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Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous
diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative
diseases such as multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease. Indeed, abnormal accumulation
of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become
anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another
hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model
the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional
cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric
quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the
voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional
effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of
swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of
swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
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I. INTRODUCTION

In biological organisms there are hydrogen atoms in
abundance, particularly in water and fat. These atoms allow
us to study biological organisms with noninvasive techniques,
such as magnetic resonance imaging (MRI). Indeed, using a
magnetic field and the Zeeman effect, the diffusion process
of water molecules in biological tissues can be mapped [1,2].
Thus, using these techniques, it is possible to study some
physiological properties of biological tissues, for example,
water molecule diffusion patterns can reveal microscopic
details about tissue architecture and can reflect interactions
with many obstacles, such as macromolecules, fibers, and
membranes [1–4]. Notably, in neuroscience water diffusion
can provide information about white matter integrity, fiber den-
sity, uniformity of nerve fiber direction, axonal membranes,
cytoskeleton properties, etc. [3,4]. In fact, water diffusion has
been used to detect and characterize different neurodegenera-
tive diseases [5]. For instance, using diffusion tensor imaging
(DTI), altered diffusion has been detected in white matter
of subjects with multiple sclerosis [6–8]. Also, using DTI,
white matter alterations were found in the corpus callosum of
subjects with Huntington’s disease [9]. Moreover, using DTI,
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relevant white matter abnormalities were found in Alzheimer’s
disease [10,11]. In addition, using MRI, hippocampal atrophy
has been detected in Parkinson’s disease [12]. Even more,
different experimental studies have shown that water diffusion
in some tissues cannot be described by a Gaussian model,
but as an anomalous diffusion expressed through fractional
calculus [13–18], in particular in brain tumors [19–21] and
dendrites [22]. Furthermore, some authors have suggested that
the anomalous diffusion parameters might play a role in the
diagnosis of brain diseases [23]. It is worth mentioning that in
different neurodegenerative diseases abnormal accumulations
of proteins and organelles are reported that disrupt axonal
transport [24–26]. Additionally, different theoretical studies
support the claim that anomalous diffusion appears in a
heterogeneous medium [27–29]. For these reasons, diffusion
and anomalous diffusion in brain tissues are relevant in the
study of the brain physiology. Other studies about anomalous
diffusion in cellular systems can be seen in Refs. [30–33].

Another aspect essential to understanding how the brain
works is given by its electrical activity. Thus, in order to obtain
a reasonable model of the brain, it is important to know how the
voltage propagates in brain tissues with anomalous diffusion.
In particular, because axons are crucial in neuron-to-neuron
communications and can be described as cables, we should
know how the voltage propagates in a cable with anomalous
diffusion. In this respect, to study the voltage V (x,t) in a
straight cylindrical cable with a circular cross section of
constant diameter d0 and anomalous diffusion, recently several

2470-0045/2017/96(3)/032411(10) 032411-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.032411


ERICK J. LÓPEZ-SÁNCHEZ et al. PHYSICAL REVIEW E 96, 032411 (2017)

authors have proposed a fractional cable equation [34,35]

cM

∂V (x,t)

∂t
= βνDνt

(
d0

4rL

∂2V (x,t)

∂x2
− iion

)
, (1)

where cM denotes the specific membrane capacitance, rL

denotes the longitudinal resistance, iion is the ionic current
per unit area into and out of the cable,

Dνt = ∂1−ν

∂t1−ν
, ν = const, 0 � ν � 1, (2)

is the Riemann-Liouville fractional operator [36], and βν is a
constant with (time)1−ν dimensions. The passive cable case,
namely, when iion = V/rM (where rM is the specific membrane
resistance), was used to study electrodiffusion of ions in nerve
cells [34,35].

Additionally, there are different physiological phenomena
where the geometry is important. For instance, axons with
nontrivial geometry are important to the understanding of
some neurodegenerative diseases; indeed, discrete swellings
along the axons appear in neurodegenerative diseases such
as Alzheimer’s disease, Parkinson’s disease, HIV-associated
dementia, and multiple sclerosis. In fact, axons with a diameter
of approximately 1 μm with a swelling with a diameter of
approximately 5 μm are reported in Parkinson’s disease [37].
In addition, axons with a diameter of approximately 4 μm
with a swelling with a diameter of approximately 60 μm are
reported in multiple sclerosis [38]; axons with a diameter
of approximately 1.5 μm with a swelling train, where the
swelling diameter varies between 4 and 10 μm, are reported
in Alzheimer’s disease [39–41]; axons with a diameter of
approximately 6 μm and swellings with a diameter of ap-
proximately 43 μm are reported in HIV-associated demen-
tia [42–46]. Other sizes of the axonal swellings can be see
in Refs. [47,48]. Some theoretical studies on cables with
noncylindrical geometry can be seen in Refs. [49–56]. Because
Eq. (1) only describes axons with cylindrical geometry, in order
to study the voltage propagation in a cable with nontrivial
geometry and anomalous diffusion, this equation should be
generalized.

In this paper we study the voltage propagation in a
cable with anomalous diffusion and nontrivial geometry. For
this purpose, we introduce a fractional cable equation for
a general geometry. This generalized equation depends on
fractional parameters βν and ν and geometric quantities such
as the curvature and torsion of the cable. For different cable
geometries, we show that in modeling a system where the
voltage decreases, we should suppose that βν increases when
ν decreases. For a straight cylinder with a constant radius we
show that the voltage depends on neither the curvature nor the
torsion of the cable and it decreases when βν increases and
ν decreases. In addition, cables with swellings are studied.
In these last cable geometries we find that when the swelling
radius increases or βν increases and ν decreases, the voltage
decreases dramatically.

This paper is organized as follows. In Sec. II we propose a
fractional cable equation with a general geometry. In Sec. III
we analyze some general properties of the generalized frac-
tional cable equation. In Sec. IV we consider the cylindrical
cable with a constant radius. In Sec. V we study a cable with
swellings. In Sec. VI a summary is given.

FIG. 1. Cable with a general geometry. The vectors T̂ , N̂ , and B̂

are shown at two different points on the curve �γ .

II. FRACTIONAL CABLE EQUATION
IN A GENERAL GEOMETRY

It is well known that to study the geometric properties of a
three-dimensional curve �γ the arc length parameter

s =
∫ x

0

√
d �γ (ζ )

dζ
· d �γ (ζ )

dζ
dζ (3)

is a friendly parameter. Indeed, using the arc length param-
eter (3), we can construct the vectors of the Frenet-Serret
frame [57]

d �γ (s)

ds
= T̂ , N̂ =

dT̂
ds∣∣ dT̂
ds

∣∣ , B̂ = T̂ ×N̂, (4)

where T̂ is the unit vector tangent, N̂ is the normal unit vector,
and B̂ is the binormal unit vector to the curve. Furthermore,
using the arc length and the Frenet-Serret frame, the Frenet-
Serret formulas can be obtained as [57]

dT̂

ds
= κN̂,

dN̂

ds
= −κT̂ + τ B̂,

dB̂

ds
= −τN̂, (5)

where κ and τ are the curvature and torsion of the curve �γ ,
respectively.

We can employ the Frenet-Serret frame to construct a cable
model. Actually, we can propose a general cable as the region
bounded by the surface

�	(θ,s) = �γ (s) + f1(θ,s)N̂ (s) + f2(θ,s)B̂(s), (6)

where θ is an angular variable. Notice that employing the
angular coordinate θ , the functions f1(θ,s) and f2(θ,s), and
the vectors N̂ (s) and B̂(s), we are constructing the cable over
the curve �γ (s). In Fig. 1 we can see a representation of the
surface (6). For instance, a cable with a deformed circular
cross section, where the radius R depends on the angle θ , can
be described by the surface (6), where

f1(θ,s) = R(θ,s) cos θ, f2(θ,s) = R(θ,s) sin θ. (7)

Notice that in this case the cross-section area is given by

a(s) = 1

2

∫ 2π

0
R2(θ,s)dθ. (8)

Some geometric quantities as the area of a surface can be
written in terms of the first fundamental form, which is
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constructed with the inner product on the tangent space of
a surface as [57]

g =
(

E F

F G

)
, (9)

where

E = ∂ �	(θ,s)

∂s
· ∂ �	(θ,s)

∂s
, (10)

G = ∂ �	(θ,s)

∂θ
· ∂ �	(θ,s)

∂θ
, (11)

F = ∂ �	(θ,s)

∂s
· ∂ �	(s,θ )

∂θ
. (12)

Now, let us remember that the curvature κ(s) at a point P

of the curve �γ (s) is defined as the inverse of the radius of the
osculating circle at P (see Ref. [58]). Then, if the radius of
the osculating circle is small, the surface (6) describes a cable
with a big curvature. In addition, notice that when the radius
of the osculating circle is smaller than the radius of the cable,

the cable surface touches itself. Axons with big curvature have
not been reported in the literature. In this paper we suppose
that at each point of the curve �γ (s) the radius of the osculating
circle is larger than the radius of the cable. Namely, at each
point of the curve �γ (s) we suppose that the curvature κ(s) is
smaller than R−1(s) and the inequality

κ(s)R(s) < 1 (13)

is satisfied.
The axon geometry is important for diverse physiological

processes such as voltage propagation. In this respect, accord-
ing to Ref. [56], when the cable geometry is given by (6) the
cable equation is

∂V (s,t)

∂t
= 1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

(
a(s)

∂V (s,t)

∂s

)

− iion

cM

, (14)

where a(s) is the cable cross section and

√
det g(θ,s) =

{
R2(θ,s)

(
∂R(θ,s)

∂s
− τ

∂R(θ,s)

∂θ

)2

+ [1 − κ(s)R(θ,s) cos θ ]2

[
R2(θ,s) +

(
∂R(θ,s)

∂θ

)2]}1/2

. (15)

Notice that Eq. (14) depends on geometric quantities such as
the curvature κ and torsion τ of the cable.

Then, in order to study the voltage propagation in a cable
with general geometry and anomalous diffusion, we can
employ Eqs. (1) and (14) to propose a generalized fractional
cable equation

∂V (s,t)

∂t
= βνDνt

[
1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

×
(

a(s)
∂V (s,t)

∂s

)
− iion

cM

]
, (16)

where

Dνt = ∂1−ν

∂t1−ν
, ν = const, 0 � ν � 1, (17)

is the Riemann-Liouville fractional operator [36] and βν is
a constant with (time)1−ν dimensions. The voltage in an
infinite cable has to satisfy the Dirichlet boundary condition
and a finite cable has to satisfy the Neumann boundary
condition [59,60]; the solutions of Eq. (16) should satisfy these
boundary conditions.

In the general case, iion depends on the voltage and Eq. (14)
is a nonlinear differential equation. However, in the passive
cable model we can take

iion = V (s,t)

rM

. (18)

Therefore, the fractional cable equation for the passive cable
model with the geometry given by (6) is

∂V (s,t)

∂t
= βνDνt

[
1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

×
(

a(s)
∂V (s,t)

∂s

)
− V (s,t)

rMcM

]
. (19)

In the following sections we will study some solutions of this
equation.

III. QUALITATIVE ANALYSIS

For a nontrivial geometry, finding solutions of Eq. (19) is a
difficult task. However, let us provide a qualitative analysis of
this equation. In this respect, we propose the voltage

V (s,t) = T (t)X(s). (20)

In this case Eq. (19) implies

1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

(
a(s)

∂X(s)

∂s

)
− X(s)

rMcM

= −λX(s), (21)

∂T (t)

∂t
= −λβνDνtT (t), (22)

where λ is a constant. Moreover, if we take

X(s) = ψ(s)√
a(s)

, (23)

the spatial equation (21) can be written as

− ∂2ψ(s)

∂s2
+ U (s)ψ(s) = 0, (24)

where

U (s) = rLcM

∫ 2π

0 dθ
√

det g(θ,s)

a(s)

(
λ − 1

rMcM

)

− 1

2

((
da(s)
ds

)2

2a2(s)
−

d2a(s)
ds2

a(s)

)
. (25)
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FIG. 2. Mittag-Leffler function for different values of βν and ν.

Observe that the parameters ν and βν do not appear in this
equation. In fact, this spatial equation is the same spatial
equation that appears in the nonfractional case [56]. In
addition, observe that the parameter λ does not depend on
ν or βν .

Furthermore, the Laplace transform of the temporal equa-
tion (22) implies

T̃ν(ζ ) = T (0)
ζ ν−1

ζ ν + βνλ
, (26)

where T̃ν(ζ ) is the Laplace transform of the function Tν(t). The
inverse Laplace transform of the function (26) is given by [36]

Tν(t) = T (0)Eν,1(−βνλtν), (27)

where

Eν,�(z) =
∑
n�0

zn

�(νn + �)
(28)

is the Mittag-Leffler-type function [36]. Notice that if ν = 1
we obtain the usual solution

T1(t) = T (0)e−λt . (29)

In addition, if ν = 0 we obtain

T0(t) = T (0)
∑
n�0

(−λβ0)n, (30)

TABLE I. Number of points ns and nt and time of the refinement.

Refinement ns nt

first time 1024 100
second time 2048 500
third time 4096 2000

which is a constant. We can observe that Eq. (30) only makes
sense if

β0λ < 1. (31)

In this case we get

T0(t) = T (0)

1 + β0λ
. (32)

In Sec. IV we saw that, for realistic parameters of the
cylindrical cable, λ is the order of 10−3 (sec)−1. Then the
inequality (31) is satisfied if β0 is smaller than 103 sec.

Notice that the strongest fractional effect is obtained
when ν is close to zero and in this case the function Tν(t)
is close to the constant (32), which decreases when β0

increases. Then, in order to model a system where the voltage
decreases, we should take β0 bigger than one, but satisfying
the inequality (31). If we take β0 close to zero, the voltage
does not decrease.

Now recall that the usual case is obtained with ν = 1 and
β1 = 1. Additionally, when ν is close to zero, βν should reach
its maximum value; in fact, β0 should be bigger than one. Thus,
for a system where the voltage decreases, we can suppose that
βν increases when ν decreases.

Figure 2 shows the function (27) for different βν and ν

values. In this we can see that the function (27) decreases
when βν increases and ν decreases.

Then, using the functions (27) and (23), we found the
voltage

V (s,t) = T (0)√
a(s)

Eν,1(−βνλtν)ψ(s), (33)

where the function ψ(s) satisfies Eq. (24). From Eq. (33) we
can see that when the cable cross-sectional area a(s) increases
the voltage decreases. In addition, when βν increases and ν

decreases the voltage decreases. Therefore, this qualitative
analysis suggests that in an axon with transport or geometrical
defects the voltage decreases.

FIG. 3. (a) Voltage for the cylindrical cable for ν = 0.7 and β0.7 = 15 (sec)0.3. (b) Voltage vs t in s = 0 for different values of βν and ν.
(c) Voltage vs s at time t = 12 sec for different values of βν and ν. The parameter values used for simulations correspond to realistic dendritic
parameters as in Ref. [54]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, and R0 = 10−4 cm. The initial condition is given by (36).
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FIG. 4. (a) Voltage for the cylindrical cable for ν = 0.7 and β0.7 = 15 (sec)0.3. (b) Voltage vs t in s = 0 for different values of βν and ν.
(c) Voltage vs s at time t = 12 sec for different values of βν and ν. The parameter values used for simulations correspond to realistic dendritic
parameters as in Ref. [54]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, and R0 = 10−4 cm. The initial condition is given by (36).

IV. CYLINDRICAL CABLE WITH CONSTANT RADIUS

When the sectional area is a constant, that is, R(s) = R0 =
const, Eq. (15) does not depend on the curvature or on the
torsion of the cable. Indeed, in this case Eq. (19) becomes

∂V (s,t)

∂t
= βνDνt

(
R0

2cMrL

∂2V (s,t)

∂s2
− V (s,t)

rMcM

)
, (34)

which is equivalent to the fractional cable equation for a
straight cylindrical cable (1). However, observe that Eq. (34)
depends on the arc length parameter (3) instead of the
laboratory frame coordinate. This shows that the natural
variables for the voltage are given by geometric quantities
of the cable. For these geometries, in the finite cable case, the
solution of Eq. (34) is given by

V (s,t) =
∑
n�0

bnEν,1

[
−βν

(
nπR0

2cMrLl
+ 1

rMcM

)
tν

]
cos nπ

s

l
,

(35)

where l is the length of the cable and Eν,�(z) is the Mittag-
Leffler function (28).

Figure 3 shows the fractional cable equation solution for a
cylindrical cable for different ν and βν values and the initial
condition

V (s,0) = A

[
1 + cos

(
sπ

l

)]
, (36)

where A = 0.05 mV cm1/2 and l = 0.13 cm. In this figure we
can see that the voltage decreases when βν increases and
ν decreases. Then anomalous diffusion implies that voltage
decreases.

Obtaining an exact solution of Eq. (34) is a difficult task for
an arbitrary initial condition. Thus, in order to study this case
we employ a numerical method. For integer derivatives, spatial
and temporal, we use a second-order finite-differences method.
Moreover, for the temporal fractional derivatives we use a
second-order scheme taken from the fractional integration
toolbox [61]. The mesh size is chosen as follows. We begin
with 1024 points along the s axis and 100 points at the
time. These numbers increase until the difference between two
successive solutions is almost null. The number of spatial and
temporal points used in the simulations are shown in Table I.
The system is solved using the Gauss-Seidel iterative method,
with a tolerance of 10−10. In addition, we impose the Neumann
boundary conditions [59]

∂V (s0,t)

∂s
= ∂V (sns

,t)

∂s
= 0. (37)

Figure 4 shows the numerical solution of Eq. (34) for a
cylindrical cable for different ν and βν values and the initial
condition (36). This figure shows that the numerical solution
is close to the analytical solution.

A more realistic initial condition is given by the function

V (s,0) = A√
2πσ

e−s2/2σ 2
, (38)

FIG. 5. (a) Voltage for the cylindrical cable for ν = 0.5 and β0.5 = 16 (sec)0.5. (b) Voltage vs t in s = 0 for different values of βν and ν.
(c) Voltage vs s at time t = 7 sec for different values of βν and ν. The parameter values used for simulations correspond to realistic dendritic
parameters as in Ref. [54]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, and R0 = 10−4 cm. The initial condition is given by (38).
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TABLE II. Numerical values of ν and βν .

ν βν

1 1
0.9 1.5 (sec)0.1

0.7 4 (sec)0.3

0.5 16 (sec)0.5

0.3 37 (sec)0.7

where A = 0.00128 mV cm1/2 and σ = 0.004 cm. Figure 5
shows the numerical solution of Eq. (34) for different ν and
βν values and the initial condition (38). The numerical values
of ν and βν used in this simulation are shown in Table II.

Notice that both the exact and numerical solutions of
Eq. (34) provide a voltage that decreases when βν increases
and ν decreases. Thus anomalous diffusion implies that voltage
decreases. It is worth mentioning that some experimental
studies show that in brain tumors there is anomalous dif-
fusion [19–21]. In addition, in different neurodegenerative

diseases disrupted axonal transport is reported [24–26]. In
these cases, the fractional cable equation implies that the
voltage decreases.

In the next section we will study Eq. (19) with nonconstant
radius.

V. CABLES WITH SWELLINGS

It can be shown that when a cable has vanished curvature
and the cable radius is given by

R(s) = R0(1 + α1 sin α2s) (39)

or

R(s) = R0(1 + α1 sin2 α2s), (40)

the spatial equation (24) is similar to the spatial equation for
the straight cylindrical cable. For this reason, the voltage in a
cable with radius (39) or (40) is similar to the voltage in the
straight cylindrical cable [56]. Hence, in the fractional case,
when a cable has vanished curvature and the radius is given
by (39) or (40) the voltage will be similar to voltage (35).

FIG. 6. (a) Cable with the geometry in Eq. (42). (b) Voltage for the cable with the radius (42), ν = 0.5, and β0.5 = 16 (sec)0.5. (c) Voltage
vs t in s = 0 for different values of βν and ν. (d) Voltage vs s at time t = 7 sec for different values of βν and ν. The parameter values used for
simulations correspond to realistic dendritic parameters as in Ref. [54]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm,
α1 = 10, α2 = 0.11 cm−2, and α3 = 0 cm. The initial condition is given by (38).
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FIG. 7. (a) Cable with the geometry in Eq. (43). (b) Voltage for the cable with a Gaussian train swelling, radius (43), ν = 0.5, and
β0.5 = 16 (sec)0.5. (c) Voltage vs t in s = 0 for different values of βν and ν. (d) Voltage vs s at time t = 7 sec for different values of βν and
ν. The parameter values used for simulations correspond to realistic dendritic parameters as in Ref. [54]: cM = 1mF/cm2, rM = 3000 � cm2,
rL = 100 � cm, R0 = 10−4 cm, α1 = 10, α2 = 0.11 cm−2, and α3 = 0.06 cm. The initial condition is given by (38).

A. Circular cross section

The cable equation (19) is hard to solve for a general cable geometry. However, for some cases this equation can be simplified.
For instance, when the cable has a circular cross section, namely, when R(θ,s) = R(s), Eq. (19) does not depend on the torsion
of the cable τ and becomes

∂V (s,t)

∂t
= βνDνt

⎛
⎝ π ∂

∂s

(
R2(s) ∂V (s,t)

∂s

)
rLcMR(s)

∫ 2π

0 dθ

√
[1 − κ(s)R(s) cos θ ]2 + (

dR(s)
ds

)2
− V (s,t)

rMcM

⎞
⎠. (41)

In the following sections we will study cables that model axons
with swellings.

B. Cable with Gaussian swelling

In different neurodegenerative diseases, focal axonal
swellings are found such as in Fig. 6(a) (see, for example, [38]).
This geometry can be modeled with a cable with radius

R(s) = R0(1 + α1e
−α2(s−α3)2

). (42)

For this cable geometry, the initial condition is given by (38)
and the numerical solution of Eq. (41) can be seen in
Figs. 6(b)–6(d). In these figures we can observe that the
voltage decreases faster than the voltage of the cylindrical
cable. In addition, notice that for this cable geometry when βν

increases and ν decreases the voltage of the cable decreases
faster than when β1 = 1 and ν = 1. Then, in an axon with
a swelling and anomalous diffusion the voltage strongly
decreases.
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FIG. 8. (a) Cable with the geometry in Eq. (44). (b) Voltage for the cable with the radius (44), ν = 0.5, and β0.5 = 16 (sec)0.5. (c) Voltage
vs t in s = 0 for different values of βν and ν. (d) Voltage vs s at time t = 7 sec for different values of βν and ν. The parameter values used for
simulations correspond to realistic dendritic parameters as in Ref. [54]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm,
α1 = 10, α2 = 0.11 cm−2, α3 = 0 cm, α4 = 10, and α5 = 0.11 cm−1. The initial condition is given by (38).

C. Cable with Gaussian swellings

In this section we study the numerical solution for Eq. (41)
for a cable with the radius

R(s) = R0(1 + α1e
−α2s

2 + α1e
−α2(s−α3)2

+α1e
−α2(s−2α3)2 + α1e

−α2(s−3α3)2
) (43)

and with the initial condition (38). A cable with this geometry
can be seen in Fig. 7(a). It is worth mentioning that axons with
this geometry have been reported in different studies [48]. The
numerical solution of Eq. (41) for this cable radius can be
observed in Figs. 7(b)–7(d). In this case the voltage decreases
faster than the voltage of the cylindrical cable. Moreover, when
βν increases and ν decreases, the voltage decreases faster than
nonfractional voltage (β1 = ν = 1). In addition, we can see
that the voltage in a cable with this geometry decreases faster
than the voltage in a cable with the geometry in Eq. (42).

D. Amorphous swelling

A more realistic model for an axon with swelling is given
by Fig. 8(a). This geometry can be described by a cable with

an amorphous swelling with radius

R(θ,s) = R0(1 + α1e
−α2(s−α3)2 + α4 sin θ cos α5s). (44)

The numerical solution of the voltage for this cable can be seen
in Figs. 8(b)–8(d). This voltage is different from the voltage for
the cable with the radius (42). Thus geometric inhomogeneities
affect the voltage propagation in a cable.

VI. SUMMARY

In different neurodegenerative diseases such as multiple
sclerosis, Alzheimer’s disease, and Parkinson’s disease, ab-
normal accumulations of proteins and organelles are reported
that disrupt axonal transport. In addition, recently different
experimental studies have found anomalous diffusion in brain
tissues. Notably, this diffusion is expressed through fractional
calculus. Another hallmark of some neurodegenerative dis-
eases is given by axonal discrete swellings along the axons.

In order to study the voltage propagation in a cable with
both of these hallmarks of the neurodegenerative diseases, we
proposed a fractional cable equation with nontrivial geometry.
This equation depends on geometric quantities such as the
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curvature and torsion of the cable, as well as the fractional
parameters βν and ν. It is worth mentioning that the parameter
βν depends on ν. In this respect, we showed that with regard
to modeling a system where the voltage decreases, we should
suppose that βν increases when ν decreases. Furthermore, in
this cable equation the strongest fractional effect is obtained
when ν is close to zero.

For a straight cylinder with a constant radius we showed
that the voltage decreases when the fractional effect increases.
Notice that in this case the cable does not have swellings.
Then, if there is an abnormal accumulation of proteins and
organelles in an axon, the diffusion can be hindered and
become anomalous. In this case our results suggest that the
voltage decreases in axons. Indeed, when the fractional effect
is strong, the voltage may be blocked.

In addition, cables with swellings and anomalous diffusion
were studied. Regarding this, we studied cable geometries
similar to some axons reported in the literature. For all these
cable geometries, we found that when the fractional effect

increases, the voltage decreases. Furthermore, we found that
the voltage dramatically decreases when the cable has a big
swelling or has many swellings. These results also suggested
that in axons with swellings and abnormal accumulations of
proteins and organelles the voltage decreases and may be
blocked.

How axonal transport defects and deformed geometry of
axons are related each other is an important problem. In order
to study this problem, in our model the geometric quantities
of the cable should be related to the parameters ν and βν .
Future work should study the above problem and the active
case, where nonlinear interactions play an important role.
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