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We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γ B) and
study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve
the linearized Poisson-Boltzmann equation to calculate a 54 × 54 work-of-charging matrix, each entry being
the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies
interactions within patches of sites, including γ B charge pairs. We model intrinsic pK values that would occur
hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values
on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations
to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the
intrinsic pK values for isolated γ B molecules and we calculate the probabilities of leading proton occupancy
configurations, for 4 < pH < 8 and Debye screening lengths from 6 to 20 Å. We select the interior dielectric
value to model γ B titration data. At pH 7.1 and Debye length 6.0 Å, on a given γ B molecule the predicted top
occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns
will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We
illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of
effective pK values alone and estimate the extents to which γ B charge pattern distributions broaden at lower pH
and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent
γ B-γ B interactions, consideration of numerous pairs of proton occupancy patterns will be needed.
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I. INTRODUCTION

In considering interactions between proteins in solution,
one interesting feature is that many different protonation
patterns of the titratable, possibly charged amino acid residues
coexist in equilibrium [1–3]. Because its acidic and basic
residues continually exchange protons with the surrounding
solution, an individual protein molecule presents many dif-
ferent spatial patterns of positive and negative charges to
its neighbors, and the corresponding voltage patterns around
each molecule keep changing. Each possible pair of such
charging patterns can in principle give rise to a distinct spatial
and orientational dependence of the screened electrostatic
interaction between two nearby protein molecules [4–6], and
the basins of attraction and repulsive parts of the corresponding
potential energy landscape may change in depth or height,
angular and spatial extent, and number.

The probabilities of individual charging patterns on
molecules that are close enough, approximately within one
or two Debye electrostatic screening lengths, also change in
response to the altered voltages at neighboring sites on the two
surfaces [2,7–11]. Such proximity can already occur more than
20% of the time even at protein volume fractions near 1% [12]
and is of critical importance at the high macromolecular
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volume fractions in living cells, which have been estimated
to range from 0.07 to 0.40 [13].

Phase transitions are ubiquitous in the normal and patho-
logical physiology of living cells and tissues [14–19]. Many of
these transitions involve multiple chemical equilibria, such as
the protonation equilibria studied here. Such protonation and
other ligand-binding features, in solutions of proteins and other
macromolecules that undergo phase transitions, are analogous
to the simultaneous multiple chemical equilibria and phase
transitions occurring in micellar solutions, microemulsions,
and other self-associating systems [20–24]. How do the rele-
vant chemical equilibria and kinetics affect phase transitions
in macromolecular solutions?

For a protein with 20 residues that may change charge
at a particular pH, by accepting or donating protons from
its surroundings, there are 220 or about 106 such coexisting
protonation patterns. Even if most of these patterns are highly
unlikely, it still may be necessary to consider the interactions
of many different pairs of charging patterns in order to build
quantitative models of their consequences for protein-protein
interactions. For example, within a given pair of γ B molecules
at pH 7.1, the present model predicts that on each molecule,
one or more of the most frequent 100 charging patterns will
be present about 90% of the time. Thus, in order to account
for 80% of the possible pair interaction potentials between
these molecules, in principle one then needs to consider the
approximately 5050 distinct pairings that can occur between
members of these top 100 charging patterns.
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Therefore, one important element for understanding
protein-protein interactions is to know how often each charge
pattern occurs in the isolated molecules, which is the focus
of the present work. While the probabilities of each of
these charge patterns will change with increasing protein
concentration, their probability distributions for the isolated
protein molecules nevertheless form part of the groundwork
for characterizing pairwise and higher-order orientation-
dependent interactions between proteins.

In order to evaluate how often a given pattern occurs, it is
important to account for the fact that substantial electrostatic
coupling can occur between charge patterns on a single protein,
as well as between neighboring proteins, in the phenomenon
known as charge regulation. Due to these electrostatic cou-
plings, the probability of a given pattern is not, in principle,
given by the product of the probabilities for each titratable
residue to be occupied with a proton. Indeed, on a lattice
such couplings can give rise to a charge-patterning phase
transition [25].

That is, knowledge of the individual pH values at which
each titratable residue is occupied with a proton half the time
on average, called the pK1/2 values, in combination with
the Henderson-Hasselbalch dependence [26] of occupancy
on pH − pK1/2, is in principle not sufficient to evaluate the
pattern probabilities. A better description is that effective pK
values for given groups change in response to neighboring
charges [27–30]. However, because neighboring titratable site
occupancies can be substantially altered [31–34] from the
Henderson-Hasselbalch form, a more comprehensive descrip-
tion can be given by a grand-canonical distribution model
or equivalent consideration [2,7,10,11,25,29,32,33,35,36] that
incorporates screened electrostatic couplings, as we pursue
here for γ B-crystallin (Protein Data Bank ID 1AMM).

In the present model we calculate a work-of-charging ma-
trix that models screened electrostatic links between titratable
sites on the protein, which are assumed to be fixed in position
relative to the protein. In so doing it is important to recognize
that other factors can contribute that we do not incorporate,
including changes in conformation that are important in
allosteric effects and in calculations that use more microscopic
representations of dielectric properties [31,37–42], hydration
and the hydrophobic effect [43], hydrogen-bonding [44,45],
static dipole potentials [45–47], and ion binding [48], each
of which can also be expected to produce changes in local
charge patterns. We note that γ B-crystallin is believed to have
a fairly robust internal structure; for example, circular dichro-
ism measurements [49] showed no significant spectroscopic
changes between −20 ◦C and 60 ◦C, though this does not rule
out the possible role of conformational flexibility in affecting
the present model. In the larger context of protein-protein inter-
actions, we note that the work-of-charging matrix also involves
sites on neighboring proteins and itself depends on the relative
positions and orientations of the protein neighbors [10].

We focus the present model on studying the probability
distributions of the protonation patterns of an eye lens protein,
bovine γ B-crystallin (γ B). In aqueous solution, the eye lens
γ -crystallins show liquid-liquid phase separation with an
upper consolute temperature [12,50–53], a phenomenon that
can compromise transparency of the eye lens and has been
linked to cataract disease [54]. The human counterpart of

bovine γ B-crystallin, human γ D-crystallin (HGD), exhibits
many single amino acid mutations that lead to congenital
cataracts. The effects of a number of these mutations on
the phase diagrams of HGD or HGD–α-crystallin mixtures
are consistent with cataractogenesis [55–60]. These findings
motivate the present work, as an aid to building models of how
particular amino acid changes affect protein interactions, the
resulting phase diagram, and ultimately lens transparency and
the cataract.

We build our model for the probability distributions using
the notation of a previous paper [10], though it is important
to note that study of protein charge regulation has a very long
history [1,2,7,27,29,32,33,35,36,61–63] (for a recent review
see Ref. [3]) and there are other equivalent sets of notation.
Briefly, we use a linearized Poisson-Boltzmann equation to
compute a work-of-charging matrix. This matrix enables
modeling of the work required to assemble a given pattern
of charges on the protein. The linearized Poisson-Boltzmann
equation is a useful starting point for this purpose because
its linearity allows for the use of superposition in considering
the effects of many charges and the work of charging is a
symmetric quadratic form in the vectors of site charges [10].
We model the pK values of the titratable residues, with a
simplified consideration of their dielectric environments. The
combined work-of-charging matrix and pK values enter into
a grand-canonical distribution that models the relative prob-
abilities of occupancy patterns. We fix an assumed constant
interior dielectric value through comparison with existing
experimental charge vs pH data for γ B. We then use Monte
Carlo simulations and direct calculations to study the resulting
probability distributions of protonation patterns. We note that
while numerical Poisson-Boltzmann solvers are available that
provide calculations of the screened electrostatic environment
around proteins and other biological macromolecules (see,
e.g., Refs. [64–67]) and corresponding acid-base titration
characteristics [68], we developed a program with a view
towards flexibility in analyzing model systems [10], including
the protonation pattern probability distributions studied here,
and for ongoing work on protein-protein interactions.

Figure 1 sets the stage for this work, by depicting the
screened electrostatic potential that corresponds to the top
proton occupancy pattern near neutral pK, modeled to occur
about 17% of the time. Interestingly, in view of the attractive
interactions that lead to liquid-liquid phase separation of this
protein [50], the contours of zero voltage extend fairly far from
the protein, in comparison with the Debye length, here 6 Å.
For a 1:1 electrolyte in water at 298 K, a Debye length of 6 Å
corresponds to an ionic strength of 257 mM, close to that at
which the γ B phase diagram has been studied [12,50,52,69–
72]. One might expect that negative and positive patches
on neighboring molecules, separated by one or more Debye
lengths, are quite capable of creating attractions by facing one
another at relatively specific orientations.

To help study the resulting voltage variation, Fig. 1(b)
shows the sign of the potential on auxiliary spheres that were
placed over the top and bottom portions of the molecule for this
purpose, about a one-half Debye length from the surface of the
protein, with projected positions of possibly charged residues
also indicated. Figure 1(c) shows conjoined Lambert azimuthal
equal-area projections of the top and bottom auxiliary spheres,
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FIG. 1. (a) Screened potential contours produced by the charges of γ B-crystallin, for the most common protonation pattern occurring at
pH = 7.1 and Debye length 6.0 Å, corresponding to an ionic strength of 257 mM for a 1:1 electrolyte in water at 298 K: +kBT /e V (blue
with horizontal curves), 0 V (light), and −kBT /e V (red with vertical curves). Black spheres, gray octahedra, and white spheres show positive,
neutral, and negative sites, respectively. Curves on the 0 V contour are spaced by two Debye lengths from the center of the protein. The netted
surface is the low-dielectric boundary and the plain (light blue) surface just outside it is the electrolyte boundary (see Fig. 2). (b) To aid in
visualization, auxiliary spheres of radius 18.5 Å were placed over top and bottom parts of the molecule, and the potential and charges are shown
in blue (+) (dark gray and nearly black, respectively) or red (−) (potential light and charges dark gray). Neutral charges are lightest in (b). (c)
A simultaneous view of voltages around the entire protein surface can be given with the use of two Lambert azimuthal equal-area projections,
one for each of the top and bottom spheres; projected locations of amino-acid residues of possibly charged sites are indicated. The grayscale
description of (c) is like that in (b). The dashed rectangle in (c) shows the portion that is visible in (b). The top and bottom perimeter circles in
(c) are both images of the crease between the auxiliary spheres in (b). Darker curves in (b) and (c) show +kBT /e and −kBT /e V contours.

which provide a single view of the voltages around the entire
protein surface.

Thus, the electrostatic interactions between γ B molecules
can contribute to the short-range, orientation-dependent in-
teractions long known to be important for understanding
the broad widths of γ -crystallin liquid-liquid coexistence
curves and the position of the crystal solubility boundary, or
liquidus [52]. However, because the voltage patterns depend
on which γ B residues are protonated, different protonation
patterns may significantly affect the relative orientations that
lead to attraction and repulsion, much like the problems
that can occur in attempting to fit jigsaw pieces together.
Our purpose here is to build groundwork for studying the
distribution of orientation-dependent interactions that result
from probable protonation patterns.

The paper is organized as follows. We briefly recap the
relevant theory as it is presented in [10,25]. We then describe
the construction of our simplified dielectric model for γ B,
and model pK values that would occur in the hypothetical
absence of electrostatic interactions between sites, termed
the intrinsic, or pKint, values, as defined by Tanford and
Kirkwood [2]. The pKint values are functions of the geometry
of the interior dielectric environment, because of its effect
on the energy stored in the electrostatic field. We then
calculate the work-of-charging matrix as a function of the
electrostatic screening length in the solvent and the internal
dielectric environment, as input to the model grand-canonical
partition function. The resulting function gives predictions
for the charge vs pH, or titration, curve of the protein,
which we compare with existing titration [73] and isoelectric

point [74,75] data. Because the predictions depend on the
assumed internal dielectric coefficient, we make use of the
data for tuning this coefficient. We then quantify and study
the resulting probability distributions of protonation patterns.
Although very few protonation patterns occur compared to
the possible ones, we find that their probability distributions
are nevertheless broad. We study the extent to which charge
pattern probabilities deviate from the multinomial distribution
that would result from use of variously defined effective pK
values, called pKeff,α∗ below, and study how the distributions
broaden at lower pH and narrow at lower ionic strength. It
turned out, somewhat to our surprise, that seemingly subtle
changes in the work-of-charging matrix, for example, ignoring
entries smaller than 0.2kBT , can still produce changes in the
modeled rank order of protonation patterns and we analyze
why this is so. We briefly discuss possible implications for
protein interactions and refinements before concluding.

II. MODEL

A. Screened electrostatic model

As in previous work [10,25], we model the response of the
electrostatic potential φ(r) to a specified distribution of fixed
charge per unit volume ρ(r) through use of the linearized
Poisson-Boltzmann equation [76], written here for a medium
with spatially varying relative dielectric coefficient εr (r) and
Debye screening parameter κ̃(r):

∇ · [ε0εr (r)∇φ(r)] = κ̃2(r)φ(r) − ρ(r). (1)
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In Eq. (1), ε0 is the vacuum permittivity, εr (r) is the
local, relative static dielectric coefficient, φ(r) is the local
electrostatic potential, ρ(r) is the local free charge per unit
volume, and κ̃ is related to the standard Debye screening length
in water 1/κ by κ = κ̃/

√
εw, where εw is the static dielectric

coefficient of liquid water. More sophisticated models of
electrolyte solutions are needed in order to accurately model
ionic solutions that are not dilute or contain divalent ions and
explicit solvent [76–80], to incorporate important physical
effects such as finite ion size and ion-specific interactions,
including ion absorption [81–83], to include dipolar and
polarizability-related interactions [84,85], and to take account
of nonlinear dielectric response [86,87]. In the case of ion
absorption, for example, one could construct expanded grand-
canonical distribution models that would incorporate equilibria
with ions other than protons or with polar ligands (see,
e.g., [31,88]). Also, the application of Eq. (1) to molecular
length scales, on which the protein and the solvent are
heterogeneous, involves inherent problems that call for the
use of more microscopic, quantum-mechanical approaches, as
have been studied for many years (see, e.g., [37,40,89–93]
and references therein). Nevertheless, at low ionic strengths
and surface charge densities [94], Eq. (1) is a useful starting
point for investigating patterned, charge regulation-mediated
electrostatic interactions, because its linearity allows the use
of superposition in considering the effects of many charges.
Also, the work of charging a given configuration of titratable
sites may be expressed as a symmetric quadratic form in the
vectors of site charges [10].

B. Grand canonical partition function

In the present model [10], the grand-canonical partition
functionQ can be written formally as a sum over the occupancy
patterns, indexed by α, of protons on the protein

Q =
∑

α

e−	Gα/kBT

=
∑

α

ζ kα e−(�μ0·Oα)/kBT e−Wel,α/kBT (2)

in which 	Gα is the free energy of formation of pattern α, ζ =
10−pH , kα is the total number of protons bound to the protein in
configuration α, and �μ0 = (	μ0

1,	μ0
2, . . . ,	μ0

N ) is a vector
of standard chemical potential differences for the occupancy
of each site. Each 	μ0

i is related to the corresponding intrinsic
pKint,i value of a titratable site by

exp

(
	μ0

i

kBT

)
= 10−pKint,i . (3)

By the pKint,i value we mean the value of the pK that site
i would have hypothetically in the absence of electrostatic
interactions with charges on other sites and in the absence of
the electrolytes in the solvent, as in Ref. [2]. That is, it is not the
pK1/2 that would be measured as the value of the pH at which
that amino acid residue is, on average, 50% occupied, for
example, with use of appropriate nuclear magnetic resonance
(NMR) experiments. Instead, pK1/2 values emerge as a
consequence of models of the present type [2,10,29,32–34]. In

Sec. II D below we describe the model we used for estimating
the pKint,i values.

The vector Oα in Eq. (2) is the occupancy pattern in con-
figuration α, for example, {1,0,0,1,1,0,0, . . .}. The quantity
Wel,α in Eq. (2) denotes the work of charging contribution to
the free energy when the protein assumes occupancy pattern
α. The Wel,α is a quadratic form constructed from the work-of-
charging matrix W , which in this formulation is dimensionless.
Each entry Wij in W is the screened electrostatic potential
produced at site i by a unit charge at site j , multiplied by the
electronic charge e, and divided by kBT . That Wij = Wji can
be shown with use of Eq. (1) [10]. In this notation, Wel,α is
given by

Wel,α

kBT
= 1

2
(q1,q2, . . . ,qn)α · W · (q1,q2, . . . ,qn)α

= 1

2
(Qb + Oα) · W · (Qb + Oα). (4)

Here the vector (q1,q2, . . . ,qn)α denotes the actual signed
charge numbers on the protein for a specific pattern α

and Qb denotes the vector of signed, bare charge numbers
of the titratable groups, for example, −1 or 0. The bare
charge numbers are 0 for arginine, histidine, and lysine
residues, as well as the terminal amino group, and −1 for
aspartate, glutamate, cysteine, and the terminal carboxylate.
The probability of occupancy pattern α, Pα(x), is given by

Pα = e−	Gα/kBT

Q . (5)

We note that the grand-canonical partition function Q is also
called the binding polynomial [31], because it can be written
as a polynomial in powers of the proton activity ζ , as in Eq. (2).

C. Interior dielectric model and salt exclusion zone

We now describe our model for the quantities εr (r) and
κ̃2(r) that appear in Eq. (1). We use a simplified model in
which εr (r) is assumed to be a scalar that takes a low and
constant value inside the protein and a high value outside. After
constructing the grand-canonical distribution, we adjusted the
interior dielectric coefficient so as to best match the available
experimental protein net charge vs pH titration data [73,75],
as described below in Sec. II F. The value that gave the best
match to these data was εr,in = 3.0. Outside the protein, we
take a value experimentally determined for water at 25 ◦C,
εr,out = 78.5 [95]. We modeled the boundary of the low
dielectric to be a surface that is 1.4 Å outside the Protein Data
Bank (PDB) coordinates of the appropriate atoms (PDB entry
1AMM, from Ref. [96]) and a salt-exclusion zone to extend 3.3
Å beyond this boundary, in approximate accord with hydrated
radii of monovalent ions in aqueous solvent [97]. The resulting
surfaces are illustrated in Fig. 2.

D. Model for pKint values

In view of our primary present purpose of studying the
nature of the probability distributions of the protonation pat-
terns on γ B-crystallin, we adopted a simple classical approach
to modeling the pKint values. We start from tabulated pK
values in water for relevant charged groups [98–100] and then

032415-4



MODEL FOR SCREENED, CHARGE-REGULATED . . . PHYSICAL REVIEW E 96, 032415 (2017)

FIG. 2. Illustration of the dielectric and salt-exclusion zone model
for bovine γ B-crystallin, based on PDB entry 1AMM [96], rotated
and translated to the coordinate system used for numerical solution
of Eq. (1). The dark gray netted surface is the boundary of the low-
dielectric region and the light plain surface is the boundary of the salt-
exclusion zone, described in the text. Larger black and white spheres
and gray octahedra show titratable sites that are positive, negative,
and neutral, respectively, for the most probable configuration at pH
7.0, modeled to occur about 20% of the time [see Fig. 13(a)]. Smaller
dark gray spheres are locations of nonhydrogen atoms in the 1AMM
structure and smaller lighter spheres are positions of heteroatoms.

calculate the change in the integral that, in a linear dielectric,
gives the free energy stored in the electrostatic field per unit
volume [101,102], (1/2)D(r) · E(r). The integral is taken over
the volume outside spheres of radii r0 surrounding the group in
question, when water is replaced by a heterogeneous dielectric
environment like that near the surface of the protein. This
approach omits a number of factors that also affect pK values,
many of which call for molecular mechanics and/or quantum
mechanical treatment [37,39,93,103–107]. These include hy-
drogen bonding [44,45,108], bound ions, and nonlinear dielec-
tric effects [86,87] that require a different integration of E(r) ·
δD(r) than that which yields (1/2)D(r) · E(r) [86,101,102].
Hydrogen bonds can stabilize charged carboxylates [44],
among other effects, and the presence of metal or other ions,
often bound between titratable residues [109], would call for a
grand-canonical formulation that involves more exchangeable
components [88]. These phenomena are not modeled here.
In addition, there are problems involved in characterizing
dielectric response at molecular length scales [37,40,89–93],
as mentioned above. A related factor not modeled here is the
local electrostatic potential from strong static dipoles such as

backbone and side-chain amide groups [45–47,110]. There
are also solvent effects that can be studied with liquid-state
theory approaches [111–113]. However, the present approach
is useful as a first approximation; its value may be illustrated,
for example, by its remarkable ability to help understand the
dependence of salt solubilities on a solvent’s static dielectric
coefficient [97]. The resulting modeled contribution to the
change in pK, 	pK, can be written as

	pK ln(10) = ± 1

2kBT

∫∫∫
r>r0

D(r) · E(r)dV

− q2

8πε0εwr0kBT

(if in uniform solvent) = ± q2

8πε0r0kBT

(
1

εr

− 1

εw

)
. (6)

In Eq. (6), the + sign is appropriate for groups that become
charged when they are not occupied by a proton, that is, for
glutamate, aspartate, cysteine, and the terminal carboxylate,
while the − sign is appropriate for groups that become charged
when they are occupied by a proton, that is, for lysine, arginine,
histidine, and the terminal amino group. To evaluate the needed
integral in Eq. (6), as described in detail in the Appendix,
we took advantage of the fact that a rough approximation to
the shape of our more complicated dielectric model can be
constructed by conjoining two spheres, each of radius 15.5 Å.
Then we used Kirkwood’s analytical solution for the potential
due to a charge placed in a low-dielectric sphere, near its
surface [61]. We placed the charges a depth of 1.4 Å inside
this sphere. We used Gauss’s theorem to convert the volume
integral of (1/2)D · E in Eq. (6) to a surface integral over the
small sphere of radius r0; symmetry then permits the needed
integral to be converted to a one-dimensional integral, also
given in the Appendix, that we evaluated numerically.

To estimate appropriate values of an effective r0 for use in
Eq. (6), we used a facility within the quantum-chemistry pack-
age GAUSSIAN09 that provides for estimating recommended
radii for self-consistent reaction field calculations [114]. For
each titratable side-chain group and for the terminal amino
and carboxyl groups, we constructed the test molecules listed
in Table I, which included the side-chain titratable group in
its charged form, and calculated the r0 values in Table I from
repeated runs, for which the test ions were surrounded by a
medium having the static dielectric coefficient of water. We
first used Hartree-Fock calculations with the 6-31G(d,p) basis
set to optimize the test molecules in the presence of implicit
solvent. Vibration frequency analyses were performed on the
optimized structures to determine whether they represented
true minima. No structure exhibited imaginary frequencies.
We did not perform a conformational analysis of the test
molecules or optimize them in their protein environment,
for simplicity and consistent with the fact that the present
model does not incorporate cross-talk between conformational
changes and charge regulation, as noted in the Introduction.
We performed r0 calculations at least 10 times for each of the
test molecules, which yielded standard deviations (Table I) that
ranged from 0.1 to 0.2 Å. For modeling the solvent, we used the
GAUSSIAN09 program’s default implementation of the integral
equation formulation of a polarizable continuum model. The
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TABLE I. Estimated pKint values used (see the text). Corresponding model pKeff,α∗ values for individual residues are given in [122] for α∗
equal to the top pattern at pH 7.1.

r0±s.d.a

Residue Abbreviation (Å) pKH2O 	pK pKint,ε=3 No.

arginine Arg(R) 3.68 ± 0.2 12.48 −1.18 11.30 ± 0.2 20
aspartate Asp(D) 3.31 ± 0.15 3.86 +1.55 5.41 ∓ 0.2 13
cysteine Cys(C) 3.35 ± 0.2 10.50b +1.50 12.00 ∓ 0.2 3
glutamate Glu(E) 3.31 ± 0.15 4.25 +1.55 5.80 ∓ 0.2 9
N -glycine Gly(G) 2.65 ± 0.2 7.60 −2.72 4.88 ± 0.5 1
histidine His(H) 3.65 ± 0.2 6.00 −1.20 4.80 ± 0.2c 5
histidine H14 7.05d 1
histidine H53 6.04d 1
histidine H84 6.91d 1
histidine H117 6.37d 1
histidine H122 6.32d 1
lysine Lys(K) 2.65 ± 0.2 10.70 −2.72 7.98 ± 0.5 2
C-tyrosine Tyr(Y) 3.31 ± 0.15 3.40 +1.55 4.95 ∓ 0.2 1

aIons used in GAUSSIAN09 calculations with H2O solvent were methylguanidinium(Arg); acetate[Asp, Glu, Y174(carboxyl)]; ammonium[Lys,
G1(amino)]; mean of imidazolium, 4-methyl imidazolium(His); and methanethiolate(Cys).
bSee the text.
cValue not used; see the text.
dFrom PROPKA 3.1 [115–118]. Note that these values are not intended as pKint values; see Sec. II F for discussion.

needed pKH2O values were estimated with use of the tables
given in the work of Dawson et al. [98], Ellenbogen [99], and
Serjeant and Dempsey [100]. Because this work is spurred
by our interest in building models for γ B-γ B interactions
in the range 4 < pH < 8, we did not include the titration
of tyrosine side chains, which typically occurs in the range
10 < pH < 10.3 [110].

The resulting pKint values and uncertainties are listed
in Table I. The values calculated for the charged sites just
inside the low-dielectric sphere are designated as pKint,ε=3.
Here we are anticipating the fact that, as explained below,
the grand-canonical distribution model was used to predict
titration curves as functions of ε, which were then compared
with experiment to settle on an assumed, continuum model
internal static dielectric coefficient value ε = 3.

However, when carrying out this process, we found that
there was a discrepancy between the modeled titration curve
and the data, displayed in Fig. 4(a) below, which suggested that
our modeled values for the histidine pK were lower than would
be compatible with the titration curve [73] and the measured
isoelectric point of bovine γ B-crystallin, pH = 7.8 [74,75].
Therefore, as input to the grand-canonical simulations we
instead tried using the PROPKA (version 3.1) web server
estimates [115–118] to replace the initially estimated histidine
pKint values for γ B, again with use of the PDB entry 1AMM,
while leaving all the other pKint values to remain estimated
by the D · E integral method described above. The resulting
PROPKA histidine pK estimates are listed in Table I. The com-
parison of the modeled titration curve with the data, for various
assumptions about the inner dielectric coefficient and the
histidine pK values, is described and shown in Sec. II F below,
in connection with Fig. 4. As the authors emphasize [115–118],
PROPKA uses a phenomenological approach to achieve speed
and scope in estimating pK values for a large variety of
proteins. It incorporates factors that the present approach

does not, including hydrogen bonding and varying degrees of
penetration of residues into the interior. For histidines PROPKA

starts from a higher model pK of 6.5 than the 6.0 initially used
here and it assigns smaller pK reductions to H14, H84, H117,
and H122 than the Table I 	pK of −1.20, due to their varying
degrees of penetration. PROPKA also predicts that hydrogen
bonds raise the pK values of H14, H53, and H84, by from 0.6
to almost 0.9 pK units.

The Table I cysteine pKH2O, 10.5, chosen to be near the
pK values for methanethiol (10.33) and ethanethiol (10.5
and 10.61) [100], leads to pKint values of 12, well above
the 9–9.5 typical of protein cysteines [110]; indeed, many
proteins exhibit cysteine pK1/2 values much less than 9,
due primarily to hydrogen bonding [119] and somewhat to
nearby amide dipole potentials [47,119]. We did not alter the
present approach given our focus on 4 < pH < 8, although
better modeling of cysteine pK values is of interest, given the
importance of cysteine oxidation for gamma crystallins and
other lens proteins [54–56,120,121]. In particular, the present
model does not attempt to model hydrogen bonding of C18
with both C78 and S20, predicted by PROPKA to lower the C18
pK to 6.88. We included only C15, C18, and C22 in our model,
which appear less buried than C32, C41, C78, and C109.
However, due to the high model cysteine pKint, C15, C18,
and C22 were charged only rarely in simulations, at higher pH
values, as tabulated in the Supplemental Material [122].

We will find it instructive to study the ability of “effective”
pK values, pKeff,α∗ , defined below, to model the probability
distributions of the protonation patterns. These effective pK
values are closely related to those used in Refs. [27–29], among
others; briefly, the difference is that here we study the pKeff,α∗
with respect to particular choices α∗ of on-or-off charge
patterns Qb + Oα∗ , as contrasted with patterns of average
residue charge values at a given pH, Qb + 〈Oα∗ 〉 in the present
notation, as analyzed, for example, in Ref. [29].
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In the present notation, the pKeff,α∗ are expressed as
follows [27]. For any particular protonation pattern α on the
protein, the numerator of Eq. (5) can be written

QPα ≡ Q̃α = 10(pK−pH)·Oα e−q	
α Wqα/2, qα = Qb + Oα,

(7)

in which Qb is the vector of bare charges of the titratable
residues; pK, pH, and qα also denote vectors; and the
symmetric work-of-charging W is defined above Eq. (4). The
idea is now to use a chosen configuration Oα∗ , which could
be, for example, the most probable configuration at a certain
pH, as a reference configuration; the algebraic development
given here also applies for the reference configuration choice
〈Oα〉, as used in Refs. [27–29]. The probabilities of other
configurations can now be expressed in terms of how much
their occupancy vectors differ from that of the reference
configuration. For configuration α, the occupancy vector is
Oα = Oα∗ + (Oα − Oα∗ ) = Oα∗ + δOα , where δOα = Oα −
Oα∗ . Letting qα∗ = Qb + Oα∗ and qα = qα∗ + δOα , one finds

Q̃α = 10(pK−pH)·(Oα∗ +δOα )e−(qα∗ +δOα )	W (qα∗ +δOα )/2

= 10(pK−pH)·Oα∗ e−q	
α∗ Wqα∗ /210(pK−pH)·δOα

× e−(2δO	
α Wqα∗ +δO	

α WδOα )/2.

The first two multiplicative factors in the above expression
are common to all Q̃α . In the expression for the probabilities
Pα , these factors cancel with the same common factors in
the denominator, Q. Therefore, we have Pα = Q̃α∗ (α)/Qα∗ , in
which we define Q̃α∗ (α) and Qα∗ via

Qα ≡ 10(pK−pH)·Oα∗ e−q	
α∗ Wqα∗ /2Q̃α∗ (α),

Q ≡ 10(pK−pH)·Oα∗ e−q	
α∗ Wqα∗ /2Qα∗ .

With these definitions,

Q̃α∗ (α) = 10(pK−pH)·δOα e−(2δO	
α Wqα∗ +δO	

α WδOα )/2

= 10(pK−pH)·δOα e−(Wqα∗ )·δOα e−δO	
α WδOα/2

= 10(pK−pH)·δOα 10−(Wqα∗ )·δOα/ ln 10e−δO	
α WδOα/2

= 10[(pK−Wqα∗ / ln 10)−pH]·δOα e−δO	
α WδOα/2. (8)

With δqα = qα − qα∗ = δOα , Eq. (8) can be written as

Q̃α∗ (α) = 10[(pK−Wqα∗ / ln 10)−pH]·δOα e−δq	
α Wδqα/2. (9)

From a comparison of Eqs. (7) and (9), it is natural to define a
vector pKeff,α∗ of pKeff,α∗ values by

pKeff,α∗ = pK − Wqα∗/ ln 10, (10)

so that

Q̃α∗ (α) = 10(pKeff,α∗ − pH)·δqα e−δq	
α Wδqα/2, (11)

Pα = Q̃α∗ (α)

Qα∗
with Qα∗ =

∑
α

Q̃α∗ (α). (12)

Equations (10)–(12) correspond to the combination of
Eqs. (2)–(4) of Ref. [27], as expressed there in terms of
a particular constellation of charges (here symbolized by
the vector qα∗ ). As indicated above, except by its use of
a particular on-off pattern α∗, Eq. (10) is also related to

Eqs. (1a), (1b), and (16) in Ref. [29], where the average
pH-dependent approach introduced in Ref. [27] is expressed
and its mean-field-approximation nature is elucidated. In
this connection we note that the use of pKeff,α∗ below, to
study its capability to approximate probability distributions of
protonation patterns, has a different focus than the study of
the reduced-site approximation also introduced in Ref. [29];
that approximation becomes better as the criteria to regard
less-labile sites as fixed become progressively more strict.
Reference [29] demonstrates that the reduced-site approxi-
mation is more effective than the mean-field approach for
representing the average occupancy states of particular sites,
while typically more efficient computationally than using the
exact expressions.

Equation (10) expresses the fact that for configurations that
are similar to the chosen configuration α∗, the effective pK
values are typically biased by charges qα∗ on neighboring
sites. These charges, in turn, produce voltages that bias the
occupancy of a given site. Thus, at a given pH, one expects
that the site occupancies can be fairly well described by
pKeff,α∗ values for a well-chosen α∗, say, the most common
configuration. The extent to which this is not the case is clearly
a function of the quantities e−δq	

α Wδqα/2, according to Eqs. (11)
and (12). We will find below that a given set of pKeff,α∗ values
accurately represent only part of the probability distribution
of the protonation patterns at a given pH, precisely because of
this latter factor.

E. Calculation of the potential and work-of-charging matrix

The numerical methods we used to calculate the potential
are those described previously [10]. We used grid sizes from

0.3 to 0.6 Å, the domain was 100 × 100 × 120 Å
3
, and

the protein was placed at its center. We used the Neumann
boundary condition that the normal component of the field is
zero there. While we expect that a more accurate boundary
condition would be that a linear combination of the normal
field component and the potential would be zero, for the Debye
lengths investigated here, the zero-field condition suffices. To
calculate the ith row of the work-of-charging matrix W , a
charge is placed at site i; the potential at site j then gives the
entry wij . Each such work-of-charging matrix was symmetric,
providing an important check on the calculation.

We note that there are also self-energies associated with
the interaction of each charge with its counterion cloud. In
principle, this factor also changes the effective pK of a site,
above and beyond the fact that the site is near a dielectric
boundary. We calculated the magnitudes of these effects
from our numerical solutions of Eq. (1), by evaluating the
potential at a given charged site produced by the nearby net
charge within its surrounding, screening ionic atmosphere. The
magnitudes we calculated for this effect were very uniform
and would produce changes in the given pK on the order
of only ±0.1 pK units, which we regard as insignificant
compared with the uncertainties in the modeled pKint values
themselves. Accordingly, we simply set the diagonal entries
of the work-of-charging matrices to 0 for further calculations.

Figure 3 illustrates a work-of-charging matrix calculated in
this fashion. To find a permutation of the residue order that
would yield the approximately block-diagonal forms shown
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FIG. 3. (a) Approximate block-diagonal form of the dimensionless work-of-charging matrix W for interior dielectric coefficient 3 and
Debye length 6.0 Å. The Wij magnitude categories are as follows: white < 0.05 � dark purple quarter circles < 0.1 � purple half circles
< 0.2 � blue 3/4 circles < 0.4 � green triangles < 0.8 � yellow squares < 1.6 � orange pentagons < 3.2 � red circles. The matrix includes
all 54 titratable residues used in the present model, which as noted in the text omits the tyrosine residues and four of the cysteine residues; the
entire protein contains 174 residues. Designations for the 54 residues considered alternate between left and right (and top and bottom) margins.
(b) Cylinders with radii proportional to Wij mapped onto the PDB 1AMM structure of γ B-crystallin. The Wij magnitude categories are as
follows: 0.4 � green cylinders with three gaps < 0.8 � yellow cylinders with two gaps < 1.6 � orange cylinders with one gap < 3.2 � red
cylinders. (c) Lambert projections with potential and charges indicated as in Fig. 1(c). Groups of titratable sites participating in approximate
blocks of W are circled in black and numbered in (c) and indicated by black squares in (a). Group numbering corresponds to the order of sites
in W in Fig. 3(a), from top to bottom, and group numbers are those to which Figs. 7 and 8 refer. In (b) and (c) the protonation configuration is
that modeled to be the most common one at pH 7.1.

in Fig. 3, we used simulated annealing, with an objective
function that was linearly proportional to the distance of (the
symmetric) work-of-charging entries from either the diagonal
or the upper right or lower left corners. On repeated runs,
this yielded a robust grouping of sites. While we grouped
the sites in this fashion in order to identify patches of residues
predicted by the model to be more highly correlated, we left all
entries intact for computing the partition function. That is, this
grouping does not represent a block-diagonal approximation
method, an avenue that has been pursued by a number of
investigators (see Ref. [123] and references therein).

Figure 3(a) displays an approximate block-diagonal form
of the work-of-charging matrix W , for the adopted inner
dielectric value εin = 3.0. The symbol code for Wij magnitude
categories is given in the caption, ranging from white for
entries less than 0.05kBT /e to red circles for entries greater
than or equal to 3.2kBT /e. The prominent entries adjacent to
the main diagonal show a high degree of charge pairing, long
noted to occur for γ -crystallins [124]. The 0.05 lower cutoff is
close to the value below which we observed very little change
in the order of probabilities of the protonation patterns, if
smaller entries were ignored [see Fig. 10(a)]. Residue identities
are indicated on the borders of Fig. 3(a). A perspective view
of the work-of-charging matrix of Fig. 3(a) is given in Fig. 2
of the Supplemental Material [122]. Figure 3(b) displays the
work-of-charging entries in the form of line segments that link
the titratable groups on the protein, using the same symbol
code as in Fig. 3(a). Figure 3(c) shows labeled sets of titratable
sites, circled in black, that participate in approximate blocks
of W , with use of the same projection as in Fig. 1(c). The

corresponding blocks are outlined by the thick black squares
in Fig. 3(a). In addition, prominent charge pairs are circled in
purple (lighter) in Fig. 3(c). Tables of the work-of-charging
matrices we calculated for Debye lengths 6, 12, and 20 Å are
given in Figs. 6–11 of the Supplemental Material [122].

F. Calculation of the grand-canonical distribution function and
the protonation pattern probabilities

We performed Metropolis Monte Carlo simulations that
included all 54 sites of the present model to determine the
grand-canonical partition function (GCPF) and the associated
statistics of the distributions of protons on the protein.
Protonation pattern statistics were studied using Monte Carlo
runs of 108 iterations. We determined GCPF vs pH in
0.1 pH increments by finding top protonation configuration
probabilities in 106 iteration runs and using Eq. (5) with
that configuration’s 	Gα . While the results given here were
calculated from the simulations, it is convenient to note that in
the Monte Carlo simulations, many of the residues, primarily
the arginines with the highest pKeff,α∗ values, never changed
their occupation states at some of the pH values in the range
of primary interest here, 4–8, or did so very few times, even
in 108 iterations. A table of the number of times each residue
switched protonation state, as a function of pH, and a table
that includes individual pKeff,α∗ values appear as Figs. 4 and 5,
respectively, in the Supplemental Material [122]. Therefore, to
speed calculations, it can be convenient to omit such residues
from calculation of the partition function, as was done in
the reduced sites approximation of Ref. [29], and with fewer
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FIG. 4. Selection of interior dielectric coefficient and pK values
through comparison of modeled titration curves with experiment.
The experimental data [73] are shown by the labeled curve. The
work-of-charging matrix W was calculated as described in the text,
for different choices of εin. (a) Calculated titration curves when all
pKint,εin values were calculated according to the D(r) · E(r) integral
method described in Sec. II D, for the same εin values used for solution
of Eq. (1) to yield the matrix W . (b) Calculated titration curves when
all but the histidine pKint,εin values were estimated with the integral
method, as functions of εin, while PROPKA 3.1 values were used for
histidine (Table I) pKint values (see the text). In (b) the red (bold)
εin = 3 curve is that of the model adopted for further study of the
probability distributions.

titratable sites, about 25 or 30, the model partition function Q
can be evaluated exactly. By either method, once Q is known,
the probability of protonation pattern α is then given by Eq. (5).
Likewise, the average number of protons 〈n〉 on a protein can
be found from

〈n〉 = ζ

Q
∂Q
∂ζ

= ∂ lnQ
∂ ln ζ

, (13)

in which ζ = 10−pH.

Titration curves calculated in this manner are shown in
Fig. 4. The experimental data [73] are shown by the black curve
in each panel. These data were obtained with use of an aqueous
100 mM potassium chloride solvent, corresponding to a Debye
length of 9.6Å, the value we therefore used in the 54 solutions
of Eq. (1) for each choice of εin, to generate the matrices W

needed for the comparisons shown in Fig. 4. Figure 4(a) shows
the calculated titration curves when the pKint,εin values were
calculated according to the D · E integral method described
above. Note that in this case both the work-of-charging matrix
W resulting from application of Eq. (1) and the pKint,εin values
resulting from the first two lines of Eq. (6) are functions of the
interior dielectric coefficient value εin and were calculated as
input to the GCPF simulations for the values εin = 2, 4, 8, and
12. Therefore, the calculated pKint,εin values relevant to the
curves in Fig. 4(a) are not those listed in Table I for εin = 3.
In Fig. 4(a) each test model titration curve predicts a lower
isoelectric point (pI) than that observed experimentally for
γ B-crystallin, pI = 7.8 for the native protein [74,75], though
in Ref. [74] a minor component was also observed at a lower
pI of 7.3, a component that was sensitive to the presence of
reducing agents [74]. Also, note that bovine γ B-crystallin was
termed γ -II at the time of publication of Refs. [74,75].

In addition to the purpose of studying the probability
distributions of the protonation patterns, we have a goal
of modeling small-angle neutron scattering data from γ B-
crystallin solutions in the pH range between 4.5 and 7.1, and as
a preliminary step want to create a charge-regulation model in
a pH range that spans these values and reproduces the observed
isoelectric point. Therefore, as described above, we used
the PROPKA estimates for the needed histidine pKint values,
while continuing to use the D · E integral procedure for the
other residues. Figure 4(b) shows the resulting model titration
curves. Although there is clearly a range of εin values that could
be used and there is room for improvement, the highlighted

(a) (b)

− −−
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−

(
)

−

−

−

−

(
)

FIG. 5. Protonation patterns that have opposite net protein charge readily occur at pH 7.1. In both panels, log10 P is plotted vertically for
the most prominent pH 7.1 configurations that together account for over 97% of the configuration probability. (a) The net protein charge of
each configuration is plotted horizontally. Line segments join configurations that can be transformed into one another with a single-residue
protonation switch. (b) (i) The horizontal coordinate of the yellow-striped–clear boundary is the sum of the probabilities of that configuration
and more common ones, that is, their cumulative probability. (ii) The horizontal coordinate of the blue–yellow-striped boundary is the square
of the same cumulative probability. The blue–yellow-striped boundary estimates the fraction of pairs of neighboring proteins, both molecules
of which have one of the configurations down to a given log10 P level; this estimate neglects biasing of pattern probabilities due to protein
proximity.
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red curve, with W and nonhistidine pK values generated using
εin = 3.0, provides a relatively good match to the experimental
titration curve in the range 4 < pH < 8 of particular interest
and we took it to be sufficient for studying the general nature
of the protonation pattern probability distributions. We did so
despite the fact that the PROPKA estimates include a model of
charge-charge interactions [117] and therefore are not intended
to be intrinsic pKint values as they are used here.

We anticipate that as NMR assignment and titration data
become available for γ B-crystallin, it will become possible
to test and refine the present model in much more detail.
Accordingly, we postponed detailed study of using different
histidine pKH2O values, which are expected to depend on their
tautomeric states [125], in addition to the possible hydrogen
bonding, dipolar potential, and other effects mentioned above.

The value εin = 3.0 of the model we use here is com-
patible with calculations of continuum-model static dielectric
coefficients of 2–4 for interior regions of many proteins and
with measurements of dry protein powders [90,126–129]. The
quoted range is approximate, depending on the protein and
the method of calculation, and represents an ongoing area of
investigation, as noted above [92]. Recent analyses of NMR
chemical shifts within proteins, in particular their dependence
on modeled local electric fields, found that values of εin near
3 gave the best matches to data [130,131].

III. PROBABILITY DISTRIBUTIONS
OF PROTONATION PATTERNS

A. Features of the distributions at constant pH

In this section we address the following questions. How
broad are the distributions at a given pH? How different
are these distributions from the multinomial distribution that
would occur if the off-diagonal work-of-charging entries
were all zero? What simple approximations provide good
quantitative agreement with the exact model probabilities?
How different are the patterns of surface voltage that cor-
respond to probable protonation patterns? In order to study
these questions, in Figs. 5, 7, and 8 we plot the base-10
logarithm of the modeled probability of each protonation
pattern vertically vs its net charge. In each figure, the line
segments join two configurations that differ by a single switch
in proton occupancy. We call such configurations adjacent. In
addition to giving a visual picture of the protonation pattern
probabilities and the possible single-step transitions between
them, these and related diagrams can help to study how pattern
probabilities are distributed with respect to factors that can
affect protein-protein interactions, here net charge.

Figure 5 shows that γ B protonation patterns that have both
positive and negative net protein charge readily occur at pH
7.1. Figure 5(a) shows the most prominent pH 7.1 config-
urations that together account for 97% of the configuration
probability.

In Fig. 5(b) the cumulative probability down to a given
level is plotted horizontally as the curve on the far right,
the boundary of the striped yellow region. This curve, taken
together with Fig. 5(a), shows that each of the topmost 70% of
the configurations has a non-negative net charge. However,
below that level quite a few pH 7.1 configurations have
net negative charge. Because oppositely charged proteins are

more likely to exhibit attractive interactions, Fig. 5 gives
rise to the interesting possibility that at high concentrations,
where proteins have many near neighbors, the probability
distributions of net charge may even become bimodal. In this
work we do not analyze the biasing of the distributions because
of protein proximity.

The square of the cumulative probability is filled in blue
(dark) in Fig. 5(b). It provides an estimate of the fraction
of pairs of neighboring proteins, both molecules of which
have a configuration with a probability above a given level.
This estimate again neglects biasing of probabilities due to
protein proximity. The blue-yellow boundary suggests that
close pairs of proteins, both of which have net non-negative
charge, will account for only the top half of neighboring protein
pairs. Also, to account for about 80% of the configuration
pair types, configurations that range down to those that
occur only one one-thousandth of the time must be included.
Thus the blue-yellow boundary gives a rough guide to how
many configurations to include in a model of electrostatic
interactions for this protein.

Figure 6 compares the voltage patterns around the 12 most
probable proton configurations at pH = 7.1 and Debye length
6 Å. Residues that have gained or lost protons, with respect
to the next more common configuration, are shown by blue
(darker) and red (lighter) arrows, respectively. At this pH,
histidine protonation switches are modeled to account for the
first 20 patterns. It is very interesting that as a consequence of
the majority of these switches, the connectivity of the positive
[blue (darker)] and negative [red (lighter)] potential regions
on the projection spheres also changes, much like straits and
isthmuses in continental drift. Thus one might expect that in
the presence of neighboring proteins that also have charged
patches, the ease of reorientation of each protein could depend
on voltage channels that open and close, as each of their pro-
tonation configurations changes. The similarity of many of the
voltage patterns that result from different protonation patterns,
illustrated in Fig. 6, suggests that larger classes of such pairs
may be sufficient for creating accurate models of the relevant
pair potentials. Thus a very interesting question is how best to
construct a good coarse-grained level of detail in the protona-
tion pattern distributions in order to model protein interactions
accurately. In the present work we do not focus on the protein
interaction consequences of the patterns shown in Fig. 6.

We now study the origins of the switching pattern shown
in Fig. 5(a) in more detail, in a residue-by-residue manner.
Each line segment in Fig. 5(a) can be identified with the
particular residue that gained or lost a proton. The probabilities
of protonation patterns reflect both the affinity of each residue
for protons and the correlations between sites that are strongly
affected by their mutual electrostatic interaction.

The quantitative consequences are illustrated in Fig. 7.
If two residues are uncorrelated, as are H122 and H84,
the change in the pattern probability when one of them
switches protonation state will not depend on the state of the
other. Because their occupation probabilities are essentially
independent, when H122 changes its charge, the logarithm
of the pattern probability will change by a given amount that
does not depend on whether H84 is protonated. Thus, the slope
of the line segment that links H122-adjacent patterns (purple
solid line) will not depend on the state of H84 and vice versa. In
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FIG. 6. Lambert projections, with potentials and charges indicated as in Fig. 1(c), for the 12 most probable configurations at pH = 7.1
and Debye length 6 Å, in order of probability (see Table II). Residues that have gained or lost a proton, with respect to the more common
configuration that is adjacent in order, are shown by blue (darker) and red (lighter) arrows, respectively. For many protonation switches, positive
[blue (darker)] and negative [red (lighter)] voltage regions change connectivity.

contrast, if two sites are strongly correlated, their protonation
probabilities are no longer independent and the corresponding
slopes that link adjacent configurations will depend on the
protonation of the second residue.

Consider Figs. 7(a) and 7(b). In Fig. 7(a), because residue
H117 is uncorrelated with residues H122, H84, and H14,
protonating H117 simply translates (red short-dashed lines)
the line segments for switches of the three other residues. In
Fig. 7(b), because E120 is in residue group 12, as is H122
[see the lower right corner of Fig. 3(c)], H122-adjacent pattern
probabilities change in different ways that depend on the state
of E120.

If the work-of-charging matrix were diagonal, the distri-
bution of protonation patterns would be multinomial and a
translation-without-distortion property would hold exactly for

all line segments in a diagram such as the ones in Figs. 5, 7,
and below in Fig. 8. Thus the deviations from congruence of
residue-switch polygons in the coordinates (net protein charge
log10 P ) display the degree to which parts of the protonation
pattern distribution differ from multinomial. We note that in the
present work the choice of net charge on the horizontal axis
underlies this polygon translation property, simply because
the net charge is here assumed to be solely due to protonation
switches. Clearly, if ion absorption played a significant role or
if other coordinates were used in place of or in addition to net
charge, such as the percentage of the surface that has a positive
voltage, a more complex picture would result.

Figure 7(c) focuses on the configurations in the lower, eight-
vertex polygon in Fig. 7(b). It illustrates the deviation of the
probabilities calculated from the full model from those of the

TABLE II. Occupancies of the residues that switch protonation states in the top ten configurations at pH 7.1 (see also Fig. 6). Residues
switch in the order H122, H84, H14, H117, and H53, consistent with increasing |pKeff,α∗ − 7.1| (see the text).

Configuration rank

Residue 1 2 3 4 5 6 7 8 9 10

H14 1 1 1 0 1 1 0 1 0 1
H53 0 0 0 0 0 0 0 0 0 1
H84 1 1 0 1 0 1 1 1 0 1
H117 0 0 0 0 0 1 0 1 0 0
H122 1 0 1 1 0 1 0 0 1 1
probability 0.165 0.106 0.084 0.060 0.054 0.045 0.039 0.031 0.030 0.026
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FIG. 7. (a) Because H117 is only weakly linked to other residues [see Fig. 3(c), group 11], when H117 switches charge (red short-dashed
lines), the eight-vertex polygon representing the possible switches of H122 (purple solid lines), H84 (blue dash-dotted lines), and H14 (green
long-dashed lines) undergoes translation with very little distortion (see the text). (b) Because E120 and H122 interact strongly, when E120
changes from charge −1 to 0 the H122 switching segments markedly change slope, distorting the same polygon. (c) Further analysis of the
changes in (b), by comparing the full model probabilities with those of a Henderson-Hasselbalch approach. Agreement would correspond to
all points being on the solid diagonal line. (c) Illustration that the E120 switch markedly alters some probabilities from Henderson-Hasselbalch
values (see the text).

Henderson-Hasselbalch approximation, in a log-log plot. The
blue closed circles compare these two probabilities using the
topmost configuration as the reference (α∗ = 1) for calculating
pKeff,α∗ values in the Henderson-Hasselbalch approximation.
In this case the Henderson-Hasselbalch probability of config-
uration 72, which is found by a direct single-proton switch
from configuration 1, agrees with the probability predicted by
the full model, together with the configurations in its attached,
translated blue-green polygon, namely, 117, 154, and 242 [see
Fig. 7(b)], while the other four configurations (27, 38, 47,
and 78) have probabilities that are 10 times those predicted
by the Henderson-Hasselbalch model. In contrast, if α∗ = 2,
the open red circles show that the two methods of estimating
probability agree for configurations 27, a direct switch from
2, together with 38, 47, and 78, while the other four no longer
agree. Because E120 is in the same group as H122, there is no
reference state for which all of the pattern probabilities can be

computed with use of the Henderson-Hasselbalch approach.
Indeed, the factors e−δq	

α Wδqα/2 in Eqs. (10)–(12), in which
the vectors δqα depend on both α and α∗, together with the
existence of nonzero off-diagonal elements of W , imply that,
in general, some full GCPF pattern probabilities will differ
from Henderson-Hasselbalch ones, regardless of the choice
of α∗. Some individual residue protonation probabilities must
then also differ from Henderson-Hasselbalch values. This can
occur whether or not the residue is charged as it is in α∗; this
can be shown by expressing individual residue protonation
probabilities as sums of the Pα of Eq. (12) over the appropriate
patterns α, the key point being that each summand can carry a
different factor of e−δq	

α Wδqα/2.
Figure 8 is a larger-scope version of the translating polygons

picture. In the present γ B-crystallin model, at pH 7.1 the
switching of protonation states of the five histidines accounts
for a large fraction of the topmost protonation configurations of

FIG. 8. (a) Most common 32-vertex polygon representing possible switches of all five histidine residues at pH 7.1; H53 switches (orange
dotted lines) are shown as well as the H122 (purple solid lines), H84 (blue dash-dotted lines), and H14 (green long-dashed lines) depicted in
Fig. 7. (b) The 32-vertex polygon of histidine switches that occurs under the condition that E7, a neighbor of H14, has gained a proton to
become neutral. The positively charged state of H14, which had been stabilized by a neighboring negative charge, is now less probable than
its neutral state and the green long-dashed segments have negative slopes, while the others retain their slopes. Note the change in the vertical
scale. (c) Comparison of probabilities from the full model and a Henderson-Hasselbalch approach for the topmost 32-vertex polygon in (a)
(black squares), using α∗ = 1, and the choices α∗ = 1 (blue closed circles), α∗ = 4 (red open circles), and α∗ = 48 (purple open squares) for
the polygon in (b). The diagonal solid line is that of agreement between the two methods.
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FIG. 9. (a) Percentage deviation of the Henderson-Hasselbalch probabilities of the top-ranked 200 configurations from those of the full
model at pH 7.1. Panels (a)–(c) all use α∗ = 1 for pH 7.1 to determine pKeff,α∗ values for use in calculating Henderson-Hasselbalch probabilities.
(b) Histogram of the same deviations, for the top-ranked 1000 configurations at pH 7.1. (c) A log-log comparison of the top-ranked 1000
configuration probabilities from the full model with the Henderson-Hasselbalch probabilities. Note the clustering along diagonal lines. (d)
Similar percentage deviations of the top-ranked 200 configurations at pH 4.5. Panels (d)–(f) all use α∗ = 1 for pH 4.5 to determine pKeff,α∗
values for use in calculating Henderson-Hasselbalch probabilities. (e) Histogram of the deviations at pH 4.5. (f) A log-log comparison of the
top-ranked 1000 configuration probabilities; note the changed scales.

the entire protein. Thus for this pH it is interesting to construct
sets of 32-vertex polygons, in which the vertices represent all
of the 25 histidine protonation patterns that occur for a given
configuration of all the other residues. Figure 8(a) shows the
topmost such polygon.

The entire probability distribution of protonation patterns
can be represented as the family of all such 32-vertex polygons;
each possible pattern belongs to just one such polygon.
Figure 8(b) illustrates the distortion of the topmost polygon
that results when residue E7, strongly coupled to H14, switches
protonation. It is now harder for H14 to become protonated,
which is reflected in the fact that the slopes of the green
long-dashed segments that represent the H14 protonation
switches become smaller; in this case they go from positive to
negative. As in Fig. 7, Fig. 8(c) shows that when E7 switches,
the Henderson-Hasselbalch approach does not work well for
the resulting polygon, even though it does work well for the
topmost polygon. The choice α∗ = 48, suggested by the fact
that it is the topmost configuration in Fig. 8(b), produces a
linear arrangement that is parallel to but displaced from the
line of agreement.

Figure 9 compares full model configuration probabilities
with those calculated using pKeff,α∗ values, at pH 4.5 and 7.1.
Figures 9(a), 9(b), 9(d), and 9(e) show that a large number of
the configurations have quite different probabilities from those
calculated using pKeff,α∗ values alone, due to linkage between
groups of titratable residues. Because the protein becomes
more highly charged as pH is decreased (see Fig. 4), it is

natural to expect that the broader distribution of probabilities
relative to the Henderson-Hasselbalch approximation may be
associated with this increased net charge. Also, there might be
more charged residues at the lower pH, which might bias the
probabilities from Henderson-Hasselbalch values.

However, the Henderson-Hasselbalch probabilities in Fig. 9
already incorporate the influence of the most common charge
patterns because they use the top configuration α∗ appropriate
for each pH to construct the needed pKeff,α∗ values, via
Eq. (10). Thus, the existence of residues that are charged
differently at the two pH values is not, by itself, sufficient to
account for the broader distribution in Fig. 9(d), as compared
with that in Fig. 9(b).

Also, for the very top configurations at each pH, fewer
residues, 43, are modeled as charged at pH 4.5 (28 positive,
15 negative, 11 neutral, net charge +13) than at pH 7.1, where
48 are charged (25 positive, 23 negative, 6 neutral, net charge
+2). Thus, positively and negatively charged residues, taken
together, make for a larger total number of charges at pH
7.1, despite the fact that the net charge is lower at pH 7.1.
This situation is physically reasonable because it corresponds
mainly to the fact that at pH 4.5, eight glutamate and aspartate
residues that carried negative charges at pH 7.1 are neutral,
which can readily occur because the pH is much closer to their
pKeff,α∗ values; H53, H117, G1, and Y174 also change charge.
Thus the fact that there are fewer titratable groups that carry
charge (positive or negative) at pH 4.5 than there are at pH
7.1 depends on the set of pKeff,α∗ values [see Fig. 15(a) herein
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FIG. 10. (a) Dependence on dimensionless work-of-charging cutoff level of the six most common proton configurations at pH 7.1 and
Debye length 6.0 Å. At each cutoff level on the horizontal axis, all of the entries in W below the given level were set to zero and the probabilities
of the configurations were recalculated using Eq. (5). At this pH, the order of the configurations is stable up to a cutoff level of 0.07, which is
shown by the vertical dashed line. (b) Cumulative distribution function of the work-of-charging matrix entries (see the text). The left vertical
line in (b) corresponds to the cutoff level of 0.07 indicated in (a). The right vertical line is at 1. (c) Changes in pKeff,α∗ values of the indicated
histidine residues, whose protonation switches produce the top-ranked configurations shown in (a). Above a cutoff of 0.07, the H84 pKeff,α∗
value changes are the primary reasons for the configuration probability changes in (a) (see the text).

and Fig. 5 in the Supplemental Material [122]), combined with
the bare charge numbers. This is not directly connected with
the fact that the deviation from the Henderson-Hasselbalch
distribution is greater at pH 4.5.

Rather, Eqs. (11) and (12) indicate that the broader width
of the distribution of protonation pattern probabilities must
arise from the switches δqα of charge patterns from that of α∗
that contribute significantly to the factors e−δq	

α Wδqα/2. More
specifically, the broader width of the protonation pattern prob-
abilities relative to the Henderson-Hasselbalch approximation
at pH 4.5, as compared with that at pH 7.1, is due to Glu
and/or Asp residue pairs in the same work-of-charging group
[see Fig. 3(c)]. Frequent charge switches of these residues
at pH 4.5 produce the most probable protonation patterns,
while at the same time their work-of-charging linkages bias
pattern probabilities away from Henderson-Hasselbalch ones.
At pH 7.1, histidine residue switches produce the most
probable patterns, but because each histidine is in a different
work-of-charging group, pattern probabilities more closely
track the Henderson-Hasselbalch approximation. Figures 9(c)
and 9(f) show log-log plots similar to those in Figs. 7(c)
and 8(c) for the top-ranked 1000 configurations. At pH 7.1,
the deviations cluster along lines parallel to the diagonal line
of agreement. At pH 4.5 this clustering feature is less clear;
the scale was expanded to make it apparent.

The polygons linking protonation patterns shown in Figs. 7
and 8 suggest that the use of effective pK values holds
both value and danger. If the effective pK values were to
be considered as fixed, they would not account for the lack
of independence of the protonation pattern probabilities that
is represented graphically by the distortion of the polygons
shown. Nevertheless, as suggested by Figs. 9(c) and 9(f), one
might accurately model the probability distributions with use
of judicious choices of a changing set of base configurations
α∗ for calculating effective pK values according to Eq. (10).

How large do off-diagonal parts of the work-of-charging
matrix need to be before they significantly affect the probabil-

ity distribution of protonation configurations, at a given pH?
Figure 10 examines the sensitivity of the probabilities of the
topmost few configurations to the omission of elements of the
work-of-charging matrix that are smaller than chosen cutoff
levels. Figure 10(a) shows that at pH 7.1, the order of the
top-ranked six configurations is stable up to a cutoff level of
only 0.07, a level that is shown by the vertical dashed line.
Such a dimensionless work-of-charging level corresponds to
an electrostatic potential φ, produced at one member of a
pair of titratable groups by the other, charged member, of
0.07kBT /e, or approximately 2 mV. This rather small value to
which the ranking of protonation patterns is sensitive occurs
for two principal reasons, which are illustrated in Figs. 10(b)
and 10(c), respectively.

First, while many of the entries in W are quite small, there
are many such entries. To quantify this, Fig. 10(b) shows
the cumulative distribution function of the work-of-charging
matrix entries. While for 0.07 < Wij < 1, individual titratable
site pairs have relatively little effect on one another, a large
number of such pairs occurs; 1133 entries are less than 0.07,
262 entries are between 0.07 and 1, and 36 entries are more
than 1.

Second, and more specifically, the cutoff values depend
on how close the pH is to one or more pKeff,α∗ values.
At the pH illustrated, the titration of histidine residues
is modeled to account for the relative prominence of the
top-ranked configurations, as discussed above and shown
by the polygons in Figs. 7 and 8. Further, the agreement
between the Henderson-Hasselbalch probabilities and those
of the full model for the topmost 32-vertex polygon, shown in
Fig. 8(c), suggests that the changes shown in Fig. 10(a) should
correspond to changing pKeff,α∗ values.

This is borne out by Fig. 10(c), which shows how the
pKeff,α∗ values of the five histidines change as the work-of-
charging cutoff value is increased from 0.01 to 10, all at a
pH of 7. The 0.07 level is again shown by the vertical dashed
line. At cutoffs lower than 0.07, the pKeff,α∗ values show small
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fluctuations much like those of a random walk, a feature that
corresponds to the large number of small work-of-charging
entries below this level, shown in Fig. 10(b). The ranking of
configuration probabilities [shown in Fig. 10(a)] consequently
remains stable until the net result of these fluctuations
overcomes the difference between two neighboring pKeff,α∗
values. This occurs just beyond the 0.07 cutoff level, when
the H84 pKeff,α∗ crosses below that of H122. As a result, the
H84 pKeff,α∗ is now closer to the ambient pH 7.1 and its
deprotonation would now be modeled as more probable than
that of H122. In terms of the configuration probability polygon
in Fig. 7(a), the H84 segments will now be less positively
sloped than those of H122. Such a change corresponds
precisely to the fact that the configurations initially ranked
2 and 3 switch their order in Fig. 10(a) just above cutoff level
0.07. It is also consistent with the fact that configurations 5
and 6 also switch their rankings at a very similar cutoff level.
Further comparison shows that the prominent migration of
the H84 pKeff,α∗ value with increasing cutoff level, shown in
Fig. 10(c), is largely responsible for the further configuration
ranking changes shown in Fig. 10(a). Finally, Fig. 10(c) shows
that at higher cutoff levels, many additional switches occur,
until the cutoff level is so high that it is larger than any
off-diagonal values.

In summary of the implications of Fig. 10, off-diagonal
elements of the work-of-charging matrix that are quite small
in the dimensionless units eφ/kBT can nevertheless change
the ranking of protonation configuration probabilities. Also,
as larger and larger off-diagonal elements are set to zero, a
random-walk-like migration of pKeff,α∗ values provides an
approximate accounting for the ranking changes of the top
configurations, whose probabilities are well represented by
the pKeff,α∗ values at this pH.

B. The pH dependence of protonation pattern distributions

The modeled probability distributions of protonation con-
figurations show a marked dependence on pH, which we
now study. By way of introduction, Fig. 11 shows how the
screened potential contours change with pH for the most
common protonation patterns, those occurring at pH = 7.1
[Fig. 11(a), as in Fig. 1(a)], pH = 6.5 [Fig. 11(b)], pH = 5.0
[Fig. 11(c)], and pH = 4.5 [Fig. 11(d)]. The contour values
displayed are for +kBT /e V (blue with horizontal curves),
0 V [gray with curves as in Fig. 1(a)], and −kBT /e V
(red with vertical curves). In each case the Debye length is
6 Å. Prior experimental results, to be analyzed and reported
with the help of the model being developed here, led to the
choice of pH values for Fig. 11. Specifically, at pH 7.1, 6.5,
and 5.5, at a Debye length of 6 Å, we observe reversible
liquid-liquid phase separation in concentrated γ B-crystallin
solutions, strongly suggesting attractive net protein-protein
interactions. However, we see no phase separation at pH
4.5, and at this pH small-angle neutron scattering indicates
repulsive interactions.

It is interesting that in this context the balance between the
positive and negative voltage regions is fairly even at pH 7.1
and pH 6.5, while in contrast the positive regions progressively
dominate at pH 5.0 and pH 4.5. Further, the zero potential
contours extend far from the protein at the upper three pH

FIG. 11. Screened potential contours of γ B-crystallin, for the
most common protonation patterns at (a) pH = 7.1 (as in Fig. 1),
(b) pH = 6.5, (c) pH = 5.0, and (d) pH = 4.5. The Debye length is
6.0 Å; contour values are +kBT /e V (blue with horizontal curves),
0 V [gray with curves as in Fig. 1(a)], and −kBT /e V (red with
vertical curves); dielectric and electrolyte boundaries are designated
as in Fig. 1(a). Note the changing balance between positive and
negative voltage regions with pH and an accompanying shrinkage of
zero-voltage contours, most of which, at pH 4.5, extend to less than
a Debye length from the protein.

values shown, but collapse to inside or near the protein at
pH 4.5. In combination with the findings mentioned above,
Fig. 11 suggests that with the more even balance of positive
and negative surface regions modeled at the higher pH values,
neighboring proteins may readily bias their orientations so
that oppositely charged surface patches can face one another
and interact so as to produce net attractive forces. However,
if the balance between positive and negative surface regions
becomes skewed beyond that corresponding to Fig. 11(c),
net repulsive forces can result. Figure 11(d) illustrates that
at pH 4.5 the majority of the protein surface is positive. At
this pH, the angular-averaged interprotein interactions may be
relatively insensitive to changes in the particular configuration
of protons. It is important to note that a quantitative model
will also need to include dispersion forces and hard-core
interactions, at least.

Figure 12 shows log10 P vs net protein charge for config-
urations in the modeled distributions at pH 5.5 and pH 4.5,
together with their single-protonation switch line segments,
accompanied by the pH 7.1 distribution shown in Fig. 5. As pH
decreases within this range, there is a substantial spread of net
charge and the topmost configuration becomes considerably
reduced in probability, reaching below 1 part in a thousand at
pH 4.5.
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FIG. 12. Plot of log10 P vs net charge, with line segments indi-
cating single-residue protonation switches, for protonation patterns
that occur at pH 7.1 (black solid line, the same as in Fig. 5), pH 5.5
(purple dash-dotted line), and pH 4.5 (blue dotted line) (see the text).

Figure 13 illustrates summary statistics of the configuration
probability distributions vs pH. Figure 13(a) shows that near
neutral pH the distributions are relatively narrow for this
protein; for example, one of the top 100 patterns is expected
to occur about 90% of the time. Because 27 = 128, this
corresponds to on the order of seven sites switching their
protonation status. As discussed in connection with Fig. 5,
even though the distribution is relatively narrow near pH 7.0,
Fig. 13(a) implies that a large number of pairs of patterns
may be needed in order to model electrostatically mediated
interactions between the proteins. The needed number of pairs
can be estimated from the figure. For example, assuming for
the purpose of illustration that neighboring patterns do not
bias each other’s probabilities, it would mean that considering
(100 × 101)/2 distinct pairs of patterns would enable one
to model a fraction 0.9 × 0.9 of the pairs that contribute to
the effective interaction strength. The distributions are much
broader at lower pH values; the pH 4.5 curve in Fig. 13(a)
shows that at that pH, one of the first 1000 patterns will be
present only 20% of the time. Figure 13(b) shows the contours
of the cumulative probabilities of the top sets of patterns at
each pH, in the [pH, log10(number of configurations)] plane.

Figure 14(a) shows the pH dependence of the probabilities
of patterns that are each the top pattern within some interval
of pH. To understand these probabilities more thoroughly,
consider any pattern α that has a specified number kα = n of
protons bound. Such a pattern has the probability

Pn = ζ ne−(�μ0·Oα)/kBT e−Wel,α/kBT

Q

≡ ζ nB(Oα)

Q ,

log10 Pn = log10 B(Oα) − npH − log10 Q, (14)

in which ζ = 10−pH and B(Oα) denotes a Boltzmann factor
for occupancy vector Oα; B(Oα) includes the intrinsic pK
values as well as the work-of-charging contribution. Note
that all of the pH dependence in the last line of Eq. (14)
occurs in the last two terms; the partition function Q in
the final term depends on pH through ζ . Therefore, for
a given value of n, all of the curves of log10 Pn vs pH
are simply vertically displaced with respect to one another,
because they differ only due to the quantities log10 B(Oα).
This feature is illustrated in Fig. 3(a) in the Supplemental
Material [122]. The nearly parabolic shapes in the coordinates
(pH, log10 Pn) correspond to nearly Gaussian shapes when Pn

is plotted vs pH, as shown in Fig. 14(b) for the top-ranked
12 configurations at pH 7.1; these are the configurations
illustrated in Fig. 6. In Fig. 14(c) we show the partition function
in the form log10 Q in the range 4 < pH < 8. In this pH range,
log10 Q can be represented well by cubic or quartic polynomi-
als, specifically log10 Q = 474.27 − 86.407 × pH + 7.414 ×
pH2 − 0.30492 × pH3 (1−adjusted R2 = 6 × 10−6) and
log10 Q = 545.64 − 136.56 × pH + 20.392 × pH2 −
1.7713 × pH3 + 0.061101 × pH4 (1−adjusted R2 = 5 ×
10−7), respectively. Such fits can be convenient for estimating
Q in Eq. (5) or (14) for protonation pattern probabilities. The
fit residuals in Fig. 14(c) illustrate the degree of error to be
expected in using such a fit for Q and show their polynomial
appearance; such correlation of residuals can be detected
using, for example, the Durbin-Watson statistic. Physically,
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FIG. 13. (a) Cumulative probabilities of the most probable protonation patterns at a Debye length of 6.0 Å. For example, the dots on the
pH 7.0 curve show that under these conditions, the top γ B occupancy pattern occurs nearly 20% of the time, one of the first 10 patterns will
be present 60% of the time, and one of the top 100 patterns occurs 90% of the time. The pH 4.5 curve shows that one of the first 1000 patterns
will be present 20% of the time. (b) Contours of the cumulative probabilities displayed in the [pH,log10(number of configurations)] plane. For
example, the 0.99 contour indicates that at pH ≈ 6.8, 1000 configurations account for 99% of the probability.
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FIG. 14. (a) The pH dependence of the probabilities of patterns that are each the top pattern in some interval of pH. (b) The Pα vs pH for
the top 12 configurations at pH 7.1 have nearly Gaussian distributions with respect to pH. (c) The log10 Q from the present model, determined
using Monte Carlo simulations (10 × 106 samples per pH, in 0.1 pH steps). The inset shows the residuals to two of the fits, which for the
quartic fit in this pH interval have a range of about 1 part in 4000 of log10 Q.

such an appearance is to be expected given that Q is a
polynomial of essentially higher order than 4, because more
than four prominent overall protonation numbers occur in
4 < pH < 8 [see Eq. (2) and Fig. 14(a)]. A perspective view of
the joint dependence of pattern probabilities on net charge and
pH is given in Fig. 3(b) in the Supplemental Material [122].

The finding that the pKeff,α∗ values are useful for predicting
the ranking of configurations suggests that it is interesting
to compare them with the pK1/2 values calculated using the
full model. Figure 15 makes such a comparison, with use of
pKeff,α∗ values that take α∗ to be the top-ranked configuration
for 6.6 < pH < 7.3 (red closed circles) and to be the top-
ranked configuration for 4.4 < pH < 4.6 (blue open circles).
Figure 15(a) shows that for the histidines that are modeled to
titrate near neutral pH, the pKeff,α∗ values are indeed almost
exactly equal to the corresponding pK1/2 values. This is to
be expected from the agreement shown by the black squares
in Fig. 8(c). It is instructive to compare the order in which
histidine residues first switch to the difference between pH
7.1 and their respective pKeff,α∗ values. From Fig. 6 or from
Table I, the order of switching is H122, H84, H14, H117, and
H53, consistent with the corresponding |pKeff,α∗ − pH| values
of 0.19, 0.29, 0.44, 0.57, and 0.80.

Figure 15(a) also shows that for residues whose pKeff,α∗
values are further from the range for which the chosen α∗
configuration is appropriate, the pK1/2 and pKeff,α∗ differ more
strongly. Thus, when using pKeff,α∗ as a tool for estimating
experimental pK1/2 values, it is important to choose α∗
configurations that are prominent, and representative, in a pH
range that ideally includes the pK1/2 in question. We note
that because 1 < pH < 12 in the simulations used to create
Fig. 15(a), residues with model pK1/2 values outside this range
are not shown; in addition to 12 of the arginines and the three
cysteines, these included D72 and D107.

Figure 15(b) shows that, except for H53 and H122 below
their respective pK1/2 values, the histidine titration curves
from the full model agree well with Henderson-Hasselbalch
curves, as expected because they are in different work-of-
charging groups [Fig. 3(c)]. Thus, although many protona-
tion configuration probabilities are not well predicted by

a Henderson-Hasselbalch approach, this may not show up
prominently in the titration curves of selected residues.

C. Dependence of the distributions on ionic strength

The possible effects of ionic strength on solutions of
γ B-crystallin and other proteins are very interesting, in that
one expects that they will depend on both the balance and
shapes of the negative and positive voltage surface regions. On
one hand, if attractive interactions are in part created by protein
orientations that put negative and positive surface regions of
neighboring proteins face-to-face to some degree, lowering
ionic strength would be expected to increase attractions,
because then the negative and positive regions would affect
one another over a larger range of protein separations. On the
other hand, if the net electrostatic portion of the interaction
is repulsive, lowering ionic strength would be expected to
increase the repulsion. In this context it is interesting to see
how large the effects of ionic strength are on the distribution
of protonation patterns, which could also play some role in
mediating such effects.

Figures 16(a) and 16(b) show that the off-diagonal work-
of-charging entries, as expected, can increase substantially
as ionic strength is lowered. Figure 16(c) shows the cor-
responding changes in the configuration distribution at pH
7.1. In these coordinates the changes appear modest for the
case illustrated. However, the effect is nevertheless evident;
it is to make the most prominent configurations slightly
more probable, at the expense of some of the less probable
configurations. Figure 16(d) shows this in summary fashion.
Note the crossover between the changes shown by the top-
ranked configurations, whose probabilities generally increase
(blue curve above black curve), at the expense of lower-ranked
configurations, whose probabilities generally decrease, though
not without exception.

D. Possible implications for protein-protein interactions

As discussed in the Introduction, our primary purpose
here is to provide part of a basis for further investigation
of the molecular properties that determine the magnitude of
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FIG. 15. (a) The pK1/2 values from simulations of the full
model with interactions, on the horizontal axis, are close to the
pKeff,α∗ values. Red dots result from taking α∗ to be the most
prominent protonation configuration within 6.6 < pH < 7.3; pK1/2

values farther from 6.6 < pK1/2 < 7.3 differ from those pKeff,α∗ ,
as expected. Blue open circles result from taking α∗ to be the
most prominent configuration within 4.4 < pH < 4.6; again pK1/2

values farther from that of α∗ differ more from those of pKeff,α∗ .
(b) Except for H53 and H122 below their respective pK1/2, histidine
titration curves from the full model (solid line) also agree well with
Henderson-Hasselbalch curves (dashed line) as parametrized by the
pKeff,α∗ values of the α∗ used in (a).

interactions between γ B- and related γ -crystallin and other
eye lens crystallin proteins, investigation that we hope can
eventually achieve sufficient detail to provide for quantitative,
predictive modeling of the origin of the cataractogenic effects
of single-residue mutations. Because many known cataracto-
genic mutations of γ -crystallins involve changes of residue
charge, it is natural to study the protonation configuration
probability distributions in detail. While many models of
orientation-dependent protein-protein interactions have been
developed at various levels of coarse graining [3–6,11,132–
134], some of which incorporate charge regulation, including
models for lysozyme interactions [4–6,132,135,136] and for
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FIG. 16. Lowering ionic strength, corresponding to increasing
the Debye length λD from (a) 6 Å to (b) 20 Å, increases off-diagonal
work-of-charging entries and makes the top configurations more
prominent while suppressing others, as shown in (c) and (d). In (a)
and (b) Wij magnitude codes are as in Fig. 3(a). A 1:1 electrolyte in
water at 298 K corresponds to ionic strengths of (a) 257 mM and (b)
23.1 mM. In going from (a) to (b), in all categories but the top (red
circles), entries above 0.05kBT increase in number with increased λD .
(c) Plot of log10 P vs net charge, as in Fig. 5. Black dash-dotted lines
show λD = 6 Å and blue solid lines λD = 20 Å. (d) Plot of log10 P for
the top 20 configurations; note the changed vertical scale. The black
dashed line shows λD = 6 Å and the blue solid line λD = 20 Å. The
contrast between changes in top- and lower-ranked probabilities is
shown by the crossing of the dashed and solid curves.

gamma crystallin interactions [52,88,137], achieving the de-
gree of fine graining for the more predictive modeling needed
in many contexts remains an outstanding challenge [19].

Although a quantitative investigation of the consequences
of the present model for how site-specific chemical changes
influence interactions is not the focus of the present work, we
nevertheless comment here on three features that illustrate the
scope of the problem. These include (i) the small fraction of
the pairs of configurations accounted for by each choice of
individual protonation configurations in neighboring proteins,
even if those choices are each the top-ranked choice, (ii)
the six-dimensional space of the relative positions of two
neighboring proteins, and (iii) the biasing of protonation
configuration probabilities because of protein proximity [10],
a biasing that is itself a function in that same six-dimensional
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FIG. 17. Screened voltage contours around neighboring γ B-
crystallin molecules, with pH 7.1 and Debye length 6 Å. The voltage
contour surface designations are as in Fig. 1(a), except that the curves
on the 0 V contour surface are spaced by 12 Å from the calculation box
center. Each molecule has the top-ranked protonation configuration.

space. Of course, additional relative position and orientation
dimensions are needed if the concentration is high enough so
that clusters of more than two neighboring proteins are needed
to represent the situation adequately. We now briefly discuss
each of these features.

First, Fig. 17 shows the calculated voltage contours around
two neighboring γ B-crystallin molecules, at pH 7.1 and
Debye length 6 Å. Each of these molecules has been given
the most common protonation configuration, that illustrated in
Fig. 1. Note that the zero voltage contours appear dramatically
altered from those surrounding the isolated protein in Fig. 1(a).
Yet the corresponding pair of proton occupancy patterns
accounts for only about 0.165 × 0.165 = 0.0272 of the con-
tributions to the protein-protein interactions. An illustration of
interaction contributions by common pairs of patterns is given
in Fig. 1 of the Supplemental Material [122].

Now, for each chosen pair of protonation configurations,
the space of relative orientations of the two proteins has five
dimensions, two for each protein to choose the surface points
that are in closest proximity and one more for the relative twist
about the line joining their centers. Radial separation gives a
sixth dimension. Among the many choices of how to visualize
the space of possible relative orientations, one shown in Fig. 18
is to make a projection so as to be able to plot the voltages
around both protein surfaces above and below two planes and
to represent the space of possible proximities by the collection
of all line segments or arrows that join pairs of points, one from
each plane. Twist can then be added as a position along each
line segment, if desired. In Fig. 18, a few such line segments are
drawn that indicate connections that could correspond to strong
electrostatic attractions between neighboring γ -crystallins, for
the most common pair of protonation configurations, shown at
left. While the few connections shown in Fig. 18 simply join
positive to negative peaks, nonpeak locations can also show

FIG. 18. Visualization of the sets of relative orientations that
could give electrostatic attractions between neighboring γ -crystallins.
Lambert projections, as in Fig. 3(c) and described there, of the
electrostatic potential at about one-half Debye length from two copies
of the most common pH 7.1 protonation configuration are shown
on the left. Voltages on the same surfaces are plotted vertically on
the right, above and below the Lambert projections, with positive up.
While the arrows here simply join positive to negative peaks, nonpeak
locations can also attract, depending on twist angle.

electrostatic attractions, depending on the twist angle. With use
of calculations that consider the possible relative orientations,
one can find prominent basins of attraction and saddle points
in the five- or six-dimensional space and illustrate these by
points on the appropriate connection lines.

Returning now to Fig. 17, protein proximity dramatically
alters the surrounding voltage zero contours, as mentioned
above. As a consequence the protonation pattern probability
distribution will now reflect between-protein, off-diagonal
elements of an enlarged work-of-charging matrix. The ex-
istence of these elements means that the joint configuration
probabilities can only be approximately represented by the
products of probabilities of the individual configurations of
hypothetical isolated proteins. As a consequence, the study of
the probability distributions of protonation patterns becomes
much more intricate for close protein neighbors. Figure 19
gives an example in which changing the relative orientations
of two neighboring proteins alters the expanded, two-protein
work-of-charging matrix. This example illustrates that the
expanded matrices are now functions of the six-dimensional
space of the relative positions of the two proteins. Figure 19
also shows that only a small portion of the protein-protein
blocks in the expanded matrices differ substantially from zero,
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FIG. 19. Changing the relative orientations of two neighboring
proteins alters the expanded, two protein work-of-charging matrix.
The voltage contour surface designations in (a) and (c) are the same
as in Fig. 1(a), except that the curves on the 0 V contour surface
are spaced by 12 Å from the calculation box center. The dielectric
surfaces are outlined by white longitude and latitude curves. (b) and
(d) Same color code as in Fig. 3. (b) and (d) Upper left and lower
right squares show the within-protein recalculated work-of-charging
matrix entries, while the off-diagonal squares show the between-
protein entries. (a) and (c) Different sets of residues are adjacent to
one another, as indicated, producing differences in the corresponding
work-of-charging matrices shown in (b) and (d), respectively. The
order of residues is the same for each protein in (b) and (d), but
differs from that in Fig. 3.

which suggests that a perturbation approach might accurately
represent the resulting joint probability distributions. To create
Fig. 19, we streamlined the needed calculation by using
a simpler dielectric boundary than that used above, which
consisted of two conjoined, interpenetrating low-dielectric
spheres, and by omitting the three cysteine residues that are
incorporated in the 54 titratable residues considered above.

Note that close protein proximity can be quite common
even at rather low concentrations compared with those that
occur in the living eye lens, which can range into the hundreds
of milligrams per milliliter. For example, in a square-well
model of the phase behavior of γ B-crystallin [12], Monte
Carlo simulations using parameters that gave the closest fit
to the observed critical temperature and concentration (a
square-well width over diameter of 0.25 and square-well
depth of 1.267kBT ) indicate that even at a concentration
of 0.5 mM protein, the mean-field estimate of the average
number of contacts per particle [Eq. (30) in [12]] is 0.2;
that is, a given protein will already have an essentially close
neighbor about 20% of the time. This concentration, which
for γ B-crystallin is close to 10.5 mg/ml, corresponds to a
volume fraction of 0.0074, a small fraction of its critical

volume fraction of 0.18–0.20, and small compared with
estimates of the macromolecular volume fraction in living
cells [13], which range from 0.07 to 0.40. Thus one expects
altered protonation probability distributions, due to molecular
proximity, to contribute substantially to the thermodynamics
of protein and other macromolecular solutions within living
cells.

IV. CONCLUSION

We have used the linearized Debye-Hückel approximation
to model the probability distributions of protonation patterns
on bovine γ B-crystallin as functions of pH. The breadth
of the probability distributions indicates that a very large
number of pairs of such patterns will be needed in order to
account for how the distribution of protonation patterns affects
γ B-γ B interactions. The key to such an analysis will be to
understand not simply the distribution of protonation patterns
of a single protein, but rather the probability distribution
of protonation patterns, spatial variations of electrostatic
potential, and consequent electrostatic interaction free energies
present on pairs and larger tuples of neighboring proteins, as
functions of their relative positions and orientations.

Accurate, angle-dependent potential of mean force models
are needed to provide a sound molecular basis for un-
derstanding the statistical thermodynamics and the liquid
structure of protein solutions [111–113] and the corresponding
dramatic effects of mutations, post-translational modifications,
and solution environment on protein phase separation and
aggregation in solution. The present model is a step towards
building an accurate angle-dependent model of electrostatic
contributions to the potential of mean force for γ -crystallin
interactions. Clearly, such a model will also need to encompass
other aspects of protein-protein interactions not considered
here, including dispersion interactions, the hydrophobic effect,
and hydration forces.

ACKNOWLEDGMENTS

We thank Matthew Lynn for assistance with the use
of GAUSSIAN09 and Hassler Thurston for advice about the
simulated annealing used to permute the work-of-charging
matrix. We thank anonymous referees for their careful readings
of the paper, questions, and suggestions that led to clarification.
Research reported in this publication was supported by the
National Eye Institute of the National Institutes of Health
(USA) under Award No. R15EY018249. The content is solely
the responsibility of the authors and does not necessarily reflect
the official views of the National Institutes of Health (USA).

APPENDIX: EVALUATION OF ELECTROSTATIC ENERGY
INTEGRALS AND CORRESPONDING pK SHIFTS

Consider a single charge on the z axis located at (0,0,z0). We
wish to compute 1

2

∫∫∫
D · E dV over the unbounded volume

V exterior to a small sphere (neighborhood) of radius R,
centered at the charge. To do so, we make use of the linearized
Poisson-Boltzmann equation

∇ · [ε(x)∇u(x)] = εoutκ
2(x)u(x) − ρ(x).
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Within V , ρ(x) = 0, and in the absence of ionic screening
(κ = 0), the equation reduces to

∇ · [ε(x)∇u(x)] = 0. (A1)

To compute the volume integral

1

2

∫∫∫
V

D · E dV = 1

2

∫∫∫
V

ε(x)∇u(x) · ∇u(x)dV,

we use the relation

∇ · [ε(x)u(x)∇u(x)] = ε∇u · ∇u + u∇ · [ε∇u].

The second term on the right-hand side of the relation is equal
to zero by Eq. (A1), in which case we have

ε(x)∇u(x) · ∇u(x) = ∇ · [ε(x)u(x)∇u(x)].

Then the integral can be written as

1

2

∫∫∫
V

D · E dV = 1

2

∫∫∫
V

∇ · [ε(x)u(x)∇u(x)]dV.

The integral can be evaluated using Gauss’s divergence
theorem by closing the volume with a second concentric sphere
of radius R′ > R and letting R′ approach infinity. Let V ′ be
the volume bounded by the two spheres and let ∂R and ∂R′
denote the spherical boundary surfaces of radius R and R′,
respectively. Then

1

2

∫∫∫
V ′

∇ · [εu∇u]dV = −1

2

∫∫
∂R

ε(x)u(x)∇u(x) · n dS

+ 1

2

∫∫
∂R′

ε(x)u(x)∇u(x) · n′dS,

(A2)

where the unit vectors n and n′ are normal to the respective
boundary surfaces. We choose the unit normal vectors to be
directed outward relative to the spheres, rather than to the
volume itself. The second integral on the right-hand side of
Eq. (A2) approaches zero as R′ approaches infinity. In this
limit, we are left with

1

2

∫∫∫
V

D · E dV = −1

2

∫∫
∂R

ε(x)u(x)∇u(x) · n dS.

It is convenient to evaluate the integral in spherical coordinates
with the origin translated to the charge location at (0,0,z0).
Since the point charge is located on the z axis and ε is
assumed to be symmetric about the z axis, the integrand is
independent of the azimuthal angle θ . Therefore, the surface

integral reduces to a single-variable integral given by

1

2

∫∫∫
V

D · E dV = −πR2
∫ π

0
ε(φ)u(φ)

∂u

∂r
(φ) sin φ dφ.

Outside a sphere of radius r0, surrounding an isolated charge
of magnitude q, placed in a dielectric having relative dielectric
coefficient εr ,

1

2

∫∫∫
r>r0

D · E dV = q2

8πε0εrr0
. (A3)

Therefore, if we transfer a charged group surrounded by
water, which has dielectric coefficient εw, into a medium with
coefficient εr , the work required is

q2

8πε0εrr0
− q2

8πε0εwr0
= q2

8πε0r0

(
1

εr

− 1

εw

)
. (A4)

The corresponding change in the pK of such a group, 	pK, is
therefore given by

	pK ln(10)

= ± q2

8πε0r0kBT

(
1

εr

− 1

εw

)

= ±
[

1

2kBT

∫∫∫
r>r0

D · E dV − q2

8πε0εwr0kBT

]
,

(A5)

which corresponds to Eq. (6) in the text. Whereas the last
substitution may seem superfluous, in view of Eq. (A3), it is
the last equality that enables calculation of how pK values
can be expected to change in a nonuniform (scalar) dielectric
environment, such as the one being used for the present model.
This is how we have proceeded (except for the histidines) to
model γ B-crystallin’s pK values.

To understand which sign is to be used in Eq. (A5), it is
valuable to recognize that for a lower dielectric than water,
that is, εr < εw, the right-hand side of Eq. (A4) is positive,
corresponding to the fact that one must do work to bury
a charge, of either sign, in a low-dielectric environment.
Consider first an acidic residue such as glutamic or aspartic
acid. In that case, partially surrounding the charge site with
a low-dielectric environment will favor the protonated state,
which is uncharged, and therefore a lower concentration of
protons (higher pH) will suffice for protonation. Thus, the pK
will shift upward and the + sign should be used in Eq. (A5).
The opposite is true for basic residues such as lysine, arginine,
and histidine, for which a higher concentration of protons will
be needed in order to protonate the site.
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