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Fitness voter model: Damped oscillations and anomalous consensus
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We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which
each agent is endowed with an integer fitness parameter k � 0, in addition to its + or − opinion state. The
evolution of the distribution of k-values and the opinion dynamics are coupled together, so as to allow the system
to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions
interact, their k-values are compared, and with probability p the agent with the lower value adopts the opinion of
the one with the higher value, while with probability 1 − p the opposite happens. The agent that keeps its opinion
(winning agent) increments its k-value by one. We study the dynamics of the system in the entire 0 � p � 1
range and compare with the case p = 1/2, in which opinions are decoupled from the k-values and the dynamics
is equivalent to that of the standard voter model. When 0 � p < 1/2, agents with higher k-values are less
persuasive, and the system approaches exponentially fast to the consensus state of the initial majority opinion.
The mean consensus time τ appears to grow logarithmically with the number of agents N , and it is greatly
decreased relative to the linear behavior τ ∼ N found in the standard voter model. When 1/2 < p � 1, agents
with higher k-values are more persuasive, and the system initially relaxes to a state with an even coexistence of
opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is
monotonic for 1/2 < p < po � 0.8, while for po � p � 1 there are damped oscillations around the coexistence
value. The final approach to coexistence is approximately a power law t−b(p) in both regimes, where the exponent
b increases with p. Also, τ increases respect to the standard voter model, although it still scales linearly with N .
The p = 1 case is special, with a relaxation to coexistence that scales as t−2.73 and a consensus time that scales
as τ ∼ Nβ , with β � 1.45.
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I. INTRODUCTION AND MOTIVATION

Simple agent-based models of social interactions have
attracted a lot of interest from statistical physicists recently.
See the review [1] and the references therein. From the social
sciences perspective such models can provide a controlled test-
ing ground for more qualitative theories of social interaction.
See, for example, the discussion in Ref. [2]. For physicists,
these models are intellectually stimulating because they exhibit
a rich range of dynamical and statistical phenomena. Fur-
thermore, as quantitative data become increasingly available,
particularly from online social networks [3] and search engine
data [4], there is the possibility that social modeling could
become predictive [5].

The statistics of consensus formation in opinion dynamics
models is a problem which has proven to be particularly
amenable to analysis using tools from statistical physics, such
as the theory of coarsening and first-passage phenomena (see
Ref. [6, chap. 8]). The primary question of interest is whether
the population will eventually reach consensus or a coexistence
of both opinions will persist indefinitely. In principle, both
outcomes are possible depending on the assumptions made
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about the mechanism of social influence [7]. The voter model
[8–10] is the most basic opinion dynamics model, which allows
one to explore the consensus problem in great detail. It is a
simple interacting particle system consisting of a graph with
an agent at each node possessing a single degree of freedom,
its opinion s, taking two possible values. The dynamics is as
follows: an agent is picked at random who then adopts the
opinion of a randomly selected neighbor. Social influence is
therefore represented as an entirely mindless process whereby
agents just adopt the opinions of their neighbors at random.
The model has different interpretations aside from opinion
dynamics, including catalysis [11] and population dynamics
[8]. Also, different extensions of the model have been proposed
in the literature, including constrained interactions [12,13],
nonequivalent states [14], asymmetric transitions or bias
[15], noise [16], and memory effects [17]. It is also known
that several models presenting a coarsening process without
surface tension belong to the voter model universality class
[18–20].

On a finite graph, the voter model always eventually reaches
a consensus state in which all opinions are the same. The
consensus states are absorbing. This means that once the
system randomly enters such a configuration, it stays there
forever. The average time it takes a system containing N agents
to reach consensus is called the mean consensus time, τ . The
dependence of τ on N depends on the spatial dimension [21]:
τ ∼ N2 on a regular one-dimensional lattice, τ ∼ N ln N
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on a regular two-dimensional lattice, and τ ∼ N in three
dimensions and above, including on the complete graph (in
which every agent is connected to every other).

It is natural to ask how robust are the results described
above. Research has shown that changes to the voter model,
which at first sight might seem innocuous, can lead to signifi-
cant changes in the statistics of consensus times. In particular,
the introduction of various forms of heterogeneity can have
far-reaching consequences. Heterogeneity here means that not
all agents are equivalent. The introduction of even a single
“zealot” [22], an agent with a finite probability to unilaterally
change opinion back to a preset preference, greatly increases
the consensus time. Also, if all agents are assigned flip rates
which are sampled from a probability distribution, then, by
choosing this distribution appropriately, one can make the
approach to consensus arbitrarily slow [23]. This model is
called the Heterogeneous Voter Model. On the complete
graph, one can have τ ∼ Nβ with β > 1 arbitrarily large.
This occurs because τ is dominated by the (slowest) flip rates
of the “stubbornest” agents. A related model is the Partisan
Voter Model [23], in which heterogeneity is introduced by
randomly endowing all agents with a preferred opinion. The
interaction rules are modified so that agents have a higher rate
for switching to their preferred opinion. The consensus time on
the complete graph was then found to be even longer and grow
exponentially with N . Heterogeneity can also be introduced
via the underlying network structure. If the underlying graph
is replaced by a random, scale-free network, then depending
on the properties of the degree distribution of this network, τ

can scale sublinearly with N and can even become logarithmic
or independent of N [24–26]. This latter effect is known as
“fast consensus.”

A final relevant variation on the theme of heterogeneous
voter models is the study of temporal heterogeneity. Tem-
porally heterogeneous models introduce memory. That is,
interaction rates depend on the time elapsed since the last
interaction. In Refs. [27,28] it was found that if agents’ flip
rates decrease with the time they spend in a given state,
then, depending on the strength of this decrease, the scaling
exponent of τ with N can decrease. Thus, consensus can be
reached faster than in the standard voter model. However,
detailed study of a set of related models [29–31] indicates
that temporal heterogeneity can also slow the approach to
consensus depending on the details of how the update rules
are specified and, under certain conditions, can lead to a
synchronized coexistence, or diverging mean consensus time
or failure to reach consensus at all.

In this paper, we study a variant of the voter model in which,
unlike most of the examples given above, heterogeneity is
allowed to develop dynamically as a result of the interactions
between agents. There are many ways in which one could
imagine doing this. Our approach is one of the simplest in the
sense that we have a single control parameter. Each agent
is endowed with a fitness parameter, k, in addition to its
opinion. Initially this parameter is set to zero for all agents.
When two agents with different opinions interact, k-values are
compared. Then with probability p the agent with the lower
value adopts the opinion of the one with the higher value,
and with the complementary probability 1 − p the opposite
happens. We refer to the agent that maintains its opinion as the

“winning” agent and to the agent that changes its opinion as
the “losing” agent. After each interaction, the winning agent
then increments its k-value by one. This competitive aspect was
motivated by the study of the evolution of competitive societies
presented in Ref. [32] and the formation of competitive
hierarchies studied in Refs. [33,34]. The only parameter in
the model is the probability p. As time passes, heterogeneity
develops as a distribution of different k-values evolves in
the population. The opinion group exchange dynamics has
memory since the transition rates depend on the past history
through the k-values, although the model can obviously be
formulated in a Markovian way in the extended (s,k) state
space. We find that the dynamics of this model is surprisingly
rich as the parameter p is varied. In particular, it can exhibit
both fast and slow consensus for different values of p, and the
dynamics of the group sizes exhibits interesting oscillations in
time.

The layout of the paper is as follows. In Sec. II we specify
the model and explain some of the basic properties. Section III
then presents some numerical measurements of the consensus
time on a complete graph as a function of p and N . We find that
for p > 1/2 the time to reach consensus is very large, whereas
for p < 1/2 consensus is very fast. In Sec. IV we study the
rate equations for the model and discover that when p > 1/2
the system is attracted to a coexistence state in which two
equal-sized populations of oppositely opinioned agents reach a
dynamic equilibrium. The approach to this state could be either
monotonic or oscillatory. When p < 1/2, the coexistence state
is unstable and the system is driven quickly to consensus. An
insight into these results is given in Sec. V by means of a
reduced model. We finish in Sec. VI with a short summary and
conclusions.

II. DEFINITION OF THE MODEL

We now define the model in more detail. Two groups,
labeled (±), compete for membership in a population of N

agents. The interaction network is a complete graph, so any
agent can interact with any other. In addition to its group
designation, or opinion s = ±, each agent has an integer fitness
k. In a single time step �t = 2/N , two agents are selected at
random. If both have the same opinion nothing happens. If
not, they interact as follows. Agents compare their respective
k-values. With probability p, the agent with the lower k-value
adopts the opinion of the agent with the higher value. With
probability 1 − p, the opposite happens, and the agent with the
higher k-value adopts the opinion of the agent with the lower
value. If both k-values are equal, then one agent adopts the
opinion of the other with equal probability 1/2. The winning
agent then increments its k-value by one. Assuming that the
chosen agents have opinions s1 and s2 (with s1 �= s2), and
fitness k1 and k2, the interaction rules can be summarized
schematically as follows:

If k1 > k2 then

(s1,k1) ⊕ (s2,k2) →
{

(s1,k1 + 1) ⊕ (s1,k2) Prob. p

(s2,k1) ⊕ (s2,k2 + 1) Prob. 1 − p.

If k1 = k2 = k then

(s1,k) ⊕ (s2,k) →
{

(s1,k + 1) ⊕ (s1,k) Prob. 1/2
(s2,k) ⊕ (s2,k + 1) Prob. 1/2.
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The only parameter in this model is the probability p. When
p = 1/2, the k-values of the agents play no role in the opinion
dynamics since each agent has a 50-50 chance of adopting
the opinion of the other. Thus for p = 1/2, the evolution of
the k-values decouple from the opinion dynamics, which is
therefore equivalent to the standard voter model. If p > 1/2, a
higher value of k makes an agent less likely to change opinion
during an interaction. Thus, in this regime, one could interpret
the above rules as saying that agents become more confident
of their opinion each time they succeed in convincing other
agents to switch groups. As p gets close to one, agents which
reach high k-values become highly unlikely to change their
opinion. Thus “zealots” emerge dynamically in this model. If
p < 1/2, the opposite is true: agents with high k-values are
more likely to change opinion frequently.

III. CONSENSUS TIMES

We performed Monte Carlo simulations of the dynamics
defined in Sec. II above on complete graphs of various sizes N

and for several values of p in the interval [0,1], and measured
the time to reach opinion consensus. Initially, each agent takes
opinion + or − with the same probability 1/2, and all agents
have fitness k = 0. Results are shown in Figs. 1 and 2. As
discussed above, the basis for comparison is the p = 1/2 case
where the opinion dynamics is equivalent to the standard voter
model for which the consensus time scales as τ = 2 ln(2)N
on the complete graph, when the initial state consists on N/2
agents in each opinion state [21].

In Fig. 1 we plot the mean consensus time τ measured
from simulations, as a function of the probability p. The
average was done over 104 independent realizations of the
dynamics. The error bars resulting from statistical fluctuations
are comparable in size to the symbols and have been omitted
for clarity. We observe that τ increases rapidly with p, and
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FIG. 1. Linear-log plot of the mean consensus time τ vs the
probability p that the fitter agent wins in an interaction, for systems
of N = 250 (crosses), N = 1000 (squares), and N = 4000 (circles)
agents. The inset shows a zoom on the transition at p = 1/2 for the
case N = 4000.

becomes very large when p overcomes the value 1/2. This
is an indication that the behavior for p > 1/2 is strikingly
different from that of p < 1/2. Figure 2(a) shows τ as a
function of N for a range of values of p between 1/2 and
1. With the exception of the curve for p = 1, all curves grow
as N for large N (lower straight line). This can be seen in
the inset of Fig. 2(a), where τ is compensated by N . All
curves for p < 1 reach a plateau as N grows, although the
saturation level increases with p. Thus, the consensus time
grows with p although it still scales linearly with N as in the
standard voter model. The case p = 1 seems quantitatively
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FIG. 2. (a) Mean consensus time τ as a function of the number
of agents N on a log-log scale, for p in the range 1

2 � p � 1. Upper
and lower straight lines have slope 1.45 and 1.0, respectively. Inset:
τ is compensated by N . The horizontal line is the prefactor 2 ln(2) of
the standard voter model (p = 1/2). (b) τ vs N on a log-linear scale
for 0 � p < 1
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FIG. 3. Comparison between the evolution of ρ+(t) obtained from
the numerical solution of Eqs. (1) (solid line) with that obtained from
an ensemble average of 1000 Monte Carlo realizations (circles) of
the stochastic process described in Sec. II with N = 6400 agents.
The value of p is 1.0 and the initial condition is ρ+(0) = 0.75. Three
different individual realizations of the stochastic dynamics are also
shown in dashed lines.

different. A closer analysis of the data indicates that for p = 1,
τ ∼ Nβ with β � 1.45 (upper straight line). Simulations
with values of p very close to 1 (see p = 0.99 curve)
suggest that the case p = 1 really is uniquely different. As
best as we have been able to tell from the numerics, the scaling
exponent jumps at p = 1. As we see in Fig. 2(b), the behavior
of τ for p < 1/2 is quite different. We observe that τ grows
very slowly with the system size, as τ ∼ ln N , indicating that
the system goes to a “fast consensus”.

In summary, the consensus is slow for p � 1/2 and very
fast for p < 1/2. In an attempt to get some insight into these
behaviors, we shall now study the rate equations corresponding
to this model.

IV. MEAN FIELD DYNAMICS

A. Rate equations

Let us now write the mean-field (MF) rate equations for the
stochastic dynamics described in Sec. II. Adopting some of
the notation from Ref. [32], the time evolution of the fraction
of agents with opinion + and fitness k, f +

k , is given by

df +
k

dt
= p (f +

k−1F
−
k−1 − f +

k F−
k ) + (1−p) (f +

k−1G
−
k−1 − f +

k G−
k )

+p (f −
k G+

k − f +
k G−

k ) + (1−p) (f −
k F+

k − f +
k F−

k )

+ 1

2
(f +

k−1f
−
k−1 − f +

k f −
k ),

df −
k

dt
= [+ ↔ −], (1)

where

F±
k =

k−1∑
i=0

f ±
i and G±

k =
∞∑

i=k+1

f ±
i . (2)

The corresponding equation for f −
k is obtained by switching

the + and − labels in Eq. (1). This occurs frequently in the
analysis which follows. For the sake of conciseness, we shall
not explicitly write out the symmetric partner of each equation
unless it is necessary. All terms appear in pair of positive and
negative terms describing the gain and loss of agents having
opinion + and k-value, k. The first pair of terms accounts
for interactions of + agents with − agents having a lower
k-value, with the result that the original agent remains +. The
second pair of terms accounts for interactions of + agents
with − agents having a higher k-value, with the result that
the original agent remains +. The third pair of terms accounts
for the interactions of − agents with + agents having a higher
k-value, with the result that the original agent switches opinion
to +. The fourth pair of terms accounts for the interactions of
− agents with + agents having a lower k-value, with the result
that the original agent switches opinion to +. The final pair of
terms accounts for the cases when two interacting agents have
equal k-values.

The fraction of the total population in each group is

ρ±(t) =
∞∑

k=0

f ±
k . (3)

The mean k-value of each group is

μ±(t) =
∞∑

k=0

k f ±
k . (4)

Since f ±
k are proportions, we must have ρ+(t) + ρ−(t) = 1.

We shall denote the mean k-value across the entire population
by μ(t) = μ+(t) + μ−(t). By summing Eqs. (1) over k, we
obtain the following equations for the populations of each
group:

dρ+
dt

= (2p − 1)
∞∑

k=0

(f +
k F−

k − f −
k F+

k ),

dρ−
dt

= [+ ↔ −]. (5)

It is clear from these formulas that the sum of the populations
is conserved. Furthermore, when p = 1

2 we see that the two
populations are conserved individually. This is to be expected
since for p = 1

2 the dynamics of the k-counter is entirely
decoupled from the dynamics of exchange between the two
opinion groups. Then the competition between the groups
is described by the simple voter model, for which we know
that the individual populations are conserved on average. By
multiplying Eqs. (1) by k and summing over k, we obtain the
following less elegant equations for the mean k-value of each
group:

dμ+
dt

= (1 − p) ρ+ρ− + p (ρ+μ− − ρ−μ+)

+ (2p−1)
∞∑

k=0

k (f +
k F−

k − f −
k F+

k )

032313-4



FITNESS VOTER MODEL: DAMPED OSCILLATIONS AND . . . PHYSICAL REVIEW E 96, 032313 (2017)

+ (2p−1)
∞∑

k=0

f +
k F−

k + 1

2
(2p−1)

∞∑
k=0

f +
k f −

k ,

dμ−
dt

= [+ ↔ −]. (6)

The average k-value of the whole population satisfies

dμ

dt
= (2p − 1)

∞∑
k=0

(
f +

k F−
k + 1

2
f +

k f −
k + f −

k F+
k

)
+ 2(1 − p) ρ+ρ−

= ρ+ ρ−, (7)

where some careful algebra is required to establish simplify
the sums. Equation (7) shows that the mean of the total fitness
grows at a rate ρ+ρ−, which is time dependent. This equation
can also be derived by considering the mean change of μ, �μ,
in a single time step �t = 2/N of the dynamics. An update
occurs only when a + and a − agents are chosen, which
happens with probability 2ρ+ρ−. Then, one of the agents
increases its fitness by one, changing μ by 1/N (�μ = 1/N).
Then we can write

dμ

dt
� �μ

�t
= 2ρ+ρ−

(
1
N

)
2/N

= ρ+ρ−, (8)

as in Eq. (7). It is difficult to tell a-priori how the total k-value
in the system will behave since it depends on the fraction of
the population in the two groups. We note, however, that when
p = 1/2, μ(t) grows linearly since ρ± are constant and given
by their initial values. We can also check that for p = 1/2 and
initial densities ρ+(0) = 3/4 and ρ−(0) = 1/4, Eqs. (6) are
reduced to

dμ+
dt

= 3

32
+ 1

8
(3μ− − μ+),

dμ−
dt

= 3

32
− 1

8
(3μ− − μ+),

whose solutions with initial mean k-values μ+(0) = μ−(0) =
0 are

μ+(t) = 3

32

(
3

2
t + e−t/2 − 1

)
,

μ−(t) = 3

32

(
1

2
t − e−t/2 + 1

)
. (9)

Equations (9) show that the mean k-values increase linearly at
large times, as μ+(t) � 9t/64 and μ−(t) � 3t/64, as we can
also see in the inset of Fig. 5(a).

B. Numerical solutions of the rate equations

On a complete graph, Eqs. (1) exactly describe the ensemble
averaged behavior of the system. This is illustrated in Fig. 3,
which compares the evolution of ρ+(t) (solid line) obtained
from a numerical solution of Eqs. (1) with the evolution
of the ensemble average of ρ+(t) (circles) obtained from
1000 realizations of the stochastic model described in Sec. II.
Results correspond to p = 1.0 and initial condition ρ+(0) =
0.75. Two features of the dynamics are striking. First, we
notice that starting from an asymmetric initial state that
favors the + opinion group [ρ+(0) = 0.75 and ρ−(0) = 0.25],
the dynamics drives the system towards a coexistence state
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FIG. 4. MF dynamics from Eqs. (1) for p = 1/4. (a) Time
evolution of the fraction of agents in the two opinion groups ρ±(t).
Inset: Evolution of the mean fitness values μ±(t). (b) Snapshots of the
k-value distributions f +

k (empty symbols) and f −
k (filled symbols) at

different times.

composed by even fractions of agents with + and − opinions
(ρ+(t) = ρ−(t) = 1/2). Second, we notice that the approach
to the coexistence state is not monotonic: the dynamics
have a damped oscillatory character. This suggests that the
state in which both populations are equal is a fixed point.
Figure 3 also shows three independent realizations (dashed
lines), as compared to the ensemble average. This illustrates the
importance of fluctuations which are ultimately responsible for
the system reaching consensus as found in Sec. III, despite the
fact that the dynamics drives the system towards coexistence.

In Figs. 4–7 we explore the behavior of the system by
means of Eqs. 1 in the entire range of p-values: p = 1/4
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Inset: Evolution of the mean fitness values μ±(t). (b) Snapshots of the
k-value distributions f +

k (empty symbols) and f −
k (filled symbols) at

different times.

(Fig. 4), p = 1/2 (Fig. 5), p = 3/4 (Fig. 6), and p = 1 (Fig. 7).
Figures 4(a)–7(a) show the time evolution of ρ±(t), while
their insets show the dynamics of μ±(t). Figures 4(b)–7(b)
show snapshots at various times of the corresponding k-value
distributions, f ±

k (t). In Fig. 4 we see that for p = 1/4 the
system quickly reaches consensus in the opinion of the initial
majority, as ρ+ approaches exponentially fast to 1.0. This is
in agreement with the fast consensus observed in Fig. 2(b) for
p < 1/2. Thus, the dynamics for p < 1/2 favors the opinion
state of the majority, creating a positive feedback in which the
largest opinion group permanently increases while the smallest
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FIG. 6. MF dynamics from Eqs. (1) for p = 3/4. (a) Time
evolution of the fraction of agents in the two opinion groups ρ±(t).
Inset: Evolution of the mean fitness values μ±(t). (b) Snapshots of
the k-value distributions f +
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at different times. The inset shows the collapse of the data obtained
from the self-similar scaling, Eq. (14).

group shrinks and eventually disappear. This can also be seen in
Fig. 4(b), where f −

k (t) vanishes for long times (filled symbols).
Figure 5(a) shows that the fractions ρ± are conserved for p =
1/2, and that the mean k-values μ± grow linearly with time,
as discussed in Sec. IV A. For both p = 3/4 and p = 1 the
system quickly relaxes to the coexistence state ρ+ = ρ− =
1/2, but in different ways. Whereas for p = 3/4 densities ρ±
decay monotonically towards the value 1/2, for p = 1 the
approach to coexistence exhibits damped oscillations. Finite-
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different times.

size fluctuations, not captured by the MF equations, eventually
drive the system from the coexistence state to consensus, which
leads to the very long consensus times measured for p > 1/2
[see Fig. 2(a)].

C. p > 1
2 : Self-similar solution for the coexistence state

The above argument requires that for p > 1/2 the large
time solution of Eqs. (1) converge to a coexistence state
in which both populations have the same fraction of agents
(ρ+ = ρ−) and equivalent k-value distributions, as we can

see in Figs. 6 and 7. In this section we demonstrate the
existence of a self-similar solution of Eqs. (1), which achieve
this. Substituting f +

k (t) = f −
k (t) = fk(t) in these equations

and simplifying gives
d

dt
fk = p(fk−1Fk−1 − fkFk) + (1 − p)(fk−1Gk−1 − fkGk)

+ 1

2

(
f 2

k−1 − f 2
k

)
. (10)

Following Ben-Naim et al. [32] we rewrite this equation
using fk = Fk+1 − Fk and Gk = F∞ − Fk+1 = 1/2 − Fk+1

(where the maximum group size is ρ+ = F+
∞ = 1/2 or ρ− =

F−
∞ = 1/2). This gives a closed equation for the cumulative

distribution:
d

dt
Fk = pFk−1(Fk−1 − Fk) − 1

2
(Fk − Fk−1)2

+ (1 − p)(1/2 − Fk)(Fk−1 − Fk). (11)

The boundary conditions are F0 = 0 and F∞ = 1/2. Taking
the continuum limit of Eq. (11) and keeping only the leading
order term, we get

∂F

∂t
=

[
1

2
(p − 1) + (1 − 2p)F

]
∂F

∂k
. (12)

We have observed already that μ±(t) grows linearly for large
times when p > 1/2, thus the mean value of the distributions

〈k〉± = 1

ρ±

∞∑
k=0

k f ±
k = μ±

ρ±
= 2μ± = μ

also increase linearly with time. We can then take μ(t) as a
characteristic fitness value and seek solutions of Eq. (12) in
which the cumulative distribution, F (k,t), has the self-similar
form:

F (k,t) � �(ξ ) with ξ ≡ k

μ(t)
= k

αt
, (13)

where α � 0.24 is twice the slope of the μ± versus t curves
for t > 60 in the inset of Figs. 6(a) and 7(a). This ansatz is
equivalent to the following self-similar form for the k-value
distribution itself:

f ±
k (t) � μ(t)−1 φ(ξ ) where φ ≡ d�

dξ
. (14)

In the scaling variables, Eq. (12) takes the form[
1

2
(p − 1) + α ξ + (1 − 2p)�(ξ )

]
d�

dξ
= 0. (15)

Solving Eq. (15) gives

�(ξ ) = const or �(ξ ) =
1
2 (p − 1)

2p − 1
+ α ξ

2p − 1
.

Following Ref. [32], we use the boundary conditions �(0) = 0
and �(∞) = 1/2, the monotonicity of Fk , d�/dξ � 0, and the
bounds 0 � � � 1, to assemble a sensible piecewise linear
solution:

�(ξ ) =

⎧⎪⎨⎪⎩
0 if 0 < ξ < ξ−
1
2 (p−1)
2p−1 + α ξ

2p−1 if ξ− < ξ < ξ+
1/2 if ξ+ < ξ ,

(16)

where ξ− = (1 − p)/2α and ξ+ = p/2α. We remark that if
we keep the next order (diffusive) terms in the derivation of
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FIG. 8. Numerical investigation of the behavior of the reduced model, Eqs. (28), near the coexistence fixed point, P0, for p = 7
10 . Panels

(a), (b), and (c) show X̃(t), Y (t) and Z(t), respectively, for three different generic initial conditions. To make the agreement with theory clear,
the data have been compensated by the t-scalings predicted by Eqs. (33)–(35) with b(p) given by Eq. (32). Panel (d) shows that the ratio
Y (t)/X̃(t) asymptotically approaches the theoretical prediction 5/6 (solid line) from Eq. (36).

Eq. (12), then the sharp corners in this solution would be
smoothed out. Differentiating this solution with respect to
ξ gives the corresponding scaling function for the k-value
distribution itself [see Eq. (14)]:

μ(t)f ±
k (t) = φ(ξ ) =

⎧⎨⎩
0 if 0 < ξ < ξ−

α
2p−1 if ξ− < ξ < ξ+
0 if ξ+ < ξ ,

(17)

where ξ± are the same as in Eq. (16) above. Note that as
p → 1/2, this solution tends to a δ function. This case will be
considered in the next section. The inset of Figs. 6(b) and 7(b)
shows the data collapse of some snapshots of the full k-value
distributions obtained from numerics (symbols) onto the curve
given by Eq. (17) (solid line).

D. p = 1
2 : Dynamics of k-value distribution

For completeness, let us look at what happens on the
boundary when p = 1/2. Many of the terms in Eqs. (1) are then

absent due to the fact that F±
k (t) + f ±

k (t) + G±
k (t) = ρ±(t).

Further simplification follows from Eq. (5), which tells us that
ρ±(t) are constant when p = 1/2. This reflects the fact that
the evolution of the distribution of k-values decouples from
the opinion dynamics which are equivalent to the standard
voter model dynamics in which the average magnetization is
conserved. Equations (1) become

∂f +
k

∂t
= 1

2
ρ−(f +

k−1 − f +
k ) + ρ+f −

k − ρ−f +
k ,

∂f −
k

∂t
= [+ ↔ −].

Taking the continuum limit we get

∂f +
k

∂t
= −1

2
ρ−

∂f +
k

∂k
+ 1

4
ρ−

∂2f +
k

∂k2
− ρ−f +

k + ρ+f −
k ,

∂f −
k

∂t
= [+ ↔ −]. (18)
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The initial conditions are f ±
k = ρ± δ(k). We should also

impose the zero-flux boundary conditions, ∂f ±
k

∂k
= 0 at k = 0

since the k-values cannot become negative. Equations (18) are
a pair of coupled linear equations which can be decoupled and
solved in Fourier space. The symmetric case ρ+ = ρ− = 1/2 is
particularly simple and illustrative, in which both distributions
are identical and evolve according to the single advection-
diffusion equation:

∂f ±

∂t
= −1

4

∂f ±

∂k
+ 1

8

∂2f ±

∂k2
. (19)

The solution of this equation on the whole of R is

f ±(k,t) =
√

2

πt
e− 2 (k−t/4)2

t .

In order to satisfy the boundary condition at k = 0 we can
employ the method of images to obtain

f ±(k,t) = 1

2

√
2

πt

(
e− 2 (k−t/4)2

t + e− 2 (k+t/4)2

t

)
. (20)

We see that the k-value distribution is a Gaussian which
propagates to the larger values of k with fixed speed v = 1/4,
and whose width increases with time as σ = √

t/2. This
remains true, although it is more difficult to show analytically
if ρ+ �= ρ− [see Fig. 5(b)]. Note that by including the higher
order derivative in taking the continuous limit in Eq. (18),
the singular behavior of the scaling solution, Eq. (17), is
regularized.

V. A REDUCED MODEL OF THE DYNAMICS

In order to better understand the dynamics described in
Sec. IV, we introduce a reduced model which captures most of
the essential features of Eqs. (1) but is simple enough to allow
some insight to be obtained. If we think of the f ±

k as being

analogous to probability distributions, then their specification
is equivalent to the specification of all their moments. We have
already seen, however, that even the first two moments, ρ± and
μ±, satisfy complicated equations, Eqs. (5) and (6), involving
cross-correlations between f +

k and f −
k . In principle, one could

use the dynamical equations to write evolution equations for
these cross-correlations, but such equations would involve
triple correlations and so on. Such an approach is unlikely
to lead anywhere. Instead, in the spirit of moment closures and
single-point closures in turbulence, we suggest to close the
system at the level of the first order (in f ±

k ) quantities ρ± and
μ±. That is to say, we attempt to “approximate” the right-hand
side of Eqs. (5) and (6) with functions of ρ± and μ± only. This
would yield a simple three-dimensional dynamical system (not
four-dimensional because ρ+ + ρ− = 1) in place of the infinite
hierarchy of equations in (1). Of course, this cannot be done
exactly and the trick in obtaining useful closures is to come up
with a reasonable proposal for these functions should be.

Inspired by the k-value distributions in Fig. 6(c) and
aiming to build the simplest possible model, we introduce
the following model for the k-value distributions:

f̃ ±
k = ρ2

±
2μ±

�(k) �

(
2μ±
ρ±

− k

)
, (21)

where �(x) is the Heaviside theta function. We therefore treat
the distributions f ±

k as being uniform on an interval [0,K].
The width, K , of this interval and the value of the function
on the interval are chosen such that we have the following
properties: ∫ ∞

0
f̃ ±

k dk = ρ±,∫ ∞

0
k f̃ ±

k dk = μ±,

032313-9



WOOLCOCK, CONNAUGHTON, MERALI, AND VAZQUEZ PHYSICAL REVIEW E 96, 032313 (2017)

where, in order to simplify things, we shall treat the k-value as
a continuous variable from this point on. We can now integrate
Eq. (21) to get a model for the cumulative distribution, F±

k :

F̃±
k =

{
ρ2

±
2μ±

k if 0 � k � 2μ±
ρ±

,

ρ± if k � 2μ±
ρ±

.
(22)

We now substitute Eqs. (21) and (22) into Eqs. (5) and (6)
and perform the integrations on the right-hand side in order to
obtain expressions which depend only on ρ± and μ±. This is
a surprisingly tedious process given the deceptive simplicity
of Eq. (21). Using Mathematica and massaging the output a
little, we obtained the following dynamical system:

dρ+
dt

= (2p − 1) R+
1 , (23a)

dρ−
dt

= [+ ↔ −], (23b)

dμ+
dt

= (1 − p) ρ+ρ− + p (ρ+μ− − ρ−μ+)

+ (2p−1)(R+
2 + R+

3 + R+
4 ), (23c)

dμ−
dt

= [+ ↔ −], (23d)

where

R+
1 =

∫ ∞

0
(f̃ +

k F̃−
k − f̃ −

k F̃+
k ) dk (24a)

= (μ+ρ− − μ−ρ+)R+,

R+
2 =

∫ ∞

0
k (f̃ +

k F̃−
k − f̃ −

k F̃+
k ) dk (24b)

= (μ2
+ρ2

− − μ2
−ρ2

+)R+

ρ+ρ−
,

R+
3 =

∫ ∞

0
f̃ +

k F̃−
k dk (24c)

= 1

4μ+μ−
{2μ2

+ρ2
− − (μ+ρ− − μ−ρ+)[(μ+ρ− − μ−ρ+)

+ |μ+ρ− − μ−ρ+|]},

R+
4 = 1

2

∫ ∞

0
f̃ +

k f̃ −
k dk = ρ+ρ−R+

4
, (24d)

with

R+ = 1

2μ+μ−
[(μ+ρ− + μ−ρ+) − |μ+ρ− − μ−ρ+|]. (25)

When performing the integrals we considered separately the
two cases μ+ρ− > μ−ρ+ and μ+ρ− < μ−ρ+, which leaded
to expressions defined by parts. Then we used the absolute
value function | · | to rewrite these expressions. For instance,

R+
4 =

{
R+

a if μ+ρ− > μ−ρ+,

R+
b if μ+ρ− < μ−ρ+,

(26)

with R+
a = ρ2

+ρ−/4μ+ and R+
b = ρ+ρ2

−/4μ−, was rewritten
as

R+
4 = (R+

a + R+
b )

2
+ (R+

a − R+
b )

2

|μ+ρ− − μ−ρ+|
(μ+ρ− − ρ−μ+)

,

which is reduced to Eq. (24d) after some algebra.
This reduced model reproduces all the qualitative features

of the full MF equations, (1). In particular, the absorbing states
in Eqs. (1) correspond to lines of fixed points in the reduced
model. We refer to these as the + and − consensus fixed points
P+ and P−. They are parameterized by a single parameter,
μ > 0:

P+ : (ρ+,ρ−,μ+,μ−) = (1,0,μ,0),

P− : (ρ+,ρ−,μ+,μ−) = (0,1,0,μ).

That these points are zeros of the right-hand side of Eqs. (23)–
(25) for any value of μ can be verified by direct substitution.

Replacing ρ− = 1 − ρ+ throughout, it is convenient to
rewrite Eqs. (23)–(25) in terms of the three variables
[X(t),Y (t),Z(t)] defined as

X = ρ+,

Y = μ+ρ− − μ−ρ+, (27)

Z = (μ+ρ− + μ−ρ+)−1.

In terms of these variables, we have the system

dX

dt
= 2(2p − 1)

1 − Y 2Z2
X(1 − X)YZ(1 − Z|Y |), (28a)

dY

dt
= 1

2
X(1 − X)(1 − 2X) − (1 − p)Y

+ 2p − 1

2(1 − Y 2Z2)
ZFY (X,Y,Z), (28b)

dZ

dt
= Z2[FZ(X,Y,Z) − X(1 − X)]

2(1 − Y 2Z2)
, (28c)

where FY (X,Y,Z) and FZ(X,Y,Z) are complicated multivari-
ate polynomials which are written out at the end of this section
[Eqs. (37) and (38)]. The advantage of this system is that it is
obvious that it has a new fixed point,

P0 : (X,Y,Z) = (
1
2 ,0,0

)
,

which corresponds to the self-similar solution of the full MF
equations, Eqs. (1), found in Sec. IV. To interpret this in terms
of Eqs. (27) recall that the self-similar behavior corresponds
to ρ+ → ρ− → 1

2 and μ+ → μ− → ∞. We refer to P0 as the
coexistence fixed point since it describes the situation in which
both populations have size one half. Note that the consensus
fixed points, P− and P+, are both mapped to Z = ∞ in these
variables. Using the system of Eqs. (28) we can try to probe the
stability of the coexistence fixed point. The dynamical system
given by Eqs. (28) cannot be linearized about P0. Notice, for
example, that the lowest power of Z in the third equation is Z2

so there is no linearization around Z = 0. Standard methods
of linear stability analysis are therefore not applicable here.
Instead, let us shift the X variable, X = X̃ + 1

2 , and look for a
scaling solution near P0:

X̃(t) ∼ X0 t−a,

Y (t) ∼ Y0 t−b,

Z(t) ∼ Z0 t−c.

The powers a, b, and c must be all positive if the coexistence
fixed point is to be attractive as t → ∞. Some trial and error is
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FIG. 10. Convergence of ρ+ to the coexistence state ρ+ = 1/2 for p > 1/2. (a) Reduced model, Eqs. (23)–(25). The final approach to
coexistence is a power law with an exponent given approximately by the theoretical expression b(p) = (2p − 1)/(p − 1) (dashed lines). Inset:
the decay for p = 1.0 seems to be oscillatory for all times, with an amplitude that decays as t−0.5 (dashed line). (b) Full MF equations (1).
The approach to coexistence is approximately power law. Dashed lines indicate theoretical exponents b(p). Inset: the p = 1.0 case is special,
where the decay seems to be a pure power law with exponent close to 2.73 (dashed line).

required to identify the leading order terms on the right-hand
side of Eqs. (28) due to the large number of terms. However,
this work is greatly simplified when we note that all terms that
appear in the functions FY and FZ [Eqs. (37) and (38)] are
subleading in the neighborhood of the coexistence fixed point.
Then the leading terms on the two sides of Eq. (28) are

−c Z0 t−c−1 ∼ − 1
8 Z2

0 t−2c,

so that

c = 1 and Z0 = 8. (29)

With c = 1, the leading terms on the two sides of Eq. (28a) are

−a X0 t−a−1 ∼ 1
2 (2 p − 1) Y0 Z0

t−b−c = 4 (2 p − 1) Y0 t−b−1,

which leads us to conclude that

a = b and
X0

Y0
= −4 (2 p − 1)

b
. (30)

Finally, with c = 1 and a = b, the leading terms in Eq. (28b)
are

−b Y0 t−b−1 ∼
[−X0

4
+ (p − 1) Y0

]
t−b.

This is impossible unless the coefficient of t−b vanishes on
the right-hand side of Eq. (28b) (there is a subleading term
of order t−b−1 which could then balance the left-hand side).
Therefore we must have

X0

Y0
= 4 (p − 1). (31)

Combining Eqs. (30) and (31) we find

b = 2 p − 1

1 − p
, (32)

which is positive for 1
2 < p � 1. Thus all three exponents

are determined along with the amplitude Z0. The am-
plitudes X0 and Y0 are arbitrary but their ratio is fixed
and given by Eq. (31). To summarize, the reduced model
predicts the following behavior near the coexistence fixed
point:

X̃(t) ∼ X0 t−b(p), (33)

Y (t) ∼ Y0 t−b(p), (34)

Z(t) ∼ 8 t−1, (35)

X0

Y0
= 4 (p − 1), (36)

with b(p) given by Eq. (32). These predictions are validated
against numerical solutions of Eqs. (28) in Figs. 8 and 9. We
find that b > 0 for 1

2 < p � 1 [see the inset of Fig. 9(b)]. The
coexistence fixed point is therefore attractive for values of p in
this range and repulsive otherwise. An interesting observation
is that the approach of X to the fixed point X = 1/2 shows
damped oscillations for p � 0.66, while for p � 0.66 the
approach is monotonic, as we can see in Fig. 10(a). This
transition between the monotonic and the oscillatory regimes
is also found in the full MF model [Eqs. (1)] at a value
po � 0.8 [see Fig. 10(a)]. In Fig. 10(b) we also compare the
theoretical decay t−b(p) from Eq. (32) (dashed lines) with the
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one from the MF Eqs. (1) (solid curves), for three different
values of p. We observe that the agreement improves as p gets
larger.

Below we provide for completeness the explicit formulas
for the multivariate polynomials appearing on the right-hand
side of Eqs. (28) defining the reduced model:

FY (X,Y,Z) = −2X5 + 5X4 − 4X3 − 2X2Y + X2 − 4XY 2 + 2XY + 2Y 3Z + 2Y 2 + (4XY 2Z − 2Y 2Z + 2X2YZ

−2XYZ − 2Y + 2X5Z − 5X4Z + 4X3Z − X2Z) |Y |, (37)

FZ(X,Y,Z) = −X2Y 2Z2 + 2XY 3Z2 − 2XY − Y 3Z2 + Y + (2p − 1)[2XY 3Z2 − Y 3Z2 + 2Y 2Z − 4X3YZ

+ 6X2YZ − 2XYZ + 10XY − 5Y − X4Z + 2X3Z − X2Z + (X4Z2 + 4X3YZ2 − 2X3Z2 − 6X2YZ2

+X2Z2 +′′ XYZ2 − 12XYZ − 2Y 2Z2 + 6YZ) |Y |]. (38)

VI. CONCLUSIONS

To conclude, we have studied a variant of the voter model
in which each agent is endowed with a fitness parameter, k,
in addition to its opinion variable. Agents interact by pairs,
and a single parameter p determines the probability that the
agent with the higher k-value wins. When an agent wins an
interaction, its k-value is increased by 1, and the losing agent
changes opinion. The distribution of k-values in the population
therefore coevolves with the opinion dynamics. The rates
of opinion change therefore depend on the past history of
the agents. Our model has aspects in common with several
models which have been studied in the literature, particularly
the competitive population dynamics studied in Ref. [32], the
Partisan Voter Model [23], the non-Markovian voter model
studied in Ref. [27], and the two-state interacting particle
model with age-dependent transition rates [30]. Through a
combination of numerical simulations and analysis we showed
that there is a coexistence state in which both populations
have a size similar to N/2, and their mean k-value increases
linearly in time. This coexistence state is attractive on average
when p > 1/2 and repulsive on average when p < 1/2. As
a consequence, the consensus time is increased relative to
the standard voter model when p > 1/2, whereas the system
is driven to fast consensus when p < 1/2. The dynamics in
the p > 1/2 case exhibits interesting properties, including

a monotonic approach to the coexistence state, as well as
damped oscillations that decay as a power law in time with
a non-universal exponent. A quantitative explanation of these
stability properties was provided in the context of a reduced
three-dimensional dynamical system based on the full rate
equations of the model. One of the outstanding mysteries at
this point is that there is little real indication in any of our
analysis of why the model with p = 1 has a larger scaling
exponent β � 1.45 for the consensus time, compared to the
exponent β � 1.0 for 1/2 < p < 1 (see Sec. III). This is a
topic for future investigation. Another obvious avenue for
further investigation would be to study the spatial coarsening
properties of the model on regular lattices, since we already
know that for p = 1/2 the coarsening dynamics is equivalent
to those in the regular voter model.
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