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Deformation and buckling of microcapsules in a viscoelastic matrix
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In this paper, we numerically study the dynamics of (1) a Newtonian liquid-filled capsule in a viscoelastic
matrix and that of (2) a viscoelastic capsule in a Newtonian matrix in a linear shear flow using a front-tracking
method. The numerical results for case (1) indicate that the polymeric fluid reduces the capsule deformation
and aligns the deformed capsule with the flow direction. It also narrows the range of tension experienced by the
deformed capsule for case (1), while the tank-treading period significantly increases. Interestingly, the polymeric
fluid has an opposite effect on the tank-treading period and the orientation angle of case (2), but its effect on the
deformation is similar to case (1).
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I. INTRODUCTION

Extensive research on microcapsules has been documented
in recent years, due to their growing applications in consum-
able, pharmaceutical, and medical industries. Capsules are
liquid-filled droplets surrounded by an elastic membrane that
are often used in targeted drug and cell delivery applications
[1] and encapsulation of volatile substances in lab-on-a-chip
devices [2,3]. In many of these applications, either the
background fluid or encapsulated fluid are non-Newtonian due
to presence of DNA, proteins, or polymers [4,5].

A large number of numerical, experimental, and theoretical
studies have been conducted on the capsule behavior under
various flow fields in a Newtonian fluid [6–10]. These models
suggest that the motion of capsule depends on the imposed
flow field, membrane stiffness, shear rate, initial shape, and
viscosity ratio (the ratio of inner fluid viscosity to the outer
fluid viscosity) [6,7,11]. The capsule deforms to a steady shape
in a shear flow, and the membrane rotates around it, which is
referred to as the tank-treading (TT) motion [12]. Theoretical
analysis based on the perturbation method [13,14] predicts
the deformation of initially spherical capsule in a simple shear
flow of a Newtonian fluid as well as the TT motion of the
membrane. The perturbation method is, however, valid only
for small deformations. Therefore, numerical simulations are
required to address large capsule deformations. The boundary
integral, front-tracking [7,8], and immersed boundary method
[9] are among the numerical techniques widely utilized
for simulating the capsule dynamics in a shear flow of a
Newtonian fluid. In these methods the membrane is discretized
using Lagrangian grids, which enables us to accurately capture
the membrane deformation and to calculate the elastic force
acting on the capsule. These numerical methods have been
used to investigate the role of the membrane constitutive laws,
area incompressibility, and bending resistance [8,10,15].
The experimental study on synthetic capsules suspended
in a confined shear flow suggests that the membrane starts
thinning along the principal strain axes of the shear flow when
the shear rate is sufficiently large [16]. The capsule break-up
occurs in these areas [11,16]. Despite numerous studies on the
deformation and TT motion of capsules in Newtonian fluids,
their motion in a viscoelastic fluid is poorly studied.

In this work, we present three-dimensional numerical
simulations of the dynamics of a Newtonian capsule in a

polymeric matrix following an Oldroyd-B fluid constitutive
equation as well as dynamics of a polymeric capsule in a
Newtonian fluid. A front-tracking method is employed to
accurately capture the underlying physics of a deforming
capsule in a shear flow for a wide range of capillary and
Weissenberg numbers.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

A. Newtonian fluid

In this section, we first present the system of equations
governing the motion of a deformable Newtonian capsule in
a Newtonian fluid and the mathematical method used for
capturing the interface between the elastic membrane and
the surrounding fluid. We will then discuss the constitutive
equation and the numerical implementation for a viscoelastic
fluid. The inner and outer fluids are assumed to be incompress-
ible. Hence, the flow field is governed by the Navier-Stokes
equations:

∇ · u = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ + F, (2)

where ρ is equal to the density of inner (outer) fluid inside
(outside) the capsule, p represents the pressure, u is the
velocity vector, t is the time, and τ denotes the total stress
tensor. The total stress tensor for a Newtonian fluid is
τ = μD, where D = (∇u) + (∇u)T is the strain rate tensor.
In this equation, F(x,t) = ∫

∂B
f (xi ,t)δ(x − xi) dV is the

smoothed representation of the membrane force, which is
zero everywhere except at the interface location. In this
formulation, x and xi denote arbitrary points on the Eulerian
and Lagrangian grids, respectively, and δ and V represent the
Dirac delta function and the volume. Furthermore, f (xi ,t) is
the elastic force of the membrane. The capsule membrane
is modeled as an infinitely thin sheet of elastic material
following a neo-Hookean constitutive equation. Therefore, the
corresponding strain energy function W is expressed as

W = Es

6

(
ε2

1 + ε2
2 + ε−2

1 ε−2
2 − 3

)
, (3)
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FIG. 1. Schematic of the problem and coordinate system.

where ε1 and ε2 are the principal strains and Es is the two-
dimensional elastic shear modulus. The elastic force on the
capsule membrane is obtained using the finite element model
developed by Refs. [17,18]. In this model, the membrane
surface is discretized with triangular elements. The number
of surface elements is large enough so that these elements
remain approximately flat even after large deformations. The
Lagrangian grid is deformed due to the hydrodynamic inter-
action with the surrounding fluid and consequently a resistive
elastic force develops. The deformed and initially undeformed
elements are transformed to a common two-dimensional plane
to evaluate the displacement of vertices and the corresponding
elastic force [ f (xi ,t)] exerted on the membrane using the prin-
ciple of virtual work, f = −dW

dv
, where v denotes the displace-

ment of vertices between deformed and undeformed states.
In this work, a finite volume method is used to discretize

the equations. The computational domain is discretized using
a uniform, Cartesian, and staggered grid. The governing
equations are solved in the entire domain using an explicit
Euler method for time discretization, a third order Quadratic
Upstream Interpolation for Convective Kinematics scheme
[19] for the convective term and a central difference scheme for
the diffusive term. Furthermore, the pressure-velocity coupling
is conducted using a projection method [20]. A front-tracking
method [21] is used to model the capsule. The Navier-Stokes
equations are solved on the entire computational domain rather

than solving them separately for each phase and matching
the boundary conditions at the interface. Fluid properties
(i.e., density and viscosity) are uniform in the interior and
exterior fluids but sharply vary in a small region across the
interface. To provide a smooth representation of material
properties, we solve Poisson’s equation for an indicator
function, which is used to evaluate fluid properties everywhere
in the computational domain. The elastic force is evaluated on
the Lagrangian marker points on the interface and are added as
a singular body force in the momentum equation to account for
the presence of membrane. The velocity field on Lagrangian
points are calculated as

u(xi ) =
∫

u(x)δ(x − xi ) dV. (4)

This method requires an interpolation for treating the singular
body force in Eq. (2) and tracking the membrane temporal
evolution. Therefore, a smoothed representation of the delta
function is employed to distribute the desired variables with
sharp variation across the interface over few grid points
surrounding the interface:

δ(x) = D(x)D(y)D(z), (5)

D(x) = 1

4�

{
1 + cos

[
π

2�
(x)

]}
, |x| � 2�, (6)

FIG. 2. A comparison of the (a) capsule deformation parameter and (b) orientation angle with the results of Doddi et al. [24] and Lac
et al. [23].
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FIG. 3. Temporal evolution of the (a) capsule deformation and (b) transient orientation angle at Ca = 0.2 and Wi = 2.

FIG. 4. Temporal evolution of the (a) capsule deformation, (b) orientation angle, and (c) length of main axes at Ca = 0.1.

FIG. 5. The temporal evolution of the (a) capsule deformation, (b) orientation angle, and (c) axes length for Ca = 0.025.
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where � is the grid size. In summary, a single set of equations
is solved in the entire computational domain, taking into
account the presence of the membrane and changes in the
fluid properties across the interface.

B. Non-Newtonian fluid

The Oldroyd-B constitutive equation is used to describe the
polymeric stress in the inner and outer fluid. The total stress
tensor τ is decomposed into solvent τ s and viscoelastic τp

stress tensors as follows:

τ = τ p + τs, (7)

where

τs = μs D, (8)

λ
�
τ p + τ p = μp D. (9)

In this formulation, μs and μp are the solvent and polymer
viscosity, respectively. The polymer relaxation time, repre-
sented by λ, is zero when the fluid is Newtonian and has a

nonzero value when the fluid is viscoelastic.
�
τp denotes the

upper convected time derivative defined as

�
τ p = ∂τP

∂t
+ u · ∇τ p − ∇uτ p − τ p∇uT . (10)

We follow the implementation of Aggarwal et al. [22]
for the polymeric stress to implement a single constitutive
equation in the entire computation domain:

λ
∂τ p

∂t
+ τ p = K(t), (11)

where

K(t) = μp D − λ(u · ∇τ p − ∇uτ p − τ p∇uT ). (12)

This equation is discretized using an explicit Euler scheme for
time:

τ p(t + �t) = τ p(t) exp

(
−�t

λ

)
+ K(t + �t) − K(t)

× exp

(
−�t

λ

)
− exp

(
− (t + �t)

λ

)

×
∫ t+�t

t

exp

(
t

λ

)
∂K

∂t
dt. (13)

We can neglect the integral in Eq. (13) assuming ∂K
∂t

= 0. In
this case, the polymeric stress tensor can be written as

τ n+1
p = τ n

p exp

(
−�t

λ

)
+ Kn

[
1 − exp

(
−�t

λ

)]
(14)

where n is the time step index.

III. PROBLEM SETUP

In this study, we simulate the deformation of an initially
spherical, unstressed capsule, which is introduced to the flow
at time t = 0. The capsule is deformed under a linear shear flow
bounded by two infinitely long flat plates as shown in Fig. 1.
Accordingly, the undisturbed velocity field in the absence of

FIG. 6. Deformation of the capsule membrane at Ca = 0.025 and
(a) Wi = 0, (b) Wi = 5, (c) Wi = 10, and (d) cross section of the
capsule membrane for different Weissenberg numbers at x∗ = 0.

the capsule is described as

U = γ̇

(
z − H

2

)
, V = W = 0, (15)

where U,V , and W denote the velocity of the fluid in
the streamwise direction (x), wall normal direction (z), and
vorticity direction (y), respectively. In this formulation, γ̇

and H represent the imposed shear rate and the distance
between the parallel walls. The computational domain is a
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FIG. 7. The temporal evolution of maximum and minimum
principal tensions at Ca = 0.025.

rectangular box with the size of 10R × 5R × 10R (R is the
initial capsule radius) in the streamwise, wall normal, and
vorticity directions, respectively. The computational domain
is discretized using a uniformly distributed 128 × 64 × 128
Eulerian grid points. The capsule membrane is also discretized
with 8120 triangular elements. A periodic boundary condition
is imposed in x and y directions, and a no-slip boundary
condition is considered on the upper and lower walls. The
interior fluid of the capsule is incompressible and Newtonian,
while the exterior fluid is viscoelastic, following an Oldroyd-
B constitutive equation. The characteristic length and time
scales are R and γ̇ −1, respectively, leading to the following
dimensionless parameters: (1) Reynolds number Re = ργ̇R2

μ
,

which represents the ratio of the inertial force to the viscous
force, (2) capillary number Ca = μγ̇R

Es
, denoting the ratio of

the viscous force to the elastic force on the capsule membrane,
(3) Weissenberg number Wi = λγ̇ , and (4) β = μp

μ
, indicating

the ratio of the polymer viscosity to the total viscosity. The
total viscosity is defined as the sum of polymer viscosity and
solvent viscosity of the fluid (μ = μp + μs). The interior and
exterior fluids are assumed to have the same density and total
viscosity. The values of β and Re are set to β = 0.5 and
Re = 0.1, unless otherwise stated. Superscript ∗ is used to
identify dimensionless time and length.

IV. NUMERICAL VERIFICATION

In this section, we compare our numerical results against
previously published numerical results of Refs. [23,24], where
front-tracking and boundary element methods were used,
respectively. For this purpose, we simulate the deformation
of a neo-Hookean membrane in a linear shear flow, where the
interior and exterior fluids are Newtonian. In order to conduct
a quantitative comparison, the Taylor deformation parameter
D = (L − B)/(L + B) and orientation angle θ are evaluated,
where L and B are the major and minor axes of the deformed
capsule in the shear plane, respectively, and θ represents the
angle between the major axis of ellipsoid and the x axis.
Figure 2 shows steady-state values of deformation parameter
D and orientation angle θ for various Ca. The results agree
well with the published results in the literature.

The numerical convergence of the solution is investigated
by increasing the grid resolution from 64 × 32 × 64 to
160 × 80 × 160. The temporal evolution of the deformation
parameter and orientation angle for Ca = 0.2 and Wi = 2 are
shown in Fig. 3. This figure shows that the capsule deformation
does not depend on the grid resolutions used here, while the
orientation angle converges by increasing the grid resolution.
Henceforth, we choose 128 × 64 × 128 grid points.

V. TRANSIENT DYNAMICS OF A VISCOELASTIC
CAPSULE IN A NEWTONIAN FLUID

When the capsule is released at the center of a linear
shear flow, the membrane deforms and elongates due to the
hydrodynamic interaction with the surrounding fluid. The
deformation grows until it reaches a steady state, when
no further change is observed in the final deformed shape
and inclination angle. The Lagrangian nodes on the capsule
continuously rotate on the deformed capsule which is called
TT mode. The temporal evolution of three main axes of the
deformed membrane (L∗ = L

R
, B∗ = B

R
and W ∗ = W

R
) are

plotted in Fig. 4(c) for Ca = 0.1 and various values of Wi.
In this plot, L∗ is the dimensionless semimajor axis and B∗
is the dimensionless semiminor axis in the shear plane, and
W ∗ denotes the dimensionless semiaxis of the capsule in the
vorticity direction. The capsule elongates in two directions and
compresses in the wall normal direction for both Newtonian
and viscoelastic fluids. It should be noted that increase in Wi
hinders stretching of L∗ and W ∗ as well as the compression

FIG. 8. The temporal evolution of the (a) capsule deformation, (b) orientation angle, and (c) axes length for Ca = 0.2.
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FIG. 9. Deformed capsule at Ca = 0.2 and (a) Wi = 0 and (b)
Wi = 5.

of B∗. This means that the surrounding viscoelastic fluid
reduces the capsule deformation and orientation angle due
to large polymeric stresses developed in the outer fluid
[Figs. 4(a)–4(b)]. As illustrated in Fig. 4(a), an overshoot is
observed in the deformation of the membrane when the outer
fluid is viscoelastic at Wi = 0.5 and 1. This phenomenon
is attributed to the relaxation time of the outer viscoelastic
fluid leading to a delay in the development of the polymeric
stress. Consequently, the membrane deformation is larger than
its steady values. Additionally, as the Weissenburg number
increases, the orientation angle of the capsule in a shear flow
decreases, and it reaches the equilibrium state at a longer time.

A. Capsule deformation in a low capillary number regime

In this section, we investigate the dynamics of a sheared
capsule in a low capillary number regime. The temporal
evolution of the capsule deformation parameter for different
Weissenburg numbers at Ca = 0.025 is shown in Fig. 5(a).
The deformation increases and reaches an equilibrium value,
following by small-amplitude oscillations. These oscillations
are caused by the formation of folds on the membrane
surface, which is discussed later in this section. The membrane
deformation in this low capillary number regime decreases
with Weissenburg number similar to the observation in the
previous section. However, the fluid elasticity does not have
the same effect for the entire range of Wi considered here. The
reduction in the steady deformation is observed for Wi ∈ [0,2].
On the other hand, the capsule deformation monotonically
increases with time for larger Wi numbers (e.g., Wi = 5). This
behavior was also observed for droplets suspended in a shear
flow. The reason for this unexpected behavior can be attributed
to the memory and nonlinearity of the Oldroyd-B fluid [22] as

FIG. 11. The normalized value of the tank treading period
versus Wi.

a similar trend exists for the variation of the drag coefficient
of a cylinder with increasing Wi [25]. In order to explore the
deformation of capsule in more detail, the transient lengths of
major and minor axes are plotted in Fig. 5(c). The elongation of
L∗ and compression of B∗ decreases for cases with steady-state
deformations. However, at Wi = 5, L∗ and B∗ monotonically
increase with time, while the vorticity-directed axis (W ∗) has
an infinitesimal change in this case. Increase in the fluid
elasticity causes the capsule to get more aligned with the flow
direction. The orientation angle monotonically decreases with
the Weissenberg number for the entire range of Wi investigated
in this work. This is in contrast to the elasticity effects
on the deformation where it decreases for low Weissenberg
numbers, but is unstable for Wi above a certain threshold.
The folds on the capsule surface are illustrated in Fig. 6 for
various Wi.

One of the important parameters in cell biology is the
maximum tension experienced by the cell membrane. If max-
imum tension exceeds a threshold, the cell membrane bursts
and releases its contents, which has harmful effects on the
function of biological systems. The effects of principal tension

FIG. 10. (a) The capsule deformation and (b) inclination angle versus capillary number.
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FIG. 12. Temporal evolution of (a) deformation for Ca = 0.2 and (b) normalized deformation as a function of Wi.

on mechanotransduction of biological cells have become
the subject of recent studies [26]. Therefore, it is important
to study the evolution of maximum and minimum tension
on the membrane. To do so, the principal elastic tensions
are computed on each triangular element on the membrane,
which is used to evaluate the range of experienced tension at
each time step. According to Li et al. [7] the principal tension
on each element, represented by T1 and T2, are explicitly
written as

T1 = 1

ε2

dW

dε1
= Es

3ε1ε2

(
ε2

1 − ε−2
1 ε−2

2

)
, (16)

T2 = 1

ε1

dW

dε2
= Es

3ε1ε2

(
ε2

2 − ε−2
1 ε−2

2

)
. (17)

By finding the values of T1 and T2 on each element the
maximum and minimum principal tension on the membrane
can be computed. The temporal evolution of maximum and
minimum tensions for different Wi at Ca = 0.025 is illustrated
in Fig. 7. The increase in Wi decreases the maximum and
increases the minimum tensions, indicating that the range of
tension experienced by the capsule decreases with Wi.

B. Capsule deformation in a moderate capillary number regime

The deformation of a capsule is plotted in Fig. 8(a) for
Ca = 0.2 and various Wi. Numerical simulations predict
that the steady-state deformation decreases with increasing
Wi number. This behavior changes for larger Wi number
such that the deformation starts increasing with increasing
fluid elasticity. The reason for this complex phenomenon is
the nonlinearity of the fluid as discussed in the previous
section. The temporal evolution of orientation angle, plotted in
Fig. 8(b), shows the effect of fluid elasticity on the membrane
inclination angle. The deformed shape of the capsule in
Newtonian and viscoelastic surrounding fluids is represented
in Fig. 9. The resulting membrane develops high-curvature tips
due to the large viscous stretching exerted by the flow field on
the membrane in a Newtonian fluid, while these tips are less
sharp as Wi increases. This phenomenon is more prominent
for larger Wi. The effect of fluid elasticity on the deformation
and orientation angle are shown in Fig. 10. The deformation
increases with Ca as expected, and fluid elasticity reduces the
capsule deformation particularly for large Wi. The effect of the
fluid elasticity on the deformation is negligible at small Ca, but
it has a significant effect on the orientation angle. The capsule
aligns more with the flow direction as fluid elasticity increases.
In order to study TT behavior of a deformed capsule the

FIG. 13. Temporal evolution of (a) orientation angle for Ca = 0.2 and (b) normalized orientation angle as a function of Wi.
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FIG. 14. The normalized value of TTP versus Wi.

tank-treading period (TTP) is defined as the time required by
the material points on the membrane to complete a circulation.
Therefore, we choose an arbitrary material point located on the
shear plane and track its position and angle with the x direction
to quantify the time period. Figure 11 shows the effect of Wi on
the TTP compared to the one in a Newtonian fluid. This ratio is
always larger than unity, which implies that the fluid elasticity
of the outer fluid slows down the rotational velocity of the
deformed membrane leading to a larger TTP. As we know, the
TTP in a Newtonian fluid is prolonged at higher Ca because
the membrane is highly deformed and the material points
circulate a larger distance to complete an orbit. According
to Fig. 11, the relative change in TTP caused by fluid elasticity
reduces as Ca increases.

VI. VISCOELASTIC CAPSULE
IN A NEWTONIAN MATRIX

In this section, we investigate the dynamics of a viscoelastic
liquid-filled capsule suspended in a Newtonian fluid. The effect
of inner polymeric fluid on the deformation is shown in Fig. 12
for a range of Wi. The steady value of deformation decreases
for Wi ∈ [0,2] and increases for any value outside of this range
[Figs. 12(a) and 12(b)]. Furthermore, the overshoot observed
in the deformation parameter can be attributed to the polymer
relaxation time as explained in the previous section. The effect
of the inner viscoelastic fluid is of the order of 3%–4% on
the deformation parameter, which proves negligible effects of
fluid elasticity compared to the case where the outer fluid is

viscoelastic [Fig. 12(b)]. The viscoelastic fluid is bounded in a
finite volume of capsule and cannot have a significant effect on
the deformation parameter as that of the previous cases. On the
other hand, the fluid elasticity has a more appreciable effect
on the angle as shown in Fig. 13. Contrary to the deformation,
polymer increases the orientation angle for Wi � 6 for Ca =
0.2 [Figs. 13(a) and 13(b)]. The effect of fluid elasticity on
the orientation angle of the deforming capsule is enhanced for
larger Ca [Fig. 13(b)]. The TTP of the viscoelastic capsule
is shown in Fig. 14. Interestingly, this parameter decreases in
the presence of inner fluid elasticity, which indicates faster
rotational velocity of the capsule membrane. This behavior
is opposite to the effect of fluid elasticity on the TTP when
the outer fluid is viscoelastic. As the Ca increases, the TTP
decreases more significantly compared to that of a Newtonian
fluid.

VII. CONCLUSION

We have simulated a Newtonian capsule in a viscoelastic
matrix as well as a viscoelastic capsule in a Newtonian matrix
to investigate the role of fluid elasticity on the dynamics of a
deformed capsule suspended in a shear flow. The deformation
of the sheared capsule is such that the major axis in the shear
plane and the axis in the vorticity direction are elongated,
while the minor axis in the shear plane is compressed. The
numerical results show that the outer fluid elasticity reduces
the capsule deformation and orientation angle of the capsule
with the streamwise direction. The capsule has a steady-state
deformation for low Weissenberg numbers, and when Wi ex-
ceeds a threshold, the capsule deformation increases with time.
Furthermore, the deformation curves display small-amplitude
oscillations in the low capillary regime, which is due to the
folds developed on the capsule membrane. Other important
parameters investigated in this work are the maximum and the
minimum tensions experienced by the capsule. According to
the results, the range of the tension generated on the membrane
decreases with Wi. The TTP calculated for the deforming
capsule increases with Wi. This means that the fluid elasticity
slows the rotational velocity of the membrane, and this effect
is more prominent for smaller Ca. The numerical results for
a viscoelastic liquid-filled capsule in a Newtonian matrix also
indicate the decrease in the deformation with Wi, but interest-
ingly the TTP and orientation angle increase, which is opposite
to the capsule dynamics observed in a viscoelastic matrix.
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