled to reservoirs of polymers which
sustain the chemical potential of each polymer species in the
system at a constant value μp,j , the osmotic pressure of each
polymeric rods is equivalent to its corresponding reservoir
polymer density ρr

p,j . In summary,

βuii ′
j,att = −ρr

p,j V ii ′
ov,j with ρr

p,j = eβμp,j . (5)

One sees that the reservoir density ρr
p,j is equivalent to an

inverse temperature. Note that V ii ′
ov,j , and, consequently, the

range of attraction, is determined by the size vector of polymer
species j (see Fig. 2). As the 2D example of Fig. 2 illustrates,
for polymeric rods of length (2,1) there is only a nonzero
overlap of colloidal excluded volumes if the colloidal rods
touch each other along the x direction, and the overlap volume
(overlap area in 2D) is given by the number of touching
sites. Hence these rods induce sticky interactions along the x

direction [Fig. 2(c)]. Likewise, polymeric rods of length (1,2)
induce sticky interactions along the y direction. Polymeric
“squares” of length (2,2) additionally introduce edge-edge
attractions between the colloidal rods [Fig. 2(f)].

D. An FMT functional for short-ranged attractions

In order to construct an FMT functional for the AO model,
consider a mixture of n species of colloidal rods Lc,i and
m species of nonadsorbing polymers Lp,j whose density
profiles are denoted by ρc,i and ρp,j , respectively. We start
from the excess free-energy density of an (n + m)–component
mixture of hard rods (HR) �

(n+m)
HR . The polymeric rods are

not interacting with each other, and therefore we will assume
that for all combinations of polymer species j and j ′, their
corresponding second-order direct correlation function c

(2)
pp,jj ′

vanishes. Since the direct correlation function is defined by

c
(2)
pp,jj ′ (s − s′) = − δ2βFAO

ex

δρp,j (s)δρp,j ′(s′)
, (6)

the terms in the excess free-energy density should be either
constant or linear in polymer densities [19]. Hence the excess
free-energy density of the AO model can be obtained by
linearizing �

(n+m)
HR with respect to polymer densities ρp,j (s).

Since �
(n+m)
HR depends on the polymer densities only through

the weighted densities nα
p = ∑

j ρp,j ∗ wα
p,j , this results in the

free-energy density

�AO
({

nα
c (s),nα

p (s)
}) = �

(n)
HR

({
nα

c (s)
})

+
∑

α

∂�
(n+m)
HR

∂nα
p (s)

∣∣∣∣ ρp,j = 0
j = 1 . . . m

nα
p (s), (7)

where nα
c (s) and nα

p (s) denote weighted densities for colloids
and polymers, respectively. Likewise, wα

c,i(s) and wα
p,j (s) are

weight functions for colloids of species i and polymers of
species j . Note that the derivative has to be evaluated at
zero polymer density, and thus it will depend only on nα

c (s).
Equivalently, the excess free-energy density �AO = βf ex

AO can
be written as

�AO(s) = �
(n)
HR

({
nα

c (s)
}) −

m∑
j=1

c
(1)
p,j (s) ρp,j (s), (8)

where we have introduced c
(1)
p,j , the first-order direct correlation

function for polymer species j defined as

c
(1)
p,j (s) = − δβFAO

ex

δρp,j (s)

∣∣∣∣ ρp,j ′ = 0
j ′ = 1 . . . m

= −
∑

α

∑
s′

⎧⎨
⎩∂�

(n+m)
HR

∂nα
p (s′)

∣∣∣∣ ρp,j ′ = 0
j ′ = 1 . . . m

wα
p,j (s′ − s)

⎫⎬
⎭

= −
∑

α

⎧⎨
⎩

⎛
⎝∂�

(n+m)
HR

∂nα
p

∣∣∣∣ ρp,j ′ = 0
j ′ = 1 . . . m

∗̂ wα
p,j

⎞
⎠(s)

⎫⎬
⎭. (9)

Here ∗̂ is a modified convolution operator. Therefore the total
free-energy functional for the AO model can be written as
follows:

FAO[{ρc},{ρp}] = F id
c [{ρc}] + F id

p [{ρp}]
+F ex

AO[{ρc},{ρp}], (10)

βF ex
AO[{ρc},{ρp}] =

∑
s

�AO(s), (11)

where the ideal gas part is given by Eq. (3) and the excess part
by Eq. (8). Since we are dealing with a semigrand ensemble,
where the number of colloidal particles and the chemical
potential of polymers is conserved, a more appropriate quantity
for minimization is the semigrand free energy F ′

AO which is
the Legendre transformation of FAO with respect to polymer
densities:

F ′
AO[{ρc},{ρp}] = FAO[{ρc},{ρp}]

−
m∑

j=1

μp,j

∑
s

ρp,j (s). (12)

For a given colloidal density profile {ρc}, the equilibrium
density of each polymer species is obtained by minimizing
βF ′ with respect to the corresponding polymer density.

δβF ′

δρp,j

∣∣∣∣
ρp,j (s)=ρ

eq
p,j

= 0 ⇒ ρ
eq
p,j (s) = ρr

p,j ec
(1)
p,j (s), (13)

where ρr
p,j is the reservoir density of polymer species j [see

Eq. (5)] and c
(1)
p,j (s) is its corresponding first-order direct

correlation function defined in Eq. (8). As a result, once
the polymer reservoir densities ρr

p,j are specified, the density
profile of polymers is given by an explicit functional of only
colloidal densities. When evaluated in the bulk (constant ρc,i),
exp(c(1)

p,j ) is equivalent to the relative part of the total volume
available for polymer species j (free volume fraction) [23].
Finally, it is desirable to obtain an effective free energy
for colloidal particles F eff

AO which retains only the effect of
the depletion interactions induced by the polymers. This is
achieved by subtracting from F ′ those terms which are linear
in the polymer densities and at most linear in the colloid
densities [23]. These subtracted terms are equivalent to the
grand potential of the polymers which interact at most with one
colloidal particle and hence do not contribute to the effective
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attractions. Hence,

βF eff
AO

[{ρc};
{
ρr

p

}] = βF ′
AO

[{ρc},
{
ρeq

p

}] −
m∑

j=1

ρr
p,j

∑
s

{
−1 +

n∑
i=1

∑
s′

ρc,i(s′)(−fij (s − s′))

}
, (14)

where fij (s − s′) is the Mayor-f bond for the hard interaction
between a colloidal rod of species i at position s′ and a polymer
of species j at position s. The connection to the excluded
volume V excl

ij for polymer species j around a single colloidal
particle of species i (useful later) is given by

V excl
ij =

∑
s′

[−fij (s′)] =
d∏

k=1

(
L

c,i
k + L

p,j

k − 1
)
, (15)

where L
c,i
k and L

p,j

k are respectively the kth component of the
size vectors of the colloid species i and the polymer species j .

The part in F eff
AO resulting from the depletion attractions is

given by subtracting the ideal and excess free energy of the
hard rods, βF eff

AO,att = βF eff
AO − F id

c [{ρc}] − �
(n)
HR({nα

c }). In the
limit of small colloid densities it is given by

βF eff
AO,att ≈ 1

2

m∑
j=1

n∑
i,i ′=1

∑
s,s′

ρc,i(s)ρc,i ′(s′) βuii ′
j,att(s − s′).

(16)

We call this the naive mean-field approximation. It sums over
all two-particle depletion interactions induced by polymers.
The depletion potential uii ′

j,att(s − s′) between a colloidal pair of
particles belonging to species i,i ′ induced by polymer species
j is given by Eq. (5). Note that one can in principle work with
negative reservoir densities such that the depletion potential
becomes repulsive. For bulk systems (all colloidal densities
are constant), Eq. (16) corresponds to the Bragg-Williams
approximation.

Let us make a few remarks on the possible merits and
limitations of the effective free-energy functional derived
here. (i) The effective AO functional contains multibody
attractions if triple or higher overlaps of excluded volumes
around colloidal particles are possible. Below, however, we
will present results on rods with effectively pairwise sticky
interactions to demonstrate the use of the AO model to
treat short-ranged, pairwise interactions. The treatment of
two-particle attractions is usually very difficult in DFT and
therefore practical approximations often resort to a naive
mean-field approximation of the type as in Eq. (16). (It works
better than one might expect, see the discussion in Ref. [26].)
As is shown, the AO functional goes beyond it. (ii) The
density expansion of the AO free energy [Eq. (12) or Eq. (14)]
contains only terms up to linear order in ρr

p,j , as a result of
assuming vanishing direct correlation functions between the
polymers. In the full AO model (with ideal polymers), the
polymer-polymer direct correlation function does not vanish;
its virial expansion starts with terms quadratic in the colloid
density. Consequently, the density expansion of the full AO
model contains higher-than-linear terms in ρr

p,j (see Ref. [27]
for a corresponding calculation of virial coefficients in the
standard, continuum AO model). In Ref. [28] it is extensively
argued why the linearization of FMT-based functionals is still

a good approximation. However, we expect deviations for high
ρr

p,j (equivalent to low temperatures). Further improvements
in this direction might explore the ideas of Ref. [29] to treat the
polymers as clusters in the construction of the functional. (iii)
If an approximation for �

(n+m)
HR is used in deriving an explicit

form for the AO functional, the low-density expansion of the
effective attractive free energy will result in the correct form of
Eq. (16) only if the functional expansion of �

(n+m)
HR in densities

is correct up to third order.
In the following, as an exemplary case, we will use the

method of Lafuente and Cuesta [21,22] for constructing an
FMT free-energy functional in the form of Eq. (4) for hard
rods in the lattice model and the explicit derivation of an AO
functional. The functional is applied to the case of sticky rods
whose long axis is of length L and all other axes are of length 1
for 2D and 3D systems, as well as a (2+1)D system, i.e., rods
confined to a substrate. In this paper, we will discuss only the
phase diagrams and leave considerations of inhomogeneous
systems to later work. For this purpose, in each case an
expression for the effective free-energy density is presented
and the necessary equilibrium properties are obtained.

III. FMT-AO FROM THE LAFUENTE-CUESTA
FUNCTIONAL

In Refs. [21] and [22] Lafuente and Cuesta have worked
out an FMT excess free-energy density for hard bodies on a
lattice model in the form of Eq. (4). For a given rod species
Lα , the specified weight functions wα

i and their corresponding
weighted densities nα , are labeled by d-dimensional index
α = (α1, . . . ,αd ) whose components are either 0 or 1. Each
weight function wα

i can be interpreted as the support of a rod
Kα

i whose size vector Kα
i = (Kα1

i , . . . ,K
αd

i ) is related to the
size vector Li = (Li

1, . . . ,L
i
d ) of the original rod species as

follows:

Kα
i = Li − (1d − α), (17)

where 1d is a d-dimensional vector whose components are all
1. This means the side length of rod Kα

i in dimension k is
identical to that of rod Li if the corresponding kth component
of α is 1, while for αk = 0 we have K

αk

i = Lk
i − 1, i.e., it is

shortened by one lattice unit (see Fig. 3). In particular, for
α = 1d the size vectors of the support rod Kα

i and the rod
species Li are identical. The corresponding weighted density
nα(s) evaluated at lattice point s returns the local packing
fraction at that point.

The central physical insight that underlies this choice of
weight functions and the subsequent construction of the func-
tional is dimensional crossover. By applying an appropriate
external potential to the particles of a d-dimensional system,
one can restrict the translational degrees of freedom of particles
along a given axes and hence create a system in (d − 1)
dimensions. An exact FMT functional should necessarily
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(0,0)
α (s)s

FIG. 3. The four FMT weight functions in 2D for a rod with size vector L = (2,3). The green circles represents the lattice points at which
the weight function is 1. The lattice point s at which each weight function is evaluated is marked with a blue dot.

return the correct excess free energy of such a dimensionally
reduced system. Of particular interest is the reduction to zero
dimensions (0D) by confining the system to a 0D cavity which
can hold exactly one particle. The excess free-energy density
�0D(η) of a 0D cavity depending on its average occupation
η ∈ [0,1] is exactly known and reads

�0D(η) = η + (1 − η) log(1 − η). (18)

Note that for an n-component mixture one can define a set
of 0D cavities Scav = {S i

cav} with i = 1 . . . n. The 0D cavity
corresponding to species i specifies a minimal set of points
S i

cav on the lattice which hold exactly one particle of species
i. The local packing fraction in the full (multispecies) cavity
is evaluated as ηcav = ∑n

i=1

∑
s∈S i

cav
ρi(s). Note that the excess

free-energy density of all such 0D cavities is given by Eq. (18)
with η = ηcav. Lafuente and Cuesta have derived a functional
which returns the correct free energy for all possible 0D
cavities in the system, i.e., it is correct for extreme confinement
[21,22]. The resulting Lafuente-Cuesta excess free-energy
density is given by

�({nα(s)}) = Dα�0D(nα(s)), with Dα =
d∏

j=1

Dαj
, (19)

where α is the d-dimensional index as before and Dαj
is

a difference operator which acts on a given function f as
Dαj

f (αj ) = f (1) − f (0).

A. Two dimensions

For a ν-component mixture of hard rods with short axes
of length 1 in 2D, consider νx species parallel to the x axis
and the remaining νy = ν − νx oriented along the y axis. The
corresponding excess free-energy density from Eq. (19) is
given by

�2D
HR({nα}) = Dα1Dα2�

0D[n(α1,α2)]

= �0D[n(1,1)(s)] − �0D[n(0,1)(s)]

−�0D[n(1,0)(s)], (20)

where the fourth term �0D(n(0,0)) vanishes since n(0,0) = 0
for the type of hard rods considered, and the other weighted

densities are calculated as follows:

n(1,1)(s) =
ν∑

i=1

ρi ∗ w
(1,1)
i ,

n(0,1)(s) =
νx∑

ix=1

ρix ∗ w
(0,1)
ix

,

n(1,0)(s) =
νy∑

iy=1

ρiy ∗ w
(1,0)
iy

. (21)

Here ρi’s are the density of species i, wα
i are their correspond-

ing weight functions, and ∗ denotes the discrete convolution
defined in Eq. (4). Note that for n(0,1) (n(1,0)) the sum is
restricted to those particles which lie along the x axis (y axis)
since only their corresponding weighted densities are not zero.

For the construction of an FMT-AO functional for attracting
rods, we start from the excess free-energy density of a four-
component mixture. We will consider two colloidal species
whose size vectors are given by Lx = (L,1) and Ly = (1,L).
Moreover, we need two polymer species, Lp,x = (Lp,1) and
Lp,y = (1,Lp), for inducing the attractions. By setting equal
polymer chemical potentials μp,x = μp,y = μp, and, conse-
quently, equal polymer reservoir densities ρr

p,x = ρr
p,y = ρr

p,
we ensure a symmetric attractive interaction between colloidal
particles along the x and y axes. The excess free-energy
density for the AO model is obtained by linearizing �2D

HR from
Eq. (20) with respect to polymer densities [see–Eqs. (7)–(9)].
The required polymeric first-order direct correlation functions
c

(1)
p,j are given by

− c(1)
p,x(s) = −w(1,1)

p,x ∗̂ log
(
1 − n(1,1)

c

)
+w(1,0)

p,x ∗̂ log
(
1 − n(1,0)

c

)
,

−c(1)
p,y(s) = −w(1,1)

p,y ∗̂ log
(
1 − n(1,1)

c

)
+w(0,1)

p,y ∗̂ log
(
1 − n(0,1)

c

)
. (22)

Hence, for a given polymer reservoir density ρr
p and after

specifying the colloidal density profiles, the equilibrium
polymer densities ρ

eq
p,i is obtained using Eqs. (13) and (22).

Consequently, the total free energy βFAO [Eq. (10)] and the
semigrand free energy βF ′

AO [Eq. (12)] are obtained. Finally,
the effective free energy for colloidal particles βF eff

AO is fully
determined as a functional of the colloidal densities ρc,i by
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using Eq. (14) and the expressions for excluded volumes V excl
ij

from Eq. (15).
In the following, we explicitly consider sticky attractions

and discuss the results for a bulk state. Therefore, the polymer
length which determines the range of attraction is set to
Lp = 2. In a bulk (homogeneous) state ρc,x and ρc,y are
constant. As a result, all colloidal weighted densities are
constant, i.e., n(1,1) = L(ρc,x + ρc,y) = Lρc = η, where ρc is
the total colloidal density and η is the packing fraction, n(0,1) =
(L − 1)ρc,x , and n(1,0) = (L − 1)ρc,y . Consequently, the cor-
responding equilibrium polymer densities ρp,j and polymeric
weighted densities are also constant. Using Eqs. (13) and (22),
the equilibrium polymer densities in bulk read

ρp,j = ρr
p ec

(1)
p,j

= ρr
p

(1 − Lρc)2

[1 − (L − 1)ρc,j ]
for j = x,y. (23)

The total free-energy density of the system βf 2D
AO can be

written as a sum of ideal gas free-energy density of colloidal
and polymeric rods, βf id

c and βf id
p respectively, the entropic

contribution to the excess free-energy density �2D
HR and the

energetic contribution due to the attractive interactions:

βf 2D
AO = βf id

c + βf id
p + �2D

HR−
∑

j=x,y

ρp,j c
(1)
p,j , (24)

βf id
c =

∑
i=x,y

βf id(ρc,i), (25)

βf id
p =

∑
j=x,y

βf id(ρp,j ), (26)

�2D
HR = �0D(Lρc) − �0D((L − 1)ρc,x)

−�0D((L − 1)ρc,y), (27)

where the ideal gas free-energy density βf id(ρ) is defined
in Eq. (3). Consequently, the semigrand free-energy den-
sity βf ′

2D and the effective colloidal free-energy density
βf eff

2D read

βf ′
2D = βf AO

2D − μp(ρp,x + ρp,y)

= βf id
c + �2D

HR − (ρp,x + ρp,y), (28)

βf eff
2D = βf ′

2D − ρr
p(−2 + (3L + 1)ρc)

= βf id
c + �2D

HR − ρr
p

⎧⎨
⎩

∑
j=x,y

(1 − Lρc)2

[1 − (L − 1)ρc,j ]

+ [−2 + (3L + 1)ρc]

⎫⎬
⎭. (29)

The attractive part of the effective free-energy density
is linear in ρr

p and the leading term for small colloidal
rod densities is quadratic in these and equivalent to the
Bragg-Williams approximation since the virial expansion
of the LC functional is correct up to third order. The
Bragg-Williams approximation of the attractive part gives a
term −ρr

p[(L2 + 1)(ρ2
c,x + ρ2

c,y) + 4Lρc,xρc,y]. The case L =
1 corresponds to the lattice gas. Setting ρc,x = ρc and ρc,y = 0

[we have only one component for particles with extension
(1,1)], the effective free-energy density reduces to the Bragg-
Williams approximation for all densities:

βf eff
2D = ρc ln ρc + (1 − ρc) ln(1 − ρc)

−2ρr
pρ

2
c (L = 1). (30)

For the determination of the bulk phase diagram, it is useful
to introduce an order parameter S for demixing:

S = ρc,x − ρc,y

ρc,x + ρc,y
⇒ ρc,x = ρc

2
(1 + S),

ρc,y = ρc

2
(1 − S). (31)

For L > 1 and for a given total colloidal density ρc, the equi-
librium value for the demixing order parameter Seq minimizes
the effective free-energy density. For small densities, the mixed
state has the minimum free energy, i.e., Seq = 0. On increasing
ρc, we reach a critical density ρc,cr above which we have a
demixed state. For a pure hard–rod system, it has been shown
that for L � 4 the system demixes at ρc,cr = 2/[L(L − 2)] [6].
Taking the attractive interactions into account, this transition
shifts to lower densities for a given colloidal rod length L. This
is shown in Fig. 4(a) for rod length L = 6.

The complete phase diagram for a fixed rod length [L = 6 in
Fig. 4(b)] reflects the competition between demixing (present
for all ρr

p) and the gas-liquid transition (setting in above a
critical ρr

p). The gas-liquid binodal for a coexisting isotropic
gas state and an assumed isotropic liquid state is shown by
the green dashed line in Fig. 4(b). However, the coexisting
isotropic liquid state is unstable since the liquid branch is
above the critical density of demixing [red dot-dashed line in
Fig. 4(b)]. Therefore the gas-liquid binodal [full black line in
Fig. 4(b)] becomes deformed: The demixing line, starting from
the hard-rod limit ρr

p = 0 (T = 1/ρr
p = ∞) ends in a tricritical

point below which coexistence between an isotropic gas state
and a demixed liquid state is found.

The FMT-AO free-energy density delivers the phase be-
havior of the competing demixed and gas-liquid phases from
a single expression for the free-energy density. This goes
beyond existing theoretical treatments such as in Ref. [13]
which have to resort to different free-energy models for an
isotropic and a fully demixed state. However, a comparison to
available simulation results shows the well-known difficulties
of mean-field models in 2D. In Ref. [14], the system is studied
by a mixture of canonical and grand-canonical Monte Carlo
methods. It is found that also in the case of attractions demixing
is only present for L � 7 (as for hard rods). Demixing shifts to
higher rod densities with increasing attractions, in contrast to
our theory results here and the results in Ref. [13]. This appears
surprising since one might think that the sticky attractions
increase the propensity of the rods to align and thus favor
the demixed phase (with alignment). Control simulations
performed by us suggest that the sticky rods organize in larger
domains of locally aligned rods with no alignment globally.
These domains fluctuate strongly in size and shape, and the
entropic contribution of such fluctuations is not captured by
the theoretical treatments. Furthermore the simulations of
Ref. [14] suggest that the critical point of the gas-(isotropic)
liquid transition survives with increasing attractions. From the
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FIG. 4. (a) Equilibrium demixing order parameter for L = 6 and different polymer reservoir densities. There exists a critical density
above which the system demixes. The critical density shifts to lower densities by increasing effective attraction; i.e., decreasing the effective
temperature T = 1/ρr

p in the AO model. (b) The phase diagram of the 2D lattice model for L = 6. There exists a tricritical point below which
the system exhibits a first order phase transition between an isotropic gas phase and a demixed state for which Seq �= 0. The isotropic gas-liquid
phase transition is unstable with respect to the former phase transition.

simulation results it is not clear whether the demixing line
meets the liquid branch of the gas-liquid binodal in a tricritical
point or in a critical end point.

B. Three dimensions

Consider a ν-component mixture of hard rods with short
axes of length 1 in 3D, of which νx species are oriented parallel
to the x axis, νy species are oriented parallel to the y axis, and
the remaining νz = ν − (νx − νy) species are oriented parallel
to the z axis. The excess free-energy density from Eq. (19) is
in this case

�3D
HR({nα}) = Dα1Dα2Dα3�

0D[n(α1,α2,α3)]

= �0D(n(1,1,1)(s)) − �0D(n(0,1,1)(s))

−�0D(n(1,0,1)(s)) − �0D(n(1,1,0)(s)). (32)

Note that all other weighted densities n(α1,α2,α3) with α1 +
α2 + α3 � 1 are zero. The nonvanishing weighted densities
are calculated as follows:

n(1,1,1)(s) =
ν∑

i=1

ρi ∗ w
(1,1,1)
i ,

n(0,1,1)(s) =
νx∑

ix=1

ρix ∗ w
(0,1,1)
ix

,

n(1,0,1)(s) =
νy∑

iy=1

ρiy ∗ w
(1,0,1)
iy

,

n(1,1,0)(s) =
νz∑

iz=1

ρiz ∗ w
(1,1,0)
iz

, (33)

where, as in Eq. (21), the sums in the last three weighted
densities are restricted to the species which are extended along
the axis where the corresponding α index is zero.

For the construction of an FMT-AO functional for attracting
3D rods, consider three species of colloidal hard rods with
equal length and size vectors Lx = (L,1,1), Ly = (1,L,1),
and Lz = (1,1,L). For inducing attractions along each axis, we

need three polymer species with size vectors Lp,x = (Lp,1,1),
Lp,y = (1,Lp,1), and Lp,z = (1,1,Lp). As in the derivation of
the 2D functional, we assume that the corresponding polymer
reservoir densities ρr

p,j have the same value ρr
p. Hence, we

have to start from the excess free-energy density �3D
HR of a

six-component hard–rod mixture in 3D, i.e., Eq. (32) with the
weighted densities nα from Eq. (33). Linearization with respect
to the polymer densities results in the following polymeric
first-order direct correlation functions:

− c(1)
p,x = −w(1,1,1)

p,x ∗̂ log
(
1 − n(1,1,1)

c

)
+w(1,0,0)

p,x ∗̂ log
(
1 − n(1,0,0)

c

)
,

−c(1)
p,y = −w(1,1,1)

p,y ∗̂ log
(
1 − n(1,1,1)

c

)
+w(0,1,0)

p,y ∗̂ log
(
1 − n(0,1,0)

c

)
,

−c(1)
p,z = −w(1,1,1)

p,z ∗̂ log
(
1 − n(1,1,1)

c

)
+w(0,0,1)

p,z ∗̂ log
(
1 − n(0,0,1)

c

)
. (34)

Consequently, for a given ρr
p and colloidal rod densities ρc,i , the

equilibrium polymer densities ρ
eq
p,j , the total free energy βF3D

AO,
the semigrand free energy βF ′

3D, and, finally, the effective
free energy for colloidal rods only βF3D

eff are determined by
Eqs. (10)–(15).

Now we turn to a bulk state where all colloidal densities are
constant. The nonvanishing colloidal weighted densities are
given by n(1,1,1) = L(ρc,x + ρc,y + ρc,z) = Lρc = η with ρc

the total colloidal density and η the packing fraction, n(0,1,1) =
(L − 1)ρc,x , n(1,0,1) = (L − 1)ρc,y , and n(1,1,0) = (L − 1)ρc,z.
As in 2D, we will only consider sticky attractions, i.e., Lp = 2.
Using Eqs. (13) and (34), the equilibrium polymer densities in
bulk become

ρp,j = ρr
p ec

(1)
p,j

= ρr
p

(1 − Lρc)2

[1 − (L − 1)ρc,j ]
for j = x,y,z. (35)
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FIG. 5. (a) Equilibrium nematic order parameter Qeq for L = 6 and different polymer reservoir densities ρr
p = 1/T . On increasing the

total colloidal density ρc the system undergoes a first-order isotropic-nematic phase transition. The critical density shifts to lower densities by
increasing effective attraction; i.e., decreasing the effective temperature T = 1/ρr

p in the AO model. (b) The phase diagram of the 3D lattice
model for L = 6. For a pure hard-rod system (T → ∞), there is a first-order phase transition from an isotropic gas to a nematic liquid state.
By decreasing the effective temperature, the phase coexistence region becomes broader.

Similar steps as in the 2D case lead to the following effective
free-energy density:

βf eff
3D = βf id

c + �3D
HR − ρr

p

⎧⎨
⎩

∑
j=x,y,z

(1 − Lρc)2

[1 − (L − 1)ρc,j ]

+ [−3 + (5L + 1)ρc]

⎫⎬
⎭, (36)

with

�3D
HR = �0D(Lρc) −

∑
i=x,y,z

�0D[(L − 1)ρc,i],

βf id
c =

∑
i=x,y,z

βf id(ρc,i). (37)

As before, for small ρc,i the attractive part is quadratic in the
colloidal rod densities and will reduce to the correct form of
the Bragg-Williams approximation.

The phase diagram determination is facilitated by the
introduction of two order parameters, usually denoted as the
nematic order parameter Q and the biaxiality parameter S:

Q = ρc,z − 1
2 (ρc,x + ρc,y)

ρc,x + ρc,y + ρc,z
,

S = ρc,x − ρc,y

ρc,x + ρc,y
, (38)

and in terms of these the density of each colloidal species ρc,i

is determined as

ρc,x = ρc

3
(1 + S)(1 − Q),

ρc,y = ρc

3
(1 − S)(1 − Q),

ρc,z = ρc

3
(1 + 2Q). (39)

For a given colloidal density ρc, the equilibrium value of the
order parameters, Seq and Qeq, is obtained by a simultaneous

minimization of the effective free-energy density. It turns out
that for a given polymer reservoir density, Seq = 0 for all
densities. However, the nematic order parameter Q shows
a first-order transition from an isotropic state Qeq = 0 to a
nematic state with Qeq > 0. For hard rods, the transition is
present for L � 4 and the associated critical packing fraction
ηcr(L) shifts to lower packing fractions for longer rods [6].
Coexisting isotropic and nematic states are separated by a
substantial density gap. On switching on the attractions, we
find, generally, that the critical packing fraction ηcr(L,ρr

p)
decreases on increasing ρr

p and that the density gap between co-
existing isotropic and nematic states continuously widens (for
L = const and L � 4). We illustrate this for L = 6 in Fig. 5.
Figure 5(a) shows the behavior of Qeq for different effective
temperatures T = 1/ρr

p which displays the discontinuous
jump as well as the shift of the critical packing fraction to lower
values on decreasing T . Figure 5(b) shows the corresponding
phase diagram. As in the 2D case, we have calculated the
binodal for an isotropic gas-liquid transition (S = Q = 0,
green dashed line). The line of critical packing fractions
ηcr(L = 6,ρr

p = 1/T ) is shown by the red dot-dashed line
and one sees that the liquid branch of the isotropic gas-liquid
binodal is unstable with respect to the onset of nematic order.
Therefore the physical binodal (full black line) corresponds
to coexistence between an isotropic, lower-density state and
a nematic, higher-density state for all T = 1/ρr

p. The density
gap is continuously increasing with decreasing T and thus the
isotropic-nematic transition smoothly acquires the character
of a gas-liquid transition as well.

Simulation results for 3D lattice rods with attractions are
not available, whereas for rods in the continuum there are [30].
For continuum rods at higher densities, there is a transition
from the nematic phase to a smectic and a crystalline phase.
On increasing attractions, the isotropic-nematic transition
becomes unstable in favor of the more ordered smectic and
crystalline phases. Therefore one observes a similar widening
of the coexistence gap on increasing the attractions as in
the lattice model but the coexisting states correspond to an
isotropic gas state and either a solid state (when polymers
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FIG. 6. A 3D monolayer in which the particles are confined to
move on a substrate (left) can be translated to a 2D system where the
projection of standing-up rods is considered as a new species with
size (1,1) (right).

induce the attractions) or a smectic state (when there is an
explicit pairwise, attractive potential between the rods) [30].

C. Monolayer [(2+1)D]

Here we consider a monolayer of rods on a substrate which
can lie down or stand up. It can serve as a toy model for
Langmuir monolayers or a thin film of anisotropic organic
molecules as often investigated in the context of research on
organic semiconductors [31,32]. Effectively, the system can be
mapped onto a mixture of ν species in 2D. The νz species of
standing-up rods are treated as their projection on the substrate,
i.e., particles with size vector Liz = (1,1). The remaining νx +
νy species are defined as in the 2D system. The corresponding
excess free-energy density �

(2+1)D
HR is the same as in Eq. (20)

with the weighted densities provided by Eq. (21). Note that
in calculating n(1,1) the corresponding weighted density of
“standing-up” rods, ρiz ∗ w

(1,1)
iz

, are also considered.
For constructing an FMT-AO functional for sticky rods

in (2+1)D, consider three species of colloidal rods, with size
vectors denoted by Lx = (L,1) and Ly = (1,L) for lying-down
rods and Lz = (1,1) for standing-up rods. By adding two
polymer species, Lp,x = (Lp,1) and Lp,y = (1,Lp) and with
reservoir density ρr

p each, the in-plane attractive interactions
are ensured. However, the out-of-plane interactions of two
neighboring standing-up rods is underestimated by a factor
of (L − 1)ρr

p (see Fig. 6). In order to compensate this,
we will add two more polymer species Lp,xz = (Lp,1) and
Lp,yz = (1,Lp) which only interact with the standing-up rods

and have an enhanced polymer reservoir density ρr
p,xz =

ρr
p,yz = (L − 1)ρr

p. As a result, we are dealing with the excess
free-energy density of a 2D hard-rod mixture �2D

HR [Eq. (20)],
with seven components: three colloidal and four polymeric
species. Moreover, in linearization of �2D

HR with respect to
polymer densities, there is a slight difference to the 2D case: the
additional polymer species, ρp,xz and ρp,yz, are not interacting
with in-plane colloidal rods, ρc,x and ρc,y . As a result, in
calculation of corresponding c

(1)
p,j ’s, the density of ρc,x and

ρc,y should be set to zero as well. c(1)
p,x and c(1)

p,y are determined
similar to those of 2D case. The polymeric first-order direct
correlation functions in this (2+1)D system are given as
follows:

− c(1)
p,x = −w(1,1)

p,x ∗̂ log
[
1 − n(1,1)

c

] + w(1,0)
p,x ∗̂ log

[
1 − n(1,0)

c

]
,

−c(1)
p,y = −w(1,1)

p,y ∗̂ log
[
1 − n(1,1)

c

] + w(0,1)
p,y ∗̂ log

[
1 − n(0,1)

c

]
,

−c(1)
p,xz = −w(1,1)

p,xz ∗̂ log
[
1 − n(1,1)

c,z

]
,

−c(1)
p,yz = −w(1,1)

p,yz ∗̂ log
[
1 − n(1,1)

c,z

]
. (40)

After fixing ρr
p, the equilibrium density of polymer species

ρ
eq
p,j are determined by Eq. (13) with c

(1)
p,j from Eq. (40). Con-

sequently, the total free energy βF (2+1)D
AO and the semigrand

free energy βF ′
(2+1)D are determined from Eqs. (10) and (12).

Finally by using Eqs. (14) and (15) we obtain an effective free
energy for colloidal particles βF (2+1)D

eff for a (2+1)D system.
For a bulk state, the density of colloidal rods ρc,i

and, consequently, their corresponding weighted densities
nα

c are constant, n(1,1) = L(ρc,x + ρc,y) + ρc,z = η, n(0,1) =
(L − 1)ρc,x , and n(1,0) = (L − 1)ρc,y . For sticky attractions
Lp = 2, the equilibrium density of polymeric rods is obtained
by combining Eqs. (13) and (40).

ρp,j = ρr
p e−c

(1)
p,j

= ρr
p

(1 − η)2

[1 − (L − 1)ρc,j ]
for j = x,y,

ρp,j = (L − 1)ρr
p e−c

(1)
p,j

= ρr
p (L − 1) (1 − ρc,z)

2 for j = xz,yz. (41)

Similar steps as in the two cases before lead to the following
effective free-energy density:

βf eff
(2+1)D = βf id

c + �
(2+1)D
HR

− ρr
p

⎧⎨
⎩

∑
j=x,y

(1 − η)2

[1 − (L − 1)ρc,j ]
+ 2(L − 1) (1 − ρc,z)

2 + [−2L + (3L + 1)(ρc,x + ρc,y) + 4Lρc,z]

⎫⎬
⎭ (42)

with

�
(2+1)D
HR = �0D(η) −

∑
i=x,y

�0D[(L − 1)ρc,i],

βf id
c =

∑
i=x,y,z

βf id(ρc,i). (43)

Here the attractions between only the standing rods is
equivalent to the Bragg-Williams approximation, whereas
for all other attractions corrections to the Bragg-Williams
approximation are present for higher colloidal densities.

The determination of phase diagrams proceeds via the intro-
duction of order parameters as in the 3D case [see Eqs. (38) and
(39)]. Equilibrium value of the demixing Seq and the nematic
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FIG. 7. Equilibrium nematic order parameter and resulting surface pressure for a (2+1)D system with L = 2 [(a) and (c)] and L = 3 [(b)
and (d)]. Panels (a) and (b): Qeq vs. ρc (total density) for various effective temperatures T = 1/ρr

p (full lines). Dashed lines correspond to the
low-density expansion [see Eq. (46)]. Panels (c) and (d): Surface pressure βp = ρ2

c ∂/∂ρc(f/ρc) as a function of ρc for various T . Insets show
the onset of the second van der Waals loop for temperatures near Tcr,2 ≈ 1.2.

Qeq order parameters are obtained by minimizing the effective
free-energy density βf eff

(2+1)D with respect to corresponding
order parameters. This implies that for a given rod length L and
temperature T = 1/ρr

p, the corresponding chemical potentials
μS(ρc,S,Q) = ∂f eff

(2+1)D/∂S and μQ(ρc,S,Q) = ∂f eff
(2+1)D/∂Q

should be zero.
For a pure hard-rod system and in the regime of small

rods L � 12, Seq = 0 for all densities and a continuous
transition from an isotropic state Qeq = 0 at ρc = 0 to a
nematic state Qeq = 1 for a fully packed system is observed.
For larger rods a reentrant demixing occurs for a certain
interval ρc ∈ [ρc,low(L) : ρc,high(L)] [6]. With attractions, such
a reentrant behavior persists and occurs also for lower L,
which is understandable since for an attractive system in
2D and for a given rod length L, the demixing transition
density shifts to lower values on decreasing the effective
temperature T = 1/ρr

p (see Fig. 4). Hence, for a monolayer
one expects to find a certain temperature below which the
planar rods are demixed for ρc � ρc,low(T ; L). Since the rods
eventually stand up with increasing total density, there exists
a higher density ρc � ρc,high(T ; L) at which the lying rods
mix again and Seq = 0. In order to calculate ρc,low(T ; L)
and ρc,high(T ; L), we start from obtaining Qeq(ρc) by setting
μQ(ρc,S = 0,Q = Qeq) = 0. Expanding μS,

μS(ρc,S,Q) = μ1,S(ρc,Q)S + μ3,S(ρc,Q)S3 + · · · , (44)

the de- and remixing densities are obtained numerically
by computing the densities at which μ1,S(ρc,Qeq) = 0. In
general, we find that for moderate attractions T = 1/ρr

p � 1
demixing is relevant for L � 4 and that the phase diagram
becomes very complicated due to the competition of upright
(nematic) ordering, demixing in the plane and the gas-liquid
transition. However, the comparison to available simulation
results in 2D has shown that FMT-AO overestimates the
tendency to demix in the substrate plane. Therefore we
focus on shorter rods (L = 2 and 3) for the calculation of
equilibrium order and phase transitions.

The equilibrium value of the nematic ordering parameter
Qeq for L = 2 and L = 3 is shown in Fig. 7(a) and 7(b).
Nematic order, i.e., Qeq �= 0, sets in already at ρc = 0. In
order to obtain the low-density behavior, we expand μQ

(assuming S = 0):

μQ = ∂f
(2+1)D
eff

∂Q

≈ 2

3
ρc ln

1 + 2Q

1 − Q
− 2

9
ρ2

c [(L2 + L − 2) − (L − 1)2Q]

− 4

9
ρ2

c ρr
p (L − 1)[L − (L − 5)Q] + O

(
ρ3

c

)
. (45)

The equilibrium nematic order parameter is obtained by
setting μQ = 0, and in leading order in ρc it is given by

Qeq ≈ 1
9ρc(L − 1)

[
L + 2 − 2Lρr

p

]
. (46)
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FIG. 8. Phase diagram of a (2+1)D system for (a) L = 2 and (b) L = 3. For L = 2 two stable phase transitions occur for T < Tcr (red
dashed binodal) and T < Tcr,2 (blue dashed binodal). These transitions become metastable below a triple temperature Ttr with respect to a
phase transition between a highly ordered state at high densities and a nearly isotropic gas state (full black binodal). The purple dot-dot-dashed
binodal is the metastable continuation of the second binodal. For L = 3, the first transition for T < Tcr is stable (full black binodal). The second
transition for T < Tcr,2 (purple dot-dot-dashed binodal) is completely metastable. Reentrant demixing in the substrate plane (red dashed line)
and a discontinuous jump in Qeq (black dash-dash-dotted line) are metastable as well. For both L = 2 and 3 the green dotted line is the binodal
of a gas-liquid transition between isotropic states.

The nematic order parameter is linear in the total rod density
[shown by the dashed lines in Fig. 7(a) and 7(b)]. Starting
from a pure hard-rod system (T = 1/ρr

p → ∞) for a given
rod length, the tendency to order upright becomes weaker as
the temperature is decreased. Eventually, one reaches a certain
temperature Tcr,Q = 2L/(L + 2) below which Qeq < 0 and
the rods preferably order in-plane for small densities.

In Figs. 7(c) and 7(d) we show results for the pressure for
L = 2 and 3, respectively. For effective temperatures below
an upper critical temperature, T < Tcr, the van der Waals loop
points to a stable phase coexistence between a low-ordered
state at a smaller density and an upright-ordered state at a larger
density. By further decreasing the temperature, a secondary
loop is observed whose interpretation will be different for
L = 2 and L = 3. The associated phase diagrams for L = 2
and 3 are shown in Fig. 8 which are shown in the plane with
axes total colloidal density ρc and effective temperature 1/ρr

p.
For L = 3 [Fig. 8(b)] the upper critical temperature is at T ≈
3 and the binodal for the coexisting states (low density and
low order vs. higher density and upright order) is stable for
all temperatures (full black line). For L = 2 [Fig. 8(a)] the
upper critical temperature is at T ≈ 1.4 and the corresponding
binodal is shown by the red dashed line. Below a second,
lower critical temperature Tcr,2 ≈ 1.2 a second stable binodal
appears (blue dashed line) which marks coexistence between
two low-ordered states. This second binodal is actually akin
to the gas-liquid transition between isotropic states which we
have computed by setting Q = S = 0 (green dotted line) and
which is very close to the second binodal. Both the first and
second binodals become unstable below a triple temperature
Ttr ≈ 1.1 and give way to a binodal marking the coexistence
between a nearly isotropic gas and a highly ordered liquid at
high densities (full black line). For L = 3 [Fig. 8(b)] the second
binodal is inside the first one (Tcr,2 ≈ 1.2) and thus metastable
(purple dot-dot-dashed line). Again, it is almost on top of the
gas-liquid binodal for isotropic states (green dotted line). For

L = 3, there are two more features in the phase diagram. The
red dashed line shows the region of reentrant demixing in the
substrate plane which occurs at low temperatures T � 0.5. The
black dash-dash-dotted line corresponds to a discontinuous
jump in the nematic order parameter Qeq which sets in at a third
critical temperature Tcr,nem and which would give rise to a first-
order nematic-nematic transition. Both transitions (reentrant
demixing and nematic-nematic) are metastable for L = 3 but
would become stable for higher L according to FMT-AO.

These results suggest that the phase diagrams of monolayers
can be extremely rich. Previous studies have identified the
transition between a nearly isotropic gas state and a high
density, upright-ordered state [15,16], corresponding to the
full black line in Fig. 8(b). This should be the stable transition
for intermediate L (Ref. [16] confirms this also by performing
Monte Carlo simulations for L = 4). We emphasize that
this is not the “descendant” of the gas-liquid transition
between isotropic states but rather a new nematic liquid-
liquid transition. It would be very interesting to check with
simulations whether the two critical points associated with this
“new” nematic liquid-liquid transition and the “old” gas-liquid
transition are stable for L = 2, as we have found here. Such
investigations should also be extended to monolayers in the
continuum with short rods. We have not explored a possible
substrate potential as an additional degree of freedom which in
our opinion may shift the onset of metastability for the various
transitions quite substantially.

IV. SUMMARY AND OUTLOOK

In this work, we have derived a density functional for a
lattice model with attractive anisotropic particles (rods). The
attractions are induced by lattice polymers which interact
hard with the rods and are an ideal gas amongst themselves
(Asakura-Oosawa model). The functional is derived from a
multicomponent hard-rod functional (for rods and polymers)
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via linearization with respect to the polymeric components.
Explicit functionals are obtained by using the Lafuente-Cuesta
functional [21,22] for the multicomponent hard-rod system.
We have applied the functional to the calculation of phase
diagrams for sticky rods of length L in 2D, 3D, and in
a monolayer system [(2+1)D]. In all cases, there is a
competition between ordering and gas-liquid transitions.
In 2D, this gives rise to a tricritical point, whereas in 3D,
the isotropic-nematic transition crosses over smoothly to a
gas-nematic liquid transition. The richest phase behavior is
found for the monolayer system on a neutral substrate. For
L = 2, we find two stable critical points corresponding to
the isotropic gas-liquid transition and a nematic liquid-liquid
transition. For L = 3, the isotropic gas-liquid transition
becomes metastable. There are further metastable transitions
such as reentrant demixing in the substrate plane and a
nematic-nematic first-order transition. These become stable
for larger L but we have not investigated this in detail.

In this work we have not exploited yet the capabilities of our
explicit functional in investigating inhomogeneous situations
(correlation functions, interfaces between coexisting states, or
wetting and surface transitions on substrates). This will be done
in future work. Of particular interest is also the description
of film growth on substrate via a suitable lattice dynamic
density functional theory. First steps in this direction have been
taken by calculating the growth of a hard-rod monolayer [33]
which shows satisfactory agreement between dynamic DFT
and kinetic Monte Carlo simulations. The extension of these
investigations to attractive rods is desired to connect better to
actual experimental systems.
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