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Self-propulsion against a moving membrane: Enhanced accumulation and drag force
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Self-propulsion (SP) is a main feature of active particles (AP), such as bacteria or biological micromotors,
distinguishing them from passive colloids. A renowned consequence of SP is accumulation at static interfaces,
even in the absence of hydrodynamic interactions. Here we address the role of SP in the interaction between AP
and a moving semipermeable membrane. In particular, we implement a model of noninteracting AP in a channel
crossed by a partially penetrable wall, moving at a constant velocity c. With respect to both the cases of passive
colloids with ¢ > 0 and AP with ¢ = 0, the AP with finite ¢ show enhancement of accumulation in front of the
obstacle and experience a largely increased drag force. This effect is understood in terms of an effective potential
localised at the interface between particles and membrane, of height proportional to ¢t /&, where t is the AP’s
reorientation time and & the width characterizing the surface’s smoothness (§ — 0 for hard core obstacles). An
approximate analytical scheme is able to reproduce the observed density profiles and the measured drag force,
in very good agreement with numerical simulations. The effects discussed here can be exploited for automatic

selection and filtering of AP with desired parameters.

DOI: 10.1103/PhysRevE.96.032601

I. INTRODUCTION

Active particles (AP) represent a large class of systems
characterized by a conversion of internal energy into self-
propulsion [1]. The behavior of AP deeply differs from that of
passive colloids in a thermal bath and shows typical features
of nonequilibrium dynamics [2,3]. At the level of single
trajectories, AP are characterized by persistent random walks
and correlated motion. Instances of such systems can be found
in the realm of bacteria and micro-organisms [4], or in the
context of manmade nanodevices [5].

Several models have been proposed to study the physical
properties of active matter systems, which show intriguing
phenomena, such as nonequilibrium phase transitions, self-
organization, and collective behaviors. Let us mention the
“run and tumble” model [6], characterized by directed motion
interrupted by random reorientations, the “active Brownian”
model [7,8], where particles are pushed by a constant force,
whose direction changes stochastically, and the Vicsek model
[9,10], where the particle speed is fixed and the orientation
depends on the average velocity of the neighbors. More
recently, the Gaussian colored-noise (GCN) model has been
proposed to account for the correlated motion (over a typical
time 7) characterizing AP systems [11], which allows for an
analytical treatment within a specific scheme, known as unified
colored noise approximation (UCNA) [12].

Among the several nonequilibrium phenomena observed
in AP systems, a surprising result reproduced also by the
GCN model, is that, in the presence of a static repulsive
potential, AP do accumulate around the obstacle, producing a
nontrivial density profile [13,14]. This observation raises the
question of what effects are produced when the obstacle is not
static and moves with constant velocity, inducing a stationary
current.

The study of the density profiles in (passive) colloidal
systems under the action of a moving obstacle, indeed, takes
on great importance in several contexts and has been addressed
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from different perspectives. For instance, it is the central issue
in active microrheology, where a tracer is (magnetically or
optically) driven through a medium to probe its structural
properties [15,16]. A moving potential barrier can also be
realized by means of optical fields, with traveling waves or
inverted traps [17-19]. Moreover, soft potential barriers with
a finite height and width are also used to model the finite
thickness of a semipermeable membrane in contact with fluids
[20-23], or the translocation properties of polymer chains
through nanopores [24,25]. Similar problems related to the
study of the stationary currents and density profiles of colloids
under the effect of moving potentials have been addressed
with the formalism of the density functional theory, with
applications to the motion of colloidal particles in narrow
channels [26] or in polymer solutions [27,28].

In this paper, we study a simple model for a semipermeable
membrane moving at constant velocity ¢ in a fluid of
noninteracting GCN active particles of persistence time 7;
see the sketch in Fig. 1. Our analytical theory demonstrates
the appearance of an effective dynamical potential arising
from the coupling of self-propulsion with the nonequilibrium
current induced by the moving obstacle: indeed it vanishes
in both the limits of ¢ — 0 and © — 0 (passive colloids with
thermal noise). Our approach, which generalizes the UCNA
to nonvanishing steady currents, gives accurate predictions—
when compared to numerical simulations—for the density
profiles of AP and the effective drag force, in a wide range
of parameters. The most striking consequence of the current-
induced effective potential is an enhanced accumulation of AP
at the interface, with respect to the static case or with respect
to the behavior of passive colloids. This effect yields a drag
force whose intensity can be made large at will by tuning
the model parameters. In the nonlinear regime of large c, we
also observe a nonmonotonic behavior of the experienced drag
force [29-31], which is well described within our analytical
approach. Our results have practical applications, e.g., in
sweeping up AP from a mixture of inert and active particles,
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FIG. 1. A semipermeable membrane, modeled as a potential
barrier U(x) (color bar), moves at velocity ¢ (denoted by the arrow)
in a fluid of noninteracting active particles.

or in selecting and filtering AP with specific parameters, by
tuning the properties of the moving membrane.

II. MODEL

A channel, in generic dimension, contains suspended
(active or passive) particles. A membrane separates the channel
in two parts and moves with constant velocity ¢ along the
direction x perpendicular to itself; see Fig. 1. Since the
particles are noninteracting, the only relevant direction is that
parallel to the membrane movement. We assume the channel
to be periodic and very large in the x direction. The dynamics
of each particle is described by the overdamped Langevin
equation,

F(x —ct)

x(t) = + n(), (D

F(x) = —d.U(x), 2

where the potential U(x) represents the moving penetrable
membrane. The width of the membrane is used as unit of
length [see Eq. (5)], while the mass of the particle is 1. The
quantity 7n(¢) stands for a noise term, which is white (thermal)
for passive colloids, or colored, with correlation time 7, for
active particles: in both cases (1(f)) = 0. When Eq. (1) models
passive particles, we take (n(t)n(t")) = %80 — t") and the host
fluid has unitary temperature: therefore, ¢ is the viscosity of
the host fluid in these particular units. When Eq. (1) models
active particles, n(z) is GCN (“active noise™), i.e.,

() = —¢n() + /20 x (@), 3)
(x(x @) =8t —1). (4)

In this case, { = 1/t, and the active effective temperature is set
to 1 (or, equivalently, the active mean squared speed is setto 1).
We notice that in both cases (passive and active), with chosen
units, the bare diffusion coefficient of the particles [i.e., when

U(x) = 0] is 1/¢. In the following, we use a smooth potential
of the form
U(x) = Upftanh[(x + 1)/€] — tanh[(x — 1)/§1},  (5)

which is characterized by a steepness 1/£.

To understand the main effects induced by self-propulsion
in the presence of a stationary current, we focus on two
quantities: (i) the density profile around the moving obstacle
and (ii) the experienced drag force.
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Effective potential

To proceed with our analysis, it is useful to notice that,
when 7(¢) is GCN, we can time-derive Eq. (1), obtaining

(1) = v(t), (6)
0(t) = —£8(x — ehu(t) + F*(x — ct) + 20 x (1), (7)

. ch(x) dU(x) c d*U(x)
R o T ®
1 d’°U
g0 =1+ d(f) ©)

In the above equations, two terms deserve discussion: an
effective force F*(x), which reduces to —dU /dx when ¢ = 0,
and an effective viscosity g(x). The latter—which is the only
effect of self-propulsion when ¢ = O—has been thoroughly
discussed in Refs. [11,32,33]: it can be treated within an
approximate equilibriumlike solution (known as UCNA),
based upon an effective static potential Ugy(x) = U(x) +

Tl (dU(x)) — In|g(x)|. In the present case, the finite velocity
of the obstacle ¢ > 0 produces an additional contribution in
the force term, which is responsible for new dynamical effects.
These effects can be accounted for by a new approximate
treatment (see Appendix A). The same mathematical scheme
can also describe the dual problem of active particles under an
external field in a fixed potential, as detailed in Appendix B.

III. DYNAMICAL UCNA

In the case of a shifting barrier, one rewrites the stochastic
differential Egs. (6) and (7) into the equivalent Fokker-Planck
equation for the probability distribution of position and
velocity P(y,v):

PO 0D by vy + FH ) P(y0)
ar eyl WY Vg Y
0
—;—[ +g(y>v}P(y v), (10)

with y = x — ct. To proceed further, we consider the steady-
state solution of Eq. (10) and set 3P$’”) = - "”2% v By

multiplying by powers of v and integrating with respect
to v, one obtains a hierarchy of coupled first order ordinary
differential equations for the velocity moments of P(y,v),
whose first two members are the continuity equation for the

density p(y) = [ dvP(y,v),

B2 4 i =0 (an
dy

and the momentum balance equation for the current J(y) =
[ dvvP(y,v):

dJ drIl
- d(y) L F*(y)p(y) —¢gnJI(y) =0, (12)
y dy
where TI(y) :fdvva(y,v). According to Eq. (11), the

current must be proportional to the density

J(y) = clp(y) — pl, (13)
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where p is a constant such that the solution is periodic,
p(L) = p(—L). The following distribution represents the exact
solution of Eq. (10) in the regions where the force vanishes
and contains adjustable parameters to obtain an approximate
solution in the wall region:

1
P(y.,v) =,/ %{[p(y) — plexp [—Eﬁ(y)(v — c)z}

1
+ pexp [—Eﬂ(y)vzn, (14)

where B(y) is a positive definite function. Remarkably,
Eq. (14) also represents an (approximate) closure of the infinite
hierarchy of equations [of which Egs. (11) and (12) are the first
two members] generated by the transformation of the partial
differential Eq. (10) into a set of coupled ordinary differential
equations for the velocity moments of P. Hence, according
to the information contained in Eq. (14) the momentum flux
reads I(y) = IGINNE c[p(y) — pl, so that Eq. (12) becomes

BK)
d p(y) _
——— =[F(y) = ¢clp(y) + £cg(y)p, (15)
dy B(y)
which has the following interpretation: the “active pressure”
gradient %% is balanced by the force due to the moving

wall and by the friction force —¢g(y)J(y) (the second term
in the right hand side). In the case of a very weak potential,
p(¥) =~ p and the current vanishes, whereas for high barriers
p(y) > pand J(y) & cp(y). The static UCNA approximation
isrecovered by setting ¢ = 0,1.e., J = Oand (y) = g(y). The
density profile is given by

PO) _ P wyyiu(-Ly—cttL)
B(y)  B(L)

y
+ g.cﬁe—w(y)—;cy / dsew(s)+c{sg(s)’ (16)

-L
where w(y) is an effective potential defined by

dU(s)
ds

and p(L) is fixed by the normalization of the number of
particles. The explicit expression of the constant p is given
in Appendix A. Interestingly, the second term in the right hand
side of Eq. (17) can be identified with a dynamical potential
Uaqyn(y) vanishing when either ¢ = 0 (static barrier) or { — 00
(passive particles). Therefore, it is a peculiar feature of our
model, arising from the coupling of self-propulsion with the
nonequilibrium current. This term gives an effective trap—at
the front of the moving potential—of height ~Uyc/(¢&), and a
specular effective barrier at its tail. As one can see, the solution
for ¢ # 0 is not Boltzmann-like since the system is in a truly
nonequilibrium state, and therefore the density profile is not
symmetric with respect to the transformation y — —y, which
characterizes the bare potential U(y).

Since the UCNA breaks down in regions with negative
curvature of the potential [12], for the purpose of obtaining
quantitative predictions for p(y), we empirically set B(y) =
g(y) where g(x) >0, and B(y) =0 otherwise. From the
density profile p(y) we also obtain the average drag force

acting on the moving barrier (F) = f_LL dyF(y)p(y), which

y y
w(y) = / dsp(s) =g P ¢ / dstps)— 11, (17)

PHYSICAL REVIEW E 96, 032601 (2017)

0.06 1 0.2] &b)‘ ]
0.05? b 0_1j .
o 004 - 008 7
0.03F 4 006 .
P (@) 1 0.04F =
002\ == T 0021 [ R
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X-ct - X-ct
~— simul.
— theory
03— 10" ET
0.25F (© ] oF @
0.2F 4 10F
Q0150 4 10"k
0.1F 4 LF
0.05 10°¢
P | I S |
O a2 0 2 4 6 0g
X-ct

FIG. 2. Density profiles with different kinds of noise (thermal or
active) and different values of the barrier’s velocity c¢: (a) thermal
noise, ¢ = 0; (b) thermal noise, ¢ = 0.2; (c) active noise, ¢ = 0;
(d) active noise, ¢ = 0.2.

obeys the sum rule
L
(F) = CC/ dylp(y) — g(y)p]. (13)
-L

IV. NUMERICAL RESULTS

The approximations underlying our theory have been fairly
verified by comparison with numerical simulations of the
model in Eq. (1), for both passive and active particles. The
simulations implement a time-discretized scheme for Eq. (1)
through a fourth-order Runge-Kutta algorithm [34], with a
time step d¢ = 10™*. Averages are done on a single trajectory
of length 5 x 108 in the used units. In the figures, error bars
fall within the symbols.

In Fig. 2 we show the density profiles for two passive cases
and two active cases, with static or moving potential. A first
important information is the good match between simulations
and theory. In the passive case (two top frames), switching
on the external velocity from ¢ =0 to ¢ > 0 leads to an
imbalance of the density distribution with an accumulation
at the front of the membrane [at x — ¢t = 1, see expression
of the moving potential, Eq. (5)], and a depletion at its tail
(at x — ct = —1) [35]. The two frames on the left (¢ = 0)
demonstrate that switching from passive to active particles
induces an accumulation of particles near both borders of the
membrane potential, with a depletion inside the energetically
unfavored region. The novel effect discussed here appears,
strikingly, in the active case with ¢ > 0 (bottom-right frame):
the accumulation of particles on the moving front of the
membrane becomes much more important than the passive
case with ¢ > 0 or the active case with ¢ = 0 (notice the log
scale on the y axis).

To understand the behavior of the system in full generality,
exploring the effects of all parameters, we focus on the
global observable (F(y)), which is the average drag force
experienced by the moving membrane. Several results are
shown in Figs. 3(a) and 3(b), where a comparison is presented
between passive and active cases for several values of ¢ and
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& in a relevant range of velocities c¢. Again, we observe a fair
superposition of numerical results with theoretical predictions,
Eq. (18): this is expected for the passive cases, where the
theory is exact, while it is not trivial at all in the active
case. Surprisingly, even at low &, a reduction of ¢ (longer
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activity persistence time t) may improve the agreement with
the simulations.

In all the cases considered (excluding the & — 0 limit
for the passive case), at constant & and ¢, the average drag
reaches a maximum at some value ¢* and then decreases
for ¢ > ¢*. This can be understood in terms of competition
between “kinetic energy” ~c? and the potential barrier. In the
passive case, this leads to a value of ¢*, which is roughly
independent of £ or ¢, and a saturation of (F) when £ — 0,
as seen in Fig. 3(a). In the active case at large 1/(£¢) the
dynamic potential ~Uyc/(¢ &) dominates, so that the energetic
argument leads to ¢* ~ Uy/(¢&). When the effective barrier is
high and ¢ < ¢*, very few particles cross it and the majority
goes at x ~ ¢, so that Eq. (1) on average gives the linear
behavior (F) & ¢c, well visible in simulations at large values
of 1/(¢&). Estimating the maximum value of the drag force to
be (F)max ~ {c*, we get for the active case (F)max ~ Uo/&,
expected to hold at large (££)~'. The active case with a moving
membrane, therefore, is qualitatively different from the passive
case—or from any case at ¢ = 0—since the average drag
force can increase indefinitely by reducing &. In Fig. 3(c) we
have shown (F) . versus (£)~! for the active and passive
cases: at intermediate values of (¢£)~! an interesting data
collapse is found, together with a sharp increase with (&)~}
for the active case. Such an increase eventually saturates if ¢ is
further decreased at constant &, or continues if £ is reduced at
constant ¢, demonstrating the qualitative difference between
the active and the passive cases.

V. CONCLUSIONS

We have shown the existence of a dynamical enhancement
of clustering and drag when a traveling barrier sweeps active
particles. The synergy of two dynamical effects (active noise
and nonzero current) leads to a scenario qualitatively new,
as shown in Fig. 3(c): indeed the average drag is sensitive
to the persistence time 1/¢ and to the steepness of the
membrane potential 1/&, and can be made indefinitely strong.
We have discussed a theoretical treatment of this effect,
which fairly compares with numerical simulations. This is
remarkable if one considers that predictive theoretical schemes
are scarce in the framework of active particles, particularly in
the nonlinear regime with strong spatial currents as in our
case. It is interesting to note that our theory truncates the
Fokker-Planck hierarchy at the same order of the static UCNA
scheme; however, unlike the static UCNA, it leads to a genuine
nonequilibrium behavior [3,36].

The parameter values used in our simulations are in the
range of realistic systems of AP, therefore they are within
reach for experimental verification, e.g., in setups with optical
traveling waves or inverted traps [17-19], taking care to
avoid competing effects such as diffusiophoretic torques or
hydrodynamic-induced wall-attachment [37,38]. For instance,
taking as unit of length 10 um (order of magnitude of the
width of lithographed micro-membrane), typical biological
swimmers with speed ~10 um/s and reorientation time
T ~ 1 scorrespond to { =~ 1. A straightforward application of
our study is the possibility to separate a mixture of AP, filtering
out those with given parameters (e.g., a certain value of 7) by
sweeping a membrane with well-tuned values of ¢ and &.
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APPENDIX A: MODEL EQUATIONS

We consider a dilute solution of active particles dragged
along the x direction under the action of a traveling potential
barrier with velocity ¢, modelled by a time dependent external
potential, U(x,t) = U(x — ct), which acts on the colloidal
particles but has negligible effects on the solvent [26-28].
For the sake of simplicity we neglect the interactions among
the particles and any hydrodynamic effect and include only
the friction, through a drag coefficient y. The active forces
are modeled by a colored noise, i.e., Gaussian noise with
exponential memory of characteristic time 7. Note that, in
this Appendix, we introduce the model with all dimensional
parameters and explicitly show the change of variables
necessary to obtain the equations studied in the paper.

1. Langevin description

The following stochastic dynamics is assumed:
) 1
x(1) = ;F(x,t) + (), (AD)

where F = —dU/dx and n mimics the self-propulsion mech-
anism and is assimilated to an Ornstein-Uhlenbeck process,

1/2

1
n(t) = ——n(t) + £(1). (A2)

T
The underlying stochastic force £(¢) is a Gaussian and
Markovian process distributed with zero mean and moments
(E()E(t)) = 28(¢t — t’). The coefficient D due to the activity
is related to the correlation of the Ornstein-Uhlenbeck process

n(t) via

D |t — 1]
(n®n@)) = — oXp <— - ) (A3)

2. Fokker-Planck description

After differentiating with respect to time Eq. (Al) and
introducing a velocity v = x, we may write the following
system of equations:

X =0,
Ty
(A4)

The latter equation in the case of the shifting potential becomes

_ 1 T3F 1 aF D'/?
v=—\1—-—— v+ —|F—tc— |+ —n,
T y 0x X
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and the associated Fokker-Planck (FP) equation for the “phase-
space” distribution P(x,v,t) reads

3P 9P [FG.)+t2ED\5p
- + v— - % -
ot ax VT av
19 (Dd
=-—\—%z ts&x,nNv )P, (A6)
Tov\ T dv
where g(x,1) = (1 — gf;—f).

Now, defining F* = (F — rcaa—f) and considering the
steady state regime of the system, where P(x,v,?) must have
the traveling wave form P(x — ct,v), we can write

P oP F*(x —ct)oP
—C— + Vv —+ —
ax ax VT av
19 (D a
=—-——|—7—+gx —ct)v)P. (A7)
Tdv\ T dv

In the problem at hand, the shifting external potential U
is localized within a finite region around the origin of the
comoving reference frame and vanishes for x — +o0.

3. Nondimensional variables

To proceed further, it is time-saving to adopt nondimen-
sional variables for positions, velocities, and time, and rescale
forces accordingly. We define vr = /D/7, measure lengths
using the characteristic length, ¢, of the potential and introduce
the following nondimensional variables:

_ _ LF(x,t
= tv_Ta V= ia =, F(-)E’f) = (x )7
l T D)/
b4 _ B c
=— P=vid{P, ¢=—, (A8)
TUT vr

where ¢ plays the role of a non dimensional friction. To lighten
the notation we shall drop the bar over the nondimensional
variables without incurring in ambiguities.

In the case of a shifting barrier, one can write the following
Fokker-Planck equation in terms of the coordinate y = x — ct
relative to the comoving reference frame:

P
_APGY) n
dy

0| o
=¢ ™ [— + g(y)v} P(y,v). (A9)
v| ov

d 0
v—P(y,v) + F*(y)—P(y,v)
ay v

4. Hydrodynamic theory

To proceed further, it is convenient to eliminate the v depen-
dence of the phase-space distribution P(y,v), by multiplying
by powers of v and integrating with respect to v. One obtains
a set of coupled first-order ordinary differential equations, the
so-called Brinkman hierarchy, whose first two members are
the continuity equation and the momentum balance equation,
respectively:

do(y) , d _
_CW + Ej(y) =0, (A10)
dJ dIl
B d(y) » F*())p(y) + eI (y) =0,
y dy

(Al1)
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where we have introduced the density p(y), the current J(y),
and the momentum current I1(y), respectively, via

p(y) = / dvP(y.v), (A12)
J(y) = /dva(y,v), (A13)
(y) = /dvva(y,v). (A14)

According to the continuity Eq. (A10), the current must be
proportional to the density,

J(y) = clp(y) — pl, (A15)
where p is a constant such that the solution is periodic at
o(L) = p(—L), where 2L is the box size. As we shall see
later, for large systems L > ¢, p ~ p(£L) and the current is
almost vanishing at the boundaries.

It can be easily verified that the following distribution is
a solution of the Eq. (A9) in regions where F*(y) =0 and
g(y) =1

P(y,v) = [p(y) — pl Ho(v — ¢) + p Ho(v), (A16)
where
Hy(v) = J%_n exp (—%vz) (A17)

J

1 (dop(y)
o =05 (G p
+2(g — B)(p — P Ha(y,v —¢) + pHa(y,v)) — P

2832

where H,(y,v) and H;(y,v) are the Hermite functions of
order 2 and 3, respectively, and given by the recursion
relation:

1 9H,(y,v)

H,1(y,v) = T

The trial solution fails to solve Eq. (A9). However, if we limit
ourselves to consider only the two lowest moments of the
probability distribution, i.e., if after multiplying by (v — ¢), we
integrate Eq. (A22) over v, we obtain the following condition
which gives the profile equation:

1drt) —(F=¢o)p(y) — il

B dy E (A23)

p(y) —¢cgp =0.

If we continue the projection procedure beyond the first
order in (v — ¢), there will be an error in the equation for
the second moment, which becomes inconsistent with the
value of the second moment imposed by the trial distribution
(which, in fact, is already fixed by the trial form and therefore
does not contain enough parameters to satisfy the extra
conditions).

. . B _ 1 . B
—BF" —tge)p—p)— —(p—p)) — H(Y,v)=|BF'p+ —p

PHYSICAL REVIEW E 96, 032601 (2017)

is a Hermite function of zeroth order. By substituting the ansatz
Eq. (A16) in Eq. (A9) (with F = 0), we obtain a solution
provided p(y) satisfies the following condition:

d
% = —¢elp(y) — pl.
y

(A18)
5. Solution in the presence of a force field
Now, we insist in looking for a solution of Eq. (A9) of the
form

P(y,v) =[p(y) — pl Ho(y,v — ¢) + p Ho(y,v), (A19)

even in the region where F(y) = 0. We have introduced the
following (non uniform) Hermite functions, which are position
dependent through B(y), an adjustable function:

B(y)

21

(A20)

Hi(y,v) = B*(y)v exp (—@vz) (A21)

If we do that, i.e., if we apply the full FP operator to the trial
distribution Eq. (A19), we get

B2 p

((p — PYH3(y,v — ) + pH3(y,v) — B/ Ha(y,v)) = 0,

(A22)
[
6. Construction of the solution
Equation (A23) can be rearranged as follows:
d p(y) _
—— = (F(y) = £o)p(y) + £cg(y)p. (A24)
dy B(y)

Notice that the ansatz for the phase-space distribution gives
the following expression for the momentum flux:

_
B(y)

Notice that Eq. (A23) is perfectly equivalent to Eq. (All)
when the latter is endowed with a closure, indeed represented
by Eq. (A25). The static UCNA approximation is recovered
by setting the arbitrary function B(y) = g(y) and ¢ = 0, (i.e.,
J = 0). The solution of the inhomogeneous equation in the
case of ¢ # 0 is

I(y) + Alp(y) — Al (A25)

(y) = p(L)ﬁ(y)e—[w(y)—w(—L)]—c;(y+L>

B

y (s)+ccs
dse” (s)
11 4 [e2et gub—w-L) _ 1]f—LL 8 7
ffL dsew(5)+055g(s)

(A26)
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where p(L) is fixed by the normalization and the effective

potential w(y) is defined by

dU(s)
ds

The function B(y) is given by g(y) when g(y) > 0 and
B(y) = 0 otherwise.

y y
w(y)=/ dsp(s) +§C/ ds[B(s) — 11, (A27)
—L —L

7. Average Force and sum rule
The average drag force is given by

L

L
(F) =/ dyF(y)p(y) = KC/Ldy[p(y) - pg].

L —
(A28)
The constant p is
1 ,O(L) [ew(L)-Fc;L _ ew(_L)_CCL]
§e B(L) ffL dyer0)+ecy g(y)

ﬁ:

and we can rewrite the solution as

PO) _ L) wiyyru(-Ly-cer+4L) 4 o jou)—Cey
B(y)  B(L)

y
X / dseV T g(s). (A29)

Finally, to regularize the problem, we have chosen (y) =
g(y) when g(y) > 0 and B(y) = 0 otherwise.

APPENDIX B: THE DUAL PICTURE

The same mathematical problem can describe a different
physical set up. Consider a one-dimensional system and a
nonuniform potential U(y) acting in a central region only,

where F(y) = —’fi—l; # 0. The particles are subject to colored
noise and to a uniform force E. There will be a constant current,
say Jo.

The obstacle is fixed in space, represented by the force F(y).
There is a constant external field E,

. FO)+E
Y=

+ (), (BI)

where 7(t) is the standard colored noise as before. Time-
differentiating Eq. (B1), we get

y=v, (B2)
. F v(t) F+E DYV?
b= (y)v—ﬁ—l— +—=E&. (B3
T Ty T
Equivalently, we write the associated FP equation:
aP oP FOy)+E|oP 10D a
- tUvo— fo+E —=-| T tshv|P,
at ay YT av Tov[ T Jdv
(B4)
which for a stationary system becomes
apP Fy)+EJoP 10[D2a
v— + L —=—-——|——+gO|P.
ay YT av Tov| T dv
(B5)
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In nondimensional form we have

d d
ves P(y,v) +[F(y) + E]—P(y,v)
y v

o[ o
= Ca— [— + g(y)v] P(y,v). (B6)
v|ov

If one integrates over v and defines J(y) = f dvvP(y,v), one
finds

d

EJ (»)=0. (B7)

The current is, now, constant: J(y) = Jy. Let us multiply by v
and integrate Eq. (B5):

d
Eﬂ(y) —(F(y) + E)p(y) = —¢g(y)Jo,

with TI(y) = fva(y,v)dv. Let us invert the relation and
make the ansatz:

P(y,v) = pHo(y,v — u) + [p(y) — p]Hp(y,v). (B9)

Substituting Eq. (B9) in Eq. (B6) when FF =0and g = 1, we
obtain

(B8)

d
Hl(v){% — Elp(y) - ﬁ]} —(Ep = §cp)Hi(v —u) = 0,
(B10)
whose solution is
M—E[p(y)—ﬁ]=0, (B11)
dy
Ep=cup. (B12)

Now, we go back to Eq. (B8) and use the following closure
[contained already in the parametric form of the solution for
P(y,0)l:

J(y) = Jo = pu, (B13)
M) = o + 22 Bl14
(y) = pu” + 50) (B14)
So that the equation for p(y) reads
d p(y) _
=2 F E = — . B15
D B0 [F(y) + Elp(y) = —Cug(y)p (B15)

Now, such an equation is identical to the Eq. (A24), provided
we identify

E =—(c, (B16)
u=—c, B17)
E (B18)
u=—.
¢

Thus, we have shown that the equation for p(y) is of the
same type as the Nernst-Planck (NP) equation: The NP
equation assumes that the constant current Jy results from
the combined effects of a diffusive current due to the random
fluctuations(the “thermal agitation” in other words) and a
deterministic migration current due to the coupling to an
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external field E, which can be also modified by the presence
of some localized potential U = — [~ F(s)ds:

-2 ) (FO) + E)p(y),  (B19)
¢g(y)dy B(y) ~ ¢g(y)
with a space-dependent diffusion coefficient,
D(y) = 1; (B20)
¢ By

and a space-dependent mobility,

1
u(y) = 720y (B21)

Notice that this is exactly the UCNA equation for the current,
which can be derived without phase-space considerations.

PHYSICAL REVIEW E 96, 032601 (2017)

Finally, let us rewrite

d
Jo = —d—[D(y)p(y)] + u(y)
y

1 d
X - —— .
[F(y) +E 50 dy In g(y)]p(y) (B22)
There is an extra contribution from the drift stemming from
the colored noise.

Note that the mathematics is the same as for the original
problem, but the interpretation of each term is now different.
If we look at the profiles, we observe a crowding of active
particles at the front of the potential (where the derivative of
U is largest) and a depletion inside. Particle near the entrance
loose mobility and therefore crowd there. With strong activity
and sharp entrances ({ — 0 and & — 0, respectively) the
current should go to zero.
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