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Pattern production through a chiral chasing mechanism
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Recent experiments on zebrafish pigmentation suggests that their typical black and white striped skin pattern
is made up of a number of interacting chromatophore families. Specifically, two of these cell families have
been shown to interact through a nonlocal chasing mechanism, which has previously been modeled using
integro-differential equations. We extend this framework to include the experimentally observed fact that the cells
often exhibit chiral movement, in that the cells chase, and run away, at angles different to the line connecting their
centers. This framework is simplified through the use of multiple small limits leading to a coupled set of partial
differential equations which are amenable to Fourier analysis. This analysis results in the production of dispersion
relations and necessary conditions for a patterning instability to occur. Beyond the theoretical development and
the production of new pattern planiforms we are able to corroborate the experimental hypothesis that the global
pigmentation patterns can be dependent on the chirality of the chromatophores.

DOI: 10.1103/PhysRevE.96.032401

I. INTRODUCTION

Developmental systems are able to create and sustain a
wide variety of patterns, from digit formation [1] to animal
skin pigmentation [2]. However, despite decades of research,
an experimentally tested mechanistic theory of developmental
pattern formation still eludes us [3].

Many mathematical theories of pattern formation exist [4],
some are hydrodynamic in behavior [5], while others look
at a more mechanical descriptions of domain boundaries,
resulting in cellular patterns [6]. Perhaps the most success-
ful theory of patterning stems from Alan Turing’s seminal
work on the chemical theory of morphogenesis [7], which
showed that two distinct diffusible populations (known as
morphogens) could produce stationary heterogeneous spatial
patterns if the interactions of the two populations satisfied
specific criteria. Pluripotent cells would then be able to detect
the heterogeneous morphogen distribution and differentiate
based on the local environment, giving rise to differentiated
and, hence, patterned structures [8]. This theory was highly
counterintuitive because the interaction conditions assume that
in the absence of diffusion the population densities would
evolve to a stable and stationary value. Thus, it is diffusion
(which is normally thought of as a homogenizing process) that
drives the system to spatial heterogeneity [9]. Since Turing’s
original work, his theory has been extended in multiple
directions [10,11] including higher order networks, stochastic
effects, and delays [12–17].

Turing’s morphogens are usually thought to be diffusible
proteins. However, although there are a number of potential
candidates for putative morphogens (e.g., TGF-β, WNT, DKK
[18,19], and Hox genes [20]) the hunt for the first conclusive
developmental evidence of a Turing structure at the molec-
ular level continues. More recently, experimental work has
suggested that the morphogens may be the cells themselves,
rather than the cells reading chemical gradients [21–23].

Specifically, it has been suggested that the black and white
stripes of the zebrafish may be formed due to the movement
and interactions of three types of pigment cells, known
as chromatophores. The dark stripes of the pattern consist
of melanophores (black cells containing melanin granules)
and iridophores (silvery and/or white cells containing ultra-

fine reflecting platelets), while the light stripes consist of
xanthophores (yellow to orange cells containing pteridine and
carotenoid granules) and iridophores [24,25].

When the melanophores and xanthophores are extracted
and plated together they are seen to interact and move relative
to one another. In particular, wild-type xanthophores move
more slowly than melanophores. However, the xanthophores
are able to extrude long pseudopodia which, on contact with
a melanophore, induce the xanthophore to move closer to the
melanophore, while the melanophore is induced to move away
from the xanthophore, resulting in a chasing form of motion.
Critically, the movement direction of the xanthophores and
melanophores is not along the line connecting their cell centers.
Indeed, their directed motions can be rotated at a significant
angle away from this line; see Fig. 1 [26–28]. Moreover,
the pigment cells of mutant fish are seen to exhibit different
behaviors and different patterns, suggesting a correspondence
between microscale cell behavior and mesoscale patterning of
the skin.

Including the attraction-repulsion dynamics suggested by
the experimental observations into the standard reaction-
diffusion framework has already been done by Painter, Sher-
ratt, and coauthors [29,30], and their research shows that such
a chasing mechanism cannot support stationary heterogeneity
without the addition of further assumptions, confirming the
earlier result of Woolley et al. [27]. Here we will extend their
work by including the rotational disparity of the chasing and
evading agents. It should be noted that although we use the
zebrafish pigmentation observations as a motivating example
this paper focuses on introducing the modeling framework and
illustrating the diversity of patterns contained within. However,
we are able to generate the conclusion that the global pattern
does depend on the microscale angles, as suggested by Kondo’s
experiments [31].

In Sec. II we derive the basic framework from a two-
dimensional space-jump model in a complementary approach
to Ref. [32]. Standard linearization arguments and Fourier
analysis are used to derive conditions under which patterns
can form and these are shown to hold through numerical
simulations in Sec. III. Finally, we summarize the variety of
different dynamics exhibited in Sec. IV.
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FIG. 1. When the centers of two individuals from different
populations come within a distance R of one another the cell of
type u will move a distance r1δs towards the cell of type v, while the
cell of type v will move a distance r2δs away from u. Note that δs

is some spatial length scale used to discretize the space, while r1/r2

measures the ratio of movement distance between the two species.
Complicating matters further is the fact that the populations u and v do
not move along the line joining their centers. Instead, the populations
u and v travel at angles θ1 and θ2, respectively, to this line. Initially,
we consider the populations moving on an infinite domain.

II. FRAMEWORK

Although we will initially not be considering the influence
of diffusion in the results section, as we will be focusing on
the angular chasing mechanism, we will include diffusive
movement later in Sec. III A 3. The inclusion of diffusion
is in order to understand how this additional movement
process effects the patterns produced by the angular chasing
mechanism. Equally, it allows us to introduce the reader to
the modeling framework through a familiar example. The
diffusion operator is derived in Appendix A.

We now consider the situation of angular chasing, where the
motion of the populations is no longer independent of location,
but rather the motion of one population depends on the
surrounding densities of another population. Specifically, we
consider the following setup: two continuous cell populations,
u and v, in an infinite domain two-dimensional domain are
able to nonlocally interact over a range R, which mirrors the
nonlocal interaction abilities of the cells in the zebrafish. When
the cells of type u sense the cells of type v they move a distance
r1x horizontally and r1y vertically, such that the movement
vector makes a fixed angle θ1, against the line joining the
cells, measured in an anticlockwise manner. Similarly, the v

cells respond by moving a distance r2x and r2y producing a
fixed angle θ2; see Fig. 1.

For total accuracy we should start the modeling at the
individual scale of the cells using a stochastic formalism
and derive mean-field limit differential equations, which
define the densities. However, assuming that the patterning

process involves a large number of cells we can appeal to
the weak noise limit [33], meaning that we can effectively
use individuals and density interchangeably, as they are
approximately proportional.

The time evolution equation for this system defines the
net flux of population density at a given point, (x,y). Each
species’ flux is made up of two components, the rate at which
the cells jump to the given point and the rate at which the
cells jump from the given point. For example, using the Law
of Mass Action, the flux of population u away from (x,y) is
proportional to the product of the density of u at (x,y) at time
t [i.e., u(x,y,t)] and the density of v at some point within a
circle of radius R of (x,y) at time t . Defining r ∈ [0,R], α ∈
[0,2π ] and j > 0 to be the constant of proportionality, then the
interaction equation of the flux of u away from (x,y) is given
by the following interaction equation [compare with Eq. (A1)]:

v(x + r cos(α),y + r sin(α)) + u(x,y)

j−→ u(x + r1x,y + r1y) + v(x + r cos(α)

+ r2x,y + r sin(α) + r2y), (1)

where ril , i ∈ {1,2}, l ∈ {x,y}, have the specific form
r1x = r1δx cos(θ1) and r1y = r1δy sin(θ1), with r2x and r2y

defined similarly. Later we will fix δx = δy = δs justifying
the variables illustrated in Fig. 1. Further, we should note that
Eq. (1) holds for all r ∈ [0,R] and α ∈ [0,2π ]. Finally, the
time dependence is suppressed in the above and following
derivation for brevity.

Using the Law of Mass Action on Eq. (1) and integrating
over the circle or radius R, centered at (x,y), means that the
flux of u out of the point (x,y) is given by∫ 2π

0

∫ R

0
ju(x,y)v(x + r cos(α),y + r sin(α))r dr dα, (2)

where we note that the flux has the form of an integral because
the interactions can occur at any point within the circle of
radius R. Further details can be found in Appendix B.

In order to simplify the evolution equations we assume that
the radius of detection is small, namely, R = δs , and take the
limit of R = δx = δy = δs tending to zero. In Appendix C it
is demonstrated how Taylor expanding the resulting integro-
differential equations, setting J = δ4

s jπ/3 to remain constant
and taking the limit δs → 0 leads to the following closed
system of partial differential equations (PDEs):

∂u

∂t
= 3J r2

1

4
∇2(uv) − r1J∇ · [uM(θ1)∇v], (3)

∂v

∂t
= 3J r2

2

4
∇2(uv) + r2J∇ · [vM(θ2)∇u], (4)

where

M(θ ) =
(

cos(θ ) − sin(θ )

sin(θ ) cos(θ )

)
(5)

is the standard two-dimensional rotation operator.
If we consider Eq. (3) [with analogous insights holding for

Eq. (4)] we see that ∇2(uv) is the local sensing term, while
the ∇ · [uM(θ )∇v] term is the nonlocal sensing term, in that
u is sensing the gradient in v. This can be seen in the case that
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we consider v to be initially a uniform field. In this case ∇v =
0, but there should still be movement, which corresponds to
the term ∇2(uv), i.e., random motion, with a diffusion rate
proportional to the v concentration. Further, ∇2(uv) does not
contain an angle dependent term because if the two cells are
at the same point there cannot be a preferred direction. The
first term does not appear in the work of Painter, Sherratt, and
coauthors [29,30] as they consider only nonlocal interactions.

In the production of Eqs. (3) and (4) we have used
many small-scale approximations. Preliminary stochastic,
individual-based simulations suggest that at least some of the
patterns present in the continuum case (see Sec. III) are present
in the discrete case too (data not shown). However, the rigorous
demonstration of this fact is still in its infancy, and the author
intends to return to this question as a subject of future work.

A. Additional reactions

As we will see later the rotational dispersion as defined in
Sec. II cannot solely support patterning, thus we include local

interactions defined by the functions f (u,v) and g(u,v), which
can simply be added to Eqs. (3) and (4). The functions
f and g model the kinetic terms and are, thus, usually
nonlinear. Whence, as seen in Appendix D, we are able
to apply the standard Turing linear stability analysis, in
order to derive conditions under which patterning occurs.
Specifically, in Appendix D we assume that in the absence
of motion, J = 0, there is a stable steady state, (u0,v0)
satisfying f (u0,v0) = g(u0,v0) = 0, while in the presence of
motion, J > 0, we derive sufficient conditions that cause this
steady state to be linearly unstable, resulting in a motion-
driven instability that drives the system into a heterogeneous
state. Although the linear stability analysis demonstrates that
the uniform steady state is unstable, we have to carefully
choose nonlinear terms in order to bound the heterogeneous
solution.

From Appendix D we discover that a patterning in-
stability requires us to satisfy the following inequal-
ities:

fu + gv < 0, (6)

fugv − fvgu > 0, (7)

4 cos (θ1) cos (θ2) − 3r1 cos (θ2) + 3 cos (θ1)r2 > 0, (8)(
{r2[4 cos(θ2) + 3r2]fv − 3r1

2gv}v0

4
− {r1[4 cos(θ1) − 3r1]gu + 3fur2

2}u0

4

)

< −
√

r1r2[4 cos(θ1) cos(θ2) + 3 cos(θ1)r2 − 3r1 cos(θ2)]u0v0(fugv − fvgu). (9)

Inequalities (6) to (9) are denoted patterning conditions
P 1–P 4, respectively, and form the four critical stability
conditions that will keep the steady state stable in the absence
of motion, but be driven to instability when motion is
incorporated.

Here we note a few key observation about the conditions
P 1–P 4:

(1) If interactions are not considered, f = g = 0, then no
unstable frequencies can exist in the presence of motion [as
seen from Eqs. (D4) and (D5)], hence, no patterns can form.
Thus, reactions are required in this framework.

(2) Since the four criteria depend (at most) only on the
cosine of the angles, then any stability criterion derived for
(θ1,θ2) would also hold for (−θ1,θ2), (θ1, − θ2), and (−θ1, −
θ2). Hence, we can restrict our analysis to the interval (θ1,θ2) ∈
[0,π ] × [0,π ].

(3) Condition P 3 depends solely on the geometric vari-
ables (r1,r2,θ1,θ2). Further, P 3 is illustrated for multiple values
of (r1,r2) in Fig. 2, and, so we observe that the valid patterning
values of (θ1,θ2) are highly restricted. Critically, depending
on the values of (r1,r2) there can be two disjoint regions of
(θ1,θ2) that are not admissible [Fig. 2(a)] or just one region
[Fig. 2(b)]. Presently, we focus on the single region form, and,
thus, we are able to rearrange P 3 to provide the single-valued
inequality

θ2 > max

{
0, arccos

[
3r2 cos(θ1)

3r1 − 4 cos(θ1)

]}
.

(4) For all values of r1 and r2, the “high-θ1-low-θ2”
parameter region is always outside of the region defined by
P 3. Note that high and low angles are used to colloquially
define appropriate regions of the interval [0,π ]. For an example
of “high-θ1-low-θ2” see the white region of Fig. 2(b). The
interpretation of this region is that the “chaser” and “chased”
cells run away from one another, as each interaction will lead
to a wider separation than their previous states. Intuitively,
under these conditions, no pattern can form.

(5) Since inequality P 3 depends only on r1, r2, θ1, and
θ2 the geometry of the chasing cells fundamentally influences
the stability of the system, independently of the interaction
functions f and g. This means that it is possible to set the
chasing dynamic parameters, (r1,r2,θ1,θ2), in such a way that
the system will never pattern, regardless of the interaction
functional forms.

(6) None of the four inequalities depend on the reaction
rate parameter J , thus, instability is possible no matter how
slow the interactions occur, as long as J is positive.

(7) As we will see in Sec. III patterns can arise when
θ1 = θ2. Equally, patterns are possible when r1 = r2.

(8) The previous two points highlight one of the key
differences between the requirements of chiral chasing and
Turing patterns. Specifically Turing patterns demand that the
diffusion coefficients of the two morphogen populations are
widely different. Here the movement rate and geometry of
the chasing and chased populations can all be the same and
patterns will still occur.
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FIG. 2. Illustrating condition P 3 for different values of r1 and r2. In (a) and (b) the black region shows where P 3 is satisfied for specific
examples of (r1,r2) noted beneath each figure, respectively. (c) Multiple different possible configurations of the (θ1,θ2) space. Each small square
represents inequality condition P 3 evaluated over (θ1,θ2) ∈ [0,π ] × [0,π ] with the corresponding values of r1 and r2 shown on the axes. The
values of r1 and r2 range over all possible combinations of {0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2}.

(9) The most likely chosen wave mode can be derived from
the dispersion relation in Appendix D. Critically, although it
will be dependent on the first derivatives and steady states of
the functional forms, it can be seen that frequencies will also
be proportional to J−1/2. Thus, even if the reaction kinetics
and geometry of the chasing dynamics are fixed, we will still
have explicit control over the pattern wavelength through the
reaction rate, J .

III. RESULTS

In this section we look at multiple kinetic forms and even
add diffusion into the system. Our goal is to illustrate not only
the pattern forms that are possible, but also demonstrate how
the rotational motion offers new types of previously unseen
dynamics. Note that because we are application independent,
all variables and results are in arbitrary consistent units. Since
we have seen that the instability is independent of J then
throughout the results section we fix J = 1. Equally, since
we want to maintain a large (θ1,θ2) parameter region we fix
r1 = 1, r2 = 2, which produces a parameter region as seen in
Fig. 2(b). Thus, we are left with only a minority of angles in
the “high-θ1-low-θ2” region that are unable to pattern.

It should be noted that the analysis in Sec. II and
Appendix D does not include the influence of boundary con-
ditions. Including boundaries simply restricts the frequencies,
k, that can appear. However, unless the wave modes are highly
constrained, this extra restriction does not help specify what
pattern (e.g., spots, stripes, stationary or nonstationary) is
likely to appear in the full nonlinear case as there are usually
too many patterning modes available to accurately predict
which one will be chosen by the random initial conditions.
Thus, we depend on the insights provided by simulations as to
the influence of the boundary upon the solution. Specifically,
we will alter the simulation domain geometry to include circles
and squares and vary the boundary conditions to include both
zero-flux, periodic, and mixed conditions.

Finally, it should be reiterated that the Schnakenberg
kinetics, presented in Sec. III A, and the kinetics derived later
are chosen on an ad hoc basis. Specifically, we choose a

variety of prototypical patterning kinetics to demonstrate the
diversity of available patterns rather than focus on a single
experimentally motivated case.

A. Schnakenberg kinetics

The first set of kinetics we consider are a modified form of
Turing kinetics known as the Schnakenberg system [34]

f = α − u + u2v − εu3, (10)

g = β − u2v − εv3. (11)

Note that in addition to the standard kinetics a nonlinear
term with coefficient ε > 0 has been subtracted from each
interaction function. In the case that ε = 0 it can be shown
that the Schnakenberg kinetics are either stable or have limit
cycle behavior, depending on the coefficients α and β [34,35].
Critically, the kinetics never cause either population density
to blow up. Thus, by subtracting a cubic nonlinearity of each
population from their, respective, interaction functions, we
not only preserve the positivity of a solution (i.e., a solution
beginning with u,v > 0 will always remain in the positive
population quadrant) but also the populations are further
constrained to exhibit finite bounded solutions for all time
(i.e., blow up will not occur).

The above arguments only work in the case that we ignore
space and treat the kinetics as functional forms for ordinary
differential equations. Once spatial motion is considered, we
can no longer guarantee finite populations for all time, which is
why the cubic terms are subtracted from the kinetics. The idea
is that if any population begins to increase without bound, then
the negative cubic terms will dominate the equations and cause
the Eqs. (10) and (11) to be negative, resulting in a negative
time derivative for large population and, hence, a reduction
in the population. Hence we contradict the assumption that
a population could grow without bound. We then assume
that the argument holds similarly in the spatially extended
case.
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Assuming ε � 1 conditions P 1−P 4 take the form

P 1 : 0 < 1 + (α + β)2 − 2
β

(α + β)
; (12)

P 2 : 0 < (α + β)2; (13)

P 3 : 0 < 4 cos(θ1) cos(θ2) + 6 cos(θ1) − 3 cos(θ2); (14)

P 4 : 2[cos(θ1) + cos(θ2)] − 15

4
+ 3

(α + β)

β
< −

√
2(α + β)

β
[4 cos(θ1) cos(θ2) + 6 cos(θ1) − 3 cos(θ2)]. (15)

Firstly, we note that P 2 is always trivially satisfied, the other
three conditions depend on (α,β,θ1,θ2).

In Fig. 3 we illustrate the kinetic and angular inequalities
separately. For fixed values of (θ1,θ2) we observe that the
patterning region in the (α,β) plane is unbounded. In particular,
for any given value of α we can always choose β big
enough to satisfy P 4. However, given fixed values of (α,β)
the viable region in the (θ1,θ2) parameter space is much
smaller. Critically, π/2 < θ1,θ2 < π , thus, in terms of the
interpretation of the angles, the “chaser” would actually be
running away from the “chased,” while the “chased” would be
running towards the “chaser,” i.e., the roles would appear to
be reversed.

Figure 4 illustrates the patterns possible when parameters
are chosen in the unstable regions of Fig. 3. We clearly observe
that standard spot patterns are able to form, similar to a Turing
pattern. However, although the pattern is stable in terms of
the number and size of spots the patterns in Figs. 4(a) and
4(b) are able to slowly process around their circular domain.
Specifically, we mark a spot on the outer ring with an asterisk
and a spot on the inner ring with an arrow head. These track
their respective spots and aid in the visualisation of rotation.
Critically, in both Figs. 4(a) and 4(b) the outer ring of spots
rotates in a clockwise manner. This contrasts with the inner
ring of spots, which rotates anticlockwise in Fig. 4(a) but does
not move in Fig. 4(b). The only difference between these two
simulations is the size of the domain. In Fig. 4(a) the radius
is 11 and is able to sustain 12 spots in the outer ring and five
in the inner ring. This can be compared with Fig. 4(b), which
has radius 12 and is able to support 13 spots in the outer ring,
six hexagonally packed spots in the inner ring, and one central
spot.

These rotating patterns can be further compared with
Fig. 4(c), which illustrates the exact same simulation but on a
square domain of side length 20. Now the pattern evolves to
a stationary stable state. Overall, we are able to use Fig. 4 to
clearly show that the boundary of the simulation has a critical
influence on the evolution of the patterned state.

Following on from this we then consider the impact of
the kinetics of the simulation. As noted in Fig. 3(a), patterns
can always be formed for large enough values of β. Thus,
in Fig. 5 we illustrate the influence of increasing β, while
keeping all other parameters, initial conditions, and boundary
conditions the same. For small values of β we find only
stationary structures and a transition from spots to stripes that
matches the insights gained from a standard Turing pattern [see
Figs. 5(a)–5(d)]. However, for large enough β the system forms
a central region of low density surrounded by a high-density
“ring.” This high density ring then has multiple thin “tendrils,”

FIG. 3. Possible parameter regions for a patterning instability to
occur in the Schnakenberg kinetics. (a) The feasible (α,β) parameter
region when (θ1,θ2) = (1.8,2.2), note condition P 2 is satisfied
everywhere under these kinetics. (b) The feasible (θ1,θ2) parameter
region when (α,β) = (0.1,0.9).
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FIG. 4. Patterns present at one parameter set of the Schnakenberg kinetics (without diffusion). (a) and (b) Five different time points of the
simulation, t = 3000,3500,4000,4500,5000. The figures illustrate a stable rotating pattern that appears on circular domains of radius (a) 11
and (b) 12. The yellow asterisk and white arrow head indicate the motion of a particular spot, thus making the rotation easier to see. (c) The
equations solved on a square domain (side length 20), with the same parameter values and boundary conditions as (a) and (b). The pattern in
(c) is stationary. (d) The relative angles and distance of the cell movement. The qualitative motion of the u population is given by the light
yellow cell on the left, while the dark black cell on the right illustrates the qualitative motion of the v population (cf. Fig. 1). In this, and all
other schematic images, the angles, θ1 and θ2, are measured relative to the dashed, horizontal line joining their cell centers. Parameters are
α = 0.1, β = 0.9, ε = 10−2, θ1 = 1.8, θ2 = −2.2, boundary conditions are zero flux everywhere and the same uniformly distributed random
initial initial conditions were used in each simulation. The pseudocolor scale spans 7 (arbitrary units) in the spot peak to 0.1 (arbitrary units)
in the trough, interspot region. See Ref. [36] for an animation of (a).

or “arms,” of high density linking it to the boundary. The
number of tendrils is dependent on β. Once this pattern is
formed it appears to process stably in a clockwise manner,
even though we are on a square domain [see Figs. 5(e) and
5(f)].

1. Periodic boundary conditions

Figure 5 demonstrated that the patterns are highly sensitive
to boundary geometry. In this section we briefly investigate the
influence of changing the boundary conditions. Specifically,
we simulate the exact same system as that seen in Fig. 5, but the
left and right boundary conditions are periodically identified,
and the top and bottom boundaries are periodically identified.
Thus, the simulations are topologically on a torus.

When β = 1.4 a stationary, regular array of spots is
produced, similar to that seen in Fig. 5(a) (data not shown).
Equally, when β = 2.3 the simulation simply converges to a
stationary labyrinthine pattern, similar to that seen in Fig. 5(c)
(data not shown). However, the cases of β = 1.9, 3.2, 3.7 are
quite different. Specifically, the rotating patterns of Figs. 5(e)
and 5(f) become stationary labyrinthine patterns that produce
an approximately hexagonal grid (data not shown). Further,
the β = 1.9 case does not seem to converge to a steady state

[see Fig. 6(a)], but rather the labyrinthine patterns appears
to constantly evolve, writhe and twist. Finally, although the
β = 3.2 case appears to settle into a final labyrinthine pattern,
the global pattern is not stationary. Critically, it is seen to
slowly drift down the domain [compare the left and right
images of Fig. 6(b)].

2. Mixed boundary conditions

Having simulated both zero-flux and periodic boundary
conditions separately, we now seek to combine the influences
in this section. Specifically, Fig. 7 simulates the exact
same kinetics, initial conditions and parameter values as in
Sec. III A, except that the zero-flux boundary condition is
defined only on the left and right boundaries. The top and
bottom boundaries are assumed to be periodic. Thus, the
simulations are topologically on a cylinder. Each panel of Fig. 7
illustrates increasing time points (see caption) demonstrating
pattern evolution.

Intriguingly, the simulations outcomes are quite different
from either of the cases in which the boundary conditions are
purely zero-flux, or purely periodic. Specifically, although the
patterns transitions between spots and stripes at broadly the
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FIG. 5. A parameter sweep of the Schnakenberg kinetics (without diffusion) over β. Patterns (a)–(d) are stationary, while (e) and (f) produce
stable rotating “rings” with five and six “arms,” respectively. Parameters are the same as in Fig. 4 except for β, which is noted beneath each
subfigure. See Ref. [36] for an animation of (f).

same values of β (compare Figs. 5 and 7), the patterns are able
to constantly evolve in unusual ways.

Figure 7(a) illustrates a simulation of moving spots;
however, the spots do not all move in the same direction.
The three left-hand spot columns travel up the domain with a
consistent hexagonal planiform. The two right-hand columns
travel down the domain [see the illustrated black arrows on
Fig. 7(a)], but their spacing is much less consistent and the
spots often coalesce and split apart [see the top right of the
center image of Fig. 7(a) for an example of spot splitting].
Here the “shuttling” movement dynamics of the spots can be

compared with the simulations from Sec. III A and Sec. III A 1,
where it was noted that in both cases the spot patterns were
stationary.

When β = 1.9,2.3, or 2.8 the simulations are much simpler
to understand. The pattern evolves to a looped labyrinthine
state. This state is then fixed relative to a moving frame of
reference, as the pattern simply moves up the solution domain
at a constant rate [see Fig. 7(b) as a prototypical example].
This again can be compared with the single type boundary
conditions in the previous two sections, where the patterns
were stationary

FIG. 6. Simulations from Figs. 5(b) and 5(d) repeated, but with periodic boundary conditions linking the left and right boundaries, as well
as the top and bottom boundaries. (a) Time points shown (left to right) are 210, 300, 650, 850, and 1000. (b) Time points shown (left to right)
are 600 and 1000. Parameters and all other conditions are the same as Fig. 5 except for β, which is noted beneath each subfigure. See Ref. [36]
for an animation of (a).
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FIG. 7. Simulations from Figs. 5(a), 5(c), 5(d), and 5(e) repeated, but with mixed boundary conditions. Specifically the top and bottom
boundaries are linked periodically, while the left and right boundaries have zero-flux boundary conditions. Time points shown (left to right) are
(a) 280, 350, 420, 490 and 560; (b) 400, 450, 500, 550, 600; (c, d) 400, 480, 560, 640, 720. Parameters and all other conditions are the same as
Fig. 5. The β parameter is noted beneath each subfigure. See Ref. [36] for an animation of (a) and (d).

In contrast to Figs. 7(a) and 7(b) the simulation illustrated in
Fig. 7(c) does not translate up or down the domain. Instead, we
observe enclosed structures that oscillate between two states.
For example if we label the subfigures of Fig. 7(c) 1–5, left to
right, respectively, then subfigures 1, 3, and 5 present one form
of structure, while subfigures 2 and 4 illustrate the alternative
oscillation form.

Finally, Fig. 7(d) illustrates the most complex dynamics of
all, namely, the labyrinthine pattern is constantly evolving. Si-
multaneously the pattern undergoes a noticeable upwards drift.

In summary Sec. III A, Sec. III A 1, and Sec. III A 2 have
illustrated that the patterns producible within the chiral chasing
mechanism are incredibly complex. Moreover, the patterns de-
pend heavily on the boundary conditions, spatial geometry, and
parameter values. This sensitivity to the noted factors appear
to be more critical in the chasing mechanism than in a simple
Turing pattern case, where, in general, it is seen that zero-flux
boundary conditions often produce the same outcomes as
periodic boundary conditions since zero-flux conditions are
a subsymmetry of the periodic boundary conditions.

3. Schnakenberg kinetics with diffusion

In Sec. III A we saw that the Schnakenberg kinetics heavily
restrict the angles that can lead to a patterning instability.
In order to maximize the patterning domain we add in the

assumption that the morphogens are allowed to diffuse with
constant, positive diffusion rates, Du and Dv , respectively.
Further, we choose the diffusion rates to ensure that the system
is Turing unstable to begin with. Hence, the chasing dynamic
becomes a perturbation around the original Turing pattern, and
we can question how the pattern changes with the angle.

Specifically, we consider the equations

∂u

∂t
= Du∇2u + 3J r2

1

4
∇2(uv) − r1J∇

· [uM(θ1)∇v] + α − u + u2v − εu3, (16)

∂v

∂t
= Dv∇2v + 3J r2

2

4
∇2(uv) + r2J∇

· [vM(θ2)∇u] + β − u2v − εv3, (17)

where, as before, r1 = 1 and r2 = 2. Note that although we will
be also fixing J = 1 during the simulations of the equations,
we allow the variable to remain in the equations to illustrate its
appearance in the conditions P 3 and P 4 and, further, illustrate
that if J = 0, then the conditions simplify to the standard
Turing conditions. The Fourier analysis in Appendix D can be
applied nearly identically to Eqs. (16) and (17). We note that
conditions P 1 and P 2 are identical and that we can derive the
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following forms for P 3 and P 4:

P 3 : 0 <
J 2β[4 cos(θ1) cos(θ2) + 6 cos(θ1) − 3 cos(θ2)]

2(α + β)
+ 3J

[
Du(α + β) + βDv

4(α + β)2

]
+ DuDv; (18)

P 4 :
J

4
[8 cos(θ1)β + 8 cos(θ2)β − 15β + 12(α + β)] + Du(α + β)2 + Dv

α − β

(α + β)

< −2(α + β)

√
J 2β[4 cos(θ1) cos(θ2) + 6 cos(θ1) − 3 cos(θ2)]

2(α + β)
+ 3J

[
Du(α + β) + βDv

4(α + β)2

]
+ DuDv. (19)

Figure 8(a) demonstrates that by adding diffusion into the
equation many more values of (θ1,θ2) can drive the uniform
steady state unstable, although the “small-θ1-small-θ2” is still
not valid. By increasing the ratio Dv/Du the entire (θ1,θ2)
parameter region can be made viable. However, in this case
diffusion dominates the system, and rotational chasing effects
are not seen. Critically, what we have gained in the (θ1,θ2)
parameter space we have lost in the (α,β) parameter region
[see Fig. 8(b)]. Here we observe that the patterning region is
now no longer unbounded. Moreover, although we are showing
the outcome for only one set of (θ1,θ2), the size of the valid
parameter region is only weakly dependent on these angles,
and not only does the valid region always stay bounded but it
also hardly changes size as the angles are varied.

The main point that we want to illustrate in this section
is that we can theoretically reproduce the experimental trends
discovered in Ref. [26], namely, that the microscale chirality of
the population agents can change the macroscale population
pattern (see Fig. 9) as we observe a transition from stripes
to spots on all domains as θ2 is varied. Further, we see
the boundary geometry once again playing a large role in
pattern selection and dynamics. Specifically, when θ2 = −1.4
the circle domain supports spot patterns, whereas the square
domain produces stripes. Equally, all square domain patterns
are stationary, while the patterns on the circle domains rotate.
Notably, the direction of pattern rotation also appears to be
dependent on θ2, that is, the circular domain patterns spiral
clockwise for θ2 > −0.7 and anticlockwise for θ2 < −0.7.
Finally, we note that similar results occur if θ1 is varied
(simulations not shown), thus, these results are not special
to the v population.

We close this section by illustrating one final result that
demonstrates that stripes on a square domain are also able
to undergo boundary rotations. Specifically, in Fig. 10(a), we
see 10 time points in a simulation that shows that although
the main vertical stripe pattern is stable there are boundary
spots that rotate anticlockwise. Moreover, the dynamics repeat
themselves because the pattern at time 4100 appears to match
that at time 4600, and so the boundary densities are able to
rotate around the domain in 500 time units.

B. Small angle patterns

Although we have shown that the angular chasing mecha-
nism can generate patterns we have still to show that patterns
can form in the “small-θ1-small-θ2” region, which is perhaps
the most realistically pertinent region of parameter space. In
Appendix E we show that it is theoretically possible to generate
patterns when |θ1|,|θ2| < 1. In this section we use those

FIG. 8. Possible parameter regions for a patterning instability to
occur in the Schnakenberg kinetics when diffusion is added. (a) The
feasible (θ1,θ2) parameter region when (α,β) = (0.11,0.9). (b) The
feasible (α,β) regions (when (θ1,θ2) = (1.8,2.2)) for P 1 (top left), P 3
(top right), and P 4 (bottom left), respectively. The bottom right figure
of (b) shows the intersection of the other three feasible regions. Note
condition P 2 is satisfied everywhere under these kinetics. Parameters
are J = 1, Du = 1, and Dv = 22.
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FIG. 9. The influence of angle on the pattern. Each simulation
is done both on a circular and a square domain using Schnakenberg
kinetics (with diffusion). The circle and square on the left of each
subfigure are snapshots taken at time t = 4500, while those on the
right are taken at time t = 5000. The two time points are to highlight
which patterns are stationary and which are rotating. Namely, all
circular patterns are rotating, while all square patterns are stationary.
(e) The relative angles and distance of the cell movement in (a)–(d).
Parameters are J = 1, α = 0.11, β = 1.1 and θ1 = 2.79. The value
of θ2 is given beneath each subfigure. The circle has radius 10, the
square has side length 20.

insights to provide two sets of kinetics that were produced
on an ad-hoc basis to satisfy conditions P 1−P 4. Again, we
note that we are not suggesting that these model a particular
biological reaction, rather we are demonstrating the dynamics
that the angular chasing framework can produce. Specifically,
the reader can check that

f1 = 1 + u1.9 − 2u0.9v2 − 10−6u2, (20)

g1 = 0.1 − 2.1v2.8 + 2u3v1.59 − 10−6v2, (21)

and

f2 = 2.95 − u41/40 − 1.95
√

uv − 10−3u7, (22)

g2 = 2 − 2uv − 10−3v7. (23)

satisfy the patterning conditions with steady states approxi-
mately equal to (1,1). The analogous (θ1,θ2) parameter regions
are shown in Fig. 11. Clearly, we observe that both sets of
kinetics are predicted to evolve to spatial heterogeneity for
values of |θ1|,|θ2| < 1.

Upon simulating kinetics f1 and g1 with θ1 = 0.1 = θ2 we
find we can produce a spot patten on the circular domain (see
Fig. 12) in which the density of the morphogens never becomes
stationary. Specifically, we observe that the spots continuously
oscillate irregularly, with no apparent coupling between spots
[see Fig. 12(c)]. Furthermore the spots on the boundary slowly
rotate clockwise. Although proving such density oscillations
are chaotic is outside the scope of this paper, we should not be
surprised that chaotic effects can be found by coupling the set
of kinetics to the motion as it is well known that chaotic Turing
patterns can appear if the nonlinearities of the interactions are
chosen carefully [37].

Our final simulation, in Fig. 13, of kinetics f2 and g2

illustrates points 2 and 7 of the list in Sec. II A. Specifically,
patterns can form when θ1 = θ2 and for all combinations of
(±θ1, ± θ2). Similar to the result seen in Fig. 9, different angle
values produce different patterns and directions of rotation.
However, as we might expect, the system patterns are the
same when both angles switch sign, although the direction of
rotation is reversed, namely, (0.4,0.4) and (−0.4, − 0.4) both
produce labyrinthine patterns on the circle, but (0.4,0.4) rotates
anticlockwise, while (−0.4, − 0.4) rotates in a clockwise
manner. Similar observations can be made when the angles
are (0.4, − 0.4) and (−0.4,0.4).

FIG. 10. Simulations of the Schnakenberg kinetics (with diffusion) at time points 4100 to 5000 in steps of 100 showing that the pattern on
the boundary of the square domain rotates. If the pattern is simulated on a circle, then the whole pattern rotates (simulations not shown). (b)
The relative angles and distance of the cell movement. Parameters α = 0.11, β = 1.1, θ1 = 3.14, θ2 = 1.4. The square has side length 20. See
Ref. [36] for an animation of (a).
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FIG. 11. Possible parameter regions for a patterning instability to
occur when kinetic functions (a) f1 and g1 [Eqs. (20) and (21)] and
(b) f2 and g2 [Eqs. (22) and (23)] are used.

One critical note should be made when considering the
patterns exhibited under the four angles (±θ1, ± θ2). Although
the linear analysis suggests that in all four cases the uniform
steady state becomes unstable in the same way this does not
mean that the nonlinear interactions will be able to stabilize a
final pattern for all four angles. Indeed, many of the patterns
produced in Sec. III A exhibit solution blow-up instabilities if
the signs of the angles are changed.

IV. SUMMARY AND CONCLUSION

In this paper we have been motivated by biological
results on chiral cellular chasing to extend a deterministic

integro-differential equation framework to include a rotational
chasing mechanism. The framework was simplified through
the use of multiple small limits leading to a coupled set of
partial differential equations which were amenable to standard
Fourier analysis. By extending the derivation to include higher
order derivatives, and by choosing the correct balance of
parameters, it may be possible to produce a system of PDEs,
which have a nontrivial, bounded dispersion relation, without
the need for extra kinetics. This is outside the scope of the
current paper but will be considered in future work.

The analytical and simulated results in Secs. II and III
clearly demonstrate that the chiral chasing mechanism is
able to destabilise a homogeneous steady state, similar to a
Turing instability. However, the dependence of the instability
conditions on the motion mechanism appear to be weaker than
most Turing systems, which are well known for only patterning
in small regions of parameter space [38].

The addition of this new motion type has enriched the
complexity of the framework presented by Painter, Sherratt,
and coauthors [29,30]. Specifically, a number of the patterns
(see Fig. 5) have never before been seen by the author.
Further, although we may question the application of such
new patterns to biological systems, the purpose of this article
has not been to focus on a specific realistic application, but
rather to develop the underlying theory and demonstrate the
wide variety of patterns available. All of the known standard
patterning solutions – spots, stripes, labyrinthine, and similar
patterns – are available with the added dynamics of stable
spatial rotations. However, beyond the theoretical development
of the framework, perhaps the most important applicable
result we have produced is that our results corroborate the
experimental idea that the global pigmentation pattern of a
zebrafish’s skin can be dependent on the chirality of the
morphogens. Critically, due to the ad hoc nature of the kinetics,
the resulting insights generated in this paper demonstrate only
that such micro- to macroscale relationship can occur. In future
work the author intends to focus on the specific case of the
zebrafish chromatophore interactions and compare the data of
wild-type and mutated fish with simulations produced from
the theoretical framework constructed here.

Notably, although the zebrafish’s patterns do not generally
move, it has been shown through laser ablation experiments
that the stripes can actively evolve to a steady state if their
initial pattern is disrupted [21]. However, moving pigmentation
patterns in fish are possible. The flamboyant cuttlefish,
Metasepia pfefferi, presents active moving stripes and spiral
patterns in real time on its skin [39].

Due to the increased complexity of rotating patterns seen in
this framework there are many further interesting questions
to investigate regarding the chasing motion. For example,
we have seen that the rotational speed and direction of the
pattern appears to depend on the geometric angle of the
chasing (see Fig. 9). Equally, the influence of the boundary
conditions and shape seem to be key. However, at the moment
we need to rely on simulation in order to understand these
nonlinear effects. Thus, we look forward to investigating these
and other questions arising from rotational chasing in the
future.
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FIG. 12. “Twinkling spots” of density oscillations, with rotating boundary spots can be produced from the angular chasing mechanism.
(a) Consecutive time points taken every one arbitrary unit of time illustrating the twinkling spot pattern. (b) illustrates the relative angles and
distance of the cell movement. (c) Concentration trace over time of a single point. The point is marked with an asterisk in the left pattern, and
the chosen point is the center of a spot. Parameters θ1 = 0.1 = θ2. The circle’s radius is 10. See Ref. [36] for an animation of (a).
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APPENDIX A: DIFFUSION EQUATION DERIVATION

The derivation that follows derives the diffusion equation in
one dimension. Critically, the angular chasing mechanism that
we will be considering needs a minimum of two dimensions to
be defined. Thus, we should note that we are only considering
a one-dimensional diffusion derivation for simplicity and to
illustrate the connection between a discretized system and its
continuous analog.

We consider a one-dimensional space, [0,L], discretized
into N ∈ N intervals of equal size, δx = L/N . Note that
extending the derivation to higher dimensions is trivial,
but algebraically cumbersome. Each interval, i = 1, . . . ,N ,
contains a density ui = u[(i − 1/2)δx], which is defined to
be in the center of each interval. Each population is able to
undergo an unbiased random walk, with rate d. This can be
written as a set of interaction equations:

u1
d−⇀↽−
d

u2
d−⇀↽−
d

· · · d−⇀↽−
d

uN−1
d−⇀↽−
d

uN . (A1)

These equations assume that the boundaries are reflective and
that nothing can leave the domain. Thus, the system has zero-
flux boundary conditions.

Using the Law of Mass Action on Eq. (A1) we are able to
derive the following system of coupled ordinary differential

equations, which define the evolution of each continuous
population:

du1

dt
= d(u2 − u1), (A2)

dui

dt
= d(ui−1 − 2ui + ui+1), i = 2, . . . ,N − 1, (A3)

duN

dt
= d(uN−1 − uN ). (A4)

Upon taking the limit δx → 0 and requiring D = dδ2
x to be

finite, we derive the standard partial differential equation
representation of the diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, (A5)

∂u

∂x
= 0, x = 0,L. (A6)

APPENDIX B: DETAILED DERIVATION OF CHIRAL
CHASING EQUATIONS

Considering Fig. 1 and assuming that all interactions have
the same propensity rate, j > 0, then all fluxes to and from
a point (x,y) can be written in terms of similar interaction
equations:

u(x − r1x,y − r1y) + v(x − r1x + r cos(α)y − r1y + r sin(α))

j−→ u(x,y) + v(x − r1x + r cos(α) + r2x,y − r1y

+ r sin(α) + r2y), (B1)
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u(x − r cos(α),y − r sin(α)) + v(x,y)
j−→ u(x − r cos(α) + r1x,y − r sin(α) + r1y) + v(x + r2x,y + r2y), (B2)

u(x − r cos(α) − r2x,y − r sin(α) − r2y) + v(x − r2x,y − r2y)
j−→ v(x,y) + u(x − r cos(α) + r1x − r2x,y − r sin(α) + r1y − r2y).

(B3)

In terms of meaning: Eqs. (1) and (B1) are the equations governing the rate at which u moves from and to the position (x,y),
respectively; Eqs. (B2) and (B3) are the analogous equations for the v population.

Using the Law of Mass Action, the evolution equations can then be rewritten in terms of integro-differential equations,

∂u

∂t
=

∫ 2π

0

∫ R

0
[−u(x,y)v(x + r cos(α),y + r sin(α)) + u(x − r1x,y − r1y) × v(x − r1x + r cos(α),y − r1y + r sin(α))]jr dr dα,

(B4)

∂v

∂t
=

∫ 2π

0

∫ R

0

[−u(x − r cos(α),y − r sin(α))v(x,y) + v(x − r2x,y − r2y)u(x − r cos(α) − r2x,y − r sin(α) − r2y)
]
jr dr dα.

(B5)

Next, we take the limits δx,δy → 0 with the further constraint
that δx = δy = δs and j is chosen such that J = jδs remains
finite.

FIG. 13. Influence of angle sign on pattern. Each simulation is
identical except for the values of (θ1,θ2), which are specified in the
subcaption of each figure, respectively. Two time points are shown
for each simulation: the figures on the left are at t = 3500, while
the figures on the right are at t = 5000. This illustrates the rotation
of the patterns on the circular domains. (e) The relative angles and
distance of the cell movement in (a). The relative angle and distances
for (b)–(c) are simply appropriate reflections of the arrows in the
horizontal dashed line. The circle’s radius is 10, and the square has
side length 20.

Specifically, the integrals in Eqs. (B4) and (B5) calculate
the net flux of the u and v populations into a point (x,y),
respectively. Further the variables ril , i ∈ {1,2}, l ∈ {x,y},
are defined to be r1x = r1δx cos(θ1), r1y = r1δy sin(θ1), r2x =
r2δx cos(θ2) and r2y = r2δy cos(θ2).

Assuming δx and δy are small we derive a multiseries
expansion of Eqs. (B4) and (B5) up to first order. Specifically,
Eq. (B4) becomes

∂u

∂t
=

∫ 2π

0

∫ R

0
− cos (α + θ1)jrr1δx

[
∂u

∂x
(x,y)v(x + r cos (α),

y + r sin (α)) + u(x,y)
∂v

∂x
(x + r cos (α),y + r sin (α))

]

− sin (α + θ1)jrr1δy

[
∂u

∂y
(x,y)v(x + r cos (α),y

+ r sin (α)) + ∂v

∂y
(x + r cos (α),y + r sin (α))u(x,y)

]

+ O
(
δ2
x,δ

2
y,δxδy

)
dr dα. (B6)

We now fix δx = δy = δs , define J = jδs and let δs → 0. Upon
simplification we derive

∂u

∂t
= −r1J

∫ 2π

0

∫ R

0

(
cos(α + θ1)

sin(α + θ1)

)

· ∇{u(x,y)v[x + r cos(α)]}r dr dα. (B7)

(B8)

If Eq. (B5) is handled in the same way, then we derive

∂v

∂t
= −r2J

∫ 2π

0

∫ R

0

(
cos(α − θ2)

sin(α − θ2)

)

· ∇{v(x,y)u[x − r cos(α)]}r dr dα. (B9)

In the case that θ1 = θ2 = 0 we reduce to the previously
derived equations from Refs. [29,30] with appropriate choices
of integral kernel and additional local term.
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APPENDIX C: EXPANDING IN TERMS ON R, δx , AND δ y

In order to simplify the equations produced in Appendix B
further we also take the limit of small detection radius. Namely,
we return to Eq. (B4) and Taylor expand the equation up to
order four in R, δx , and δy , in order to give

∂u

∂t
= πR3jr1

3
[(vxyu + vyux)δx − (vxyu + vxuy)δy] sin(θ1)

−πR3jr1

3
[(uvxx + uxvx)δx + (uvyy + uyvy)δy] cos(θ1)

+πR2jr1
2

4
[(uvxx + uxxv + 2uxvx)δx

2

+(uvyy + uyyv + 2uyvy)δy
2] + O

(
Ri1δi2

x δi3
y

)
, (C1)

where i1 + i2 + i3 > 4. For the sake of brevity, we have
suppressed the arguments, (x,y,t), and written all spatial
derivatives as underscores.

We intend to take the limit of R = δx = δy = δs tending
to zero; however, we specify that j be chosen such that J =
δ4
s jπ/3 remains constant. Hence, substituting δs and J into

the equations and taking the limit δs → 0, we derive (3). The
equation for v can be produced analogously and is shown in (4).

APPENDIX D: STABILITY CONDITIONS ARISING FROM
LINEARISING ABOUT A HOMOGENEOUS

STEADY STATE

The following analysis all takes place on an infinite domain,
thus, we begin by defining the perturbation

u = u0 + eu exp(I k · x + λt), (D1)

v = v0 + ev exp(I k · x + λt), (D2)

where I is the standard imaginary unit, k = (kx,ky)T is a
general wave mode from the solution’s Fourier expansion, x =
(x,y)T is the regular Cartesian coordinate vector, eu and ev are
general constants that control the size of the initial perturbation
so we assume that 0 < |eu|,|ev| � 1, and λ defines the stability
of the steady state. From the above assumptions, when J = 0
we require that all possible values of λ have negative real
part, while when J > 0 we require that there is at least one
viable value of λ that has positive real part. Finally, we note
that, by combining the spatial perturbation into the exponential
equation, we are assuming that the system is being simulated
on an infinite domain. Other boundary conditions can be
accounted for by altering the perturbation form [9].

Substituting Eqs. (D1) and (D2) into Eqs. (3) and (4),
with reaction terms f and g added to the u and v equations,
respectively, and expanding each equation to linear order we
can turn the two resulting linear relationships into a single
matrix equation,

(
−λ + fu − 3Jk2r2

1 v0/4 Jk2r1u0[cos(θ1) − 3r1/4] + fv

−Jk2r2v0[cos(θ2) − 3r2/4] + gu −λ + gv − 3Jk2r2
2 u0/4

)(
e1

e2

)
= 0, (D3)

where fi,i ∈ {u,v} represents the partial derivative of f , with respect to i and then evaluated at the steady state. The gi,i ∈ {u,v}
are similarly defined.

In order for a nontrivial solution of (e1,e2)T to exist the matrix in Eq. (D3) must be singular, and the problem of stability
converts to a problem of finding null-eigenvalues, λ, of Eq. (D3). Setting the determinant of the matrix to zero we derive the
dispersion relation,

λ2 +
[(

r1
2v0 + r2

2 u0
)3Jk2

4
− fu − gv

]
λ + h(k2), (D4)

where

h(k2) = [4 cos (θ1) cos (θ2) − 3r1 cos (θ2) + 3 cos (θ1)r2]
r1r2u0v0J

2k4

4

+ ({r2[4 cos(θ2) + 3r2]fv − 3r1
2gv}v0 − {r1[4 cos(θ1) + 3r1]gu − 3fur2

2}u0)
Jk2

4
+ fugv − fvgu. (D5)

In order to ensure that the roots of Eq. (D4) have negative
real part when J = 0, it is necessary and sufficient for the con-
stant term, h(k2), and the coefficient of λ to be positive. Hence,
for stability in the absence of motion, J = 0, we must have

fu + gv < 0, (D6)

fugv − fvgu > 0, (D7)

which, unsurprisingly, match the initial Turing conditions
without diffusion. We denote these conditions P 1 and P 2,
respectively. In the case that J > 0 we desire that an instability

exists. Thus, either the constant term, h(k2), or the coefficient
of λ must be negative, for some value of k. Since the term

(
r1

2v0 + r2
2 u0

)3Jk2

4
(D8)

is guaranteed to be positive (as we are assuming that the
steady states are realistic and, thus, non-negative), then we
deduce that the coefficient of λ must always be positive.
Hence, the only way to drive the system to instability is if
h(k2) < 0, for some k2 > 0.

We, first, note that h(k2) is quadratic in k2. Thus, for large
enough k, the sign of h will be determined by the sign of the
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coefficient of k4. In order to stop arbitrarily small wavelengths
from growing and breaking a simulation down to just noise
(simulations not shown), we require that the unstable wave
modes should be bounded above, meaning that h(k2) should
be positive for large k > 0 and, so, we require

4 cos (θ1) cos (θ2) − 3r1 cos (θ2) + 3 cos (θ1)r2 > 0. (D9)

This inequality is denoted condition P 3.

Having specified the problem to ensure that h(k2) has
positive leading order polynomial term we now require that
the quartic becomes negative for a nontrivial interval of k.
This means that not only do we want at least two roots of the
quartic h to have a positive real part, but we also demand that
the roots are real at the bifurcation point. Treating the equation
as a quadratic in k2 and considering the binomial formula, we
conclude that we need the discriminant to be positive and the
coefficient of k2 to be negative. These two conditions can be
wrapped up into a single inequality,

(
{r2[4 cos(θ2) + 3r2]fv − 3r1

2gv}v0

4
− {r1[4 cos(θ1) − 3r1]gu + 3fur2

2}u0

4

)

< −
√

r1r2[4 cos (θ1) cos (θ2) + 3 cos (θ1)r2 − 3r1 cos (θ2)]u0v0(fugv − fvgu), (D10)

which is denoted condition P 4.

APPENDIX E: SMALL ANGLE DERIVATION

In this section we further simplify the conditions derived
in Appendix D under the assumption that we are looking for
solutions with only small values of θ1 and θ2. This section
is needed because from simulation experience (as seen in
Sec. III) some of the common patterning kinetics tend to rule
out small angle solutions, as they require θ1, θ2 > π/2. Hence,
we want to show that such small angle patterns are (at least
theoretically) possible in order to match the results in Ref. [26],
where a number of the deviating angles were less than 1 rad.

First, inequalities (D6) and (D7) are independent of the
angles, and so they remain the same regardless the values of
(θ1,θ2). Further, since the equations all contain only cosine
functions, then the leading order correction will come in at the
order of θ2

i ,i ∈ {1,2}, thus, linearized equations will eliminate
all angular terms. Expanding inequality (D9) about θ1 = θ2 =
0 we see that the condition to be satisfied is simply

r1 < 4
3 + r2. (E1)

Hence, we can see that, although the chaser cells, u, can move
further than the escaping cells, v, during each interaction, their
movement is bounded above, whereas the movement range of
the v population is not.

Condition P 4 is not so easy to simplify and, thus, we show
that small angle patterned solutions are possible by appealing
to a specific simplified form of the kinetics,

f = 1 + fuu + fvv, (E2)

g = 1 + guu + gvv, (E3)

where we further assume that fv , gu > 0, to ensure the
positivity of the homogeneous steady state solution, and we
fix r1 = 1 and r2 = 2 to reduce the number of free parameters.
Note that because we are dealing only with linear kinetics, any
motion-driven instability will grow without bound. However,
once we have derived a system that is driven unstable
by motion, we can add nonlinearities, multiplied by small
factors. These nonlinearities are designed to keep the solution
bounded, and the small multiplicative factors ensure that they
will not greatly influence the prior linear analysis; that is, we
are in the weakly nonlinear regime.

Substituting Eqs. (E2) and (E3) into conditions P 1−P 4 and
linearizing with respect to θ1 and θ2 generates four inequalities.
We insert these inequalities along with the constraints u0,v0 >

0 into an algebraic manipulation package in order to see if there
are nontrivial parameter regions in which the conditions can
all be satisfied. Critically, there are many possible parameter
regions that satisfy the conditions, thus, there are plenty of
possible values of (fu,fv,gu,gv) to choose from, even with the
large number of constraints we have placed on the solution.
For example, one particular simple set of kinetics have the
generic form

−12fv = gv < 0, (E4)

fu < −69gu

100
, (E5)

0 <gu < −656gv
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