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Accessibility and delay in random temporal networks
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In a wide range of complex networks, the links between the nodes are temporal and may sporadically appear
and disappear. This temporality is fundamental to analyzing the formation of paths within such networks.
Moreover, the presence of the links between the nodes is a random process induced by nature in many real-world
networks. In this paper, we study random temporal networks at a microscopic level and formulate the probability
of accessibility from a node i to a node j after a certain number of discrete time units T . While solving the original
problem is computationally intractable, we provide an upper and two lower bounds on this probability for a very
general case with arbitrary time-varying probabilities of the links’ existence. Moreover, for a special case where
the links have identical probabilities across the network at each time slot, we obtain the exact probability of
accessibility between any two nodes. Finally, we discuss scenarios where the information regarding the presence
and absence of links is initially available in the form of time duration (of presence or absence intervals) continuous
probability distributions rather than discrete probabilities over time slots. We provide a method for transforming
such distributions to discrete probabilities, which enables us to apply the given bounds in this paper to a broader
range of problem settings.
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I. INTRODUCTION

The existence of a connection between any pair of nodes in
many types of networks is a temporal event and also random in
many cases. For instance, human beings meet for some period
of time and walk away afterward. Because of this temporality,
static graphs or even random graphs are incapable of modeling
many aspects of random temporal networks. For instance, a
path between two specific nodes i and j in a static network is a
sequence of nodes starting from i and ending at j given that an
edge exists between any two successive nodes in the sequence.
In a temporal network and over a time window of observation,
a sequence of nodes forms a path (or more precisely an open
path, which is defined formally later) if the existence of an
edge between two subsequent nodes in the sequence maintains
causality. Consider a traveler starting its journey from node i

to node j . The traveler waits at each node and jumps to the
next node from its current node as soon as an edge becomes
available between these two nodes. A path exists from i to j if
such a traveler reaches j within the observation time window.
Therefore, the existence of a temporal path depends on the
availability of an edge on or after the current time between its
current node and the next node in the sequence, regardless of
whether or not an edge had existed before the traveler arrived
at this current node.

If there exists at least one temporal path from i to j over
a discrete time window of 1, . . . ,T , j is said to be accessible

from i and such an event is denoted by i
T−→ j . A directed

graph representing the accessibility relation between every
pair of nodes in a temporal network is called the accessibility
graph, where there exists an edge from any node i to any node

j if i
T−→ j . A temporal network over the window 1, . . . ,T

can be modeled as a sequence of T adjacency graphs over the
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time window of observation. Figure 1 shows the adjacency and
accessibility graphs for a set of four nodes over three time slots.
Obviously the accessibility and adjacency graphs are identical
at t = 1. By t = 2, node 4 is accessible from 2 as there is an
edge between 2 and 1 at t = 1 and an edge connects 1 to 4 at
t = 2. However, this is not the case for the opposite direction
as there is an edge between 4 and 3 at t = 1 but no edge from
3 to 2 at t = 2. Therefore, 2 is not accessible from 4 by t = 2.
This directionality in the accessibility graph is an immediate
consequence of causality in the formation of temporal paths.

An interesting method for obtaining the accessibility graph
adjacency matrix (AGAM) in temporal networks is introduced
in Ref. [1]. It should be noted that for a static graph with
adjacency matrix K0, (K0)T gives the number of paths of
length at most T between any two nodes, and by changing
every nonzero element to 1 the AGAM is obtained. However,
in temporal networks, since the edges between two nodes may
appear or disappear at any time, a traveller on the graph might
need to wait at a specific node for a certain number of time
slots until an edge to the next hop becomes available. Given the
adjacency matrices of the adjacency graphs over the window
1, . . . ,T denoted by K1, . . . ,KT in Ref. [1], this waiting at the
current node is modeled by adding the identity matrix 1 to each
adjacency matrix Kt . Therefore, calculating

∏T
t=1(1 + Kt ) and

changing all the nonzero elements to 1 gives the AGAM by
time T for such a temporal graph.

The input to the method given in Ref. [1] is the adjacency
matrices. However, in many cases, the temporal variations in
the edges of the network and their presence and absence are
random processes (e.g., wireless ad hoc networks, human-
centric networks, etc.).

In this paper, we study the notion of accessibility in random
temporal networks. We assume that instead of knowing the
adjacency matrices that deterministically identify the presence
or absence of an edge between two specific nodes at a certain
time slot, we have the probabilities of such events in hand.
In other words, a random temporal network is defined as a
sequence of random graphs, each one associated with one time
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FIG. 1. In the upper row, the adjacency graph at each time slot is
given. The lower row shows the evolution of the accessibility graph
over time.

slot. Our objective is to obtain the probability of accessibility,

denoted by P (i
T−→ j ), from any node to any other over a

window of observation. Since the total number of possible
paths between any two vertices grows exponentially and is
also due to the dependence between paths with common edges,
calculation of such probabilities is computationally intractable.
In this paper, we provide a nontrivial upper bound and two
different lower bounds on these probabilities. Our numerical
results show that the accessibility probability obtained by
Monte Carlo simulations of such random temporal networks is
very close to the given upper bound. Moreover, we examine the
upper bound as a predictor for the probability of accessibility
over a real-world dataset obtained from a vehicular network
(taxis in Rome) [2]. The results show a high correlation
between the predicted values and the actual observations. Also,
for the special case where the probability of edges is identical
for all the edges across the network in any given time slot (but
can vary from one time slot to another), we obtain the exact
probability of accessibility.

It should be noted that in many cases, instead of discrete
probabilities for the edges over each time slot, the distribution
of the duration of the intervals of presence or absence of
edges (and mostly in continuous time domain) is available.
For instance, the distribution of the intercontact time between
individuals in human-centric networks has been studied in
the literature [3]. To be able to apply the bounds provided
in this paper, these continuous distributions need to be trans-
formed to discrete probabilities of edges.1 In this paper, such
transformations are provided. These transformations extend
the range of problems that the given bounds are applicable to.
Specifically, they provide a general framework for analyzing
delay problems in multihop networks (e.g., in delay-tolerant
networks [4]) using the bounds obtained in this paper.

Current studies in the literature of temporal networks and
specifically the notion of accessibility (reachability) can be
categorized from different perspectives. First, it should be
noted that accessibility has been the core of many studies
in a wide range of contexts even if the term accessibility
(or reachability) has not been explicitly used. Peer-to-peer
networks [5–7], wireless multihop networks [8,9], gossiping

1An edge is assumed to be present between two individuals while
they are in contact with each other, i.e., when they are within a given
proximity of each other.

over networks [10–12], prevalence of epidemic diseases [13–
16], information diffusion in social communication networks
[17,18], or spreading patterns of viruses on smart phones [19]
are examples of studies with the theme of accessibility. A very
closely related problem to accessibility is delay or trip duration
in networks. The duration of a trip is a function of the dynamics
of the links. We discuss the relationship between accessibility
probability and expected delay (trip duration) in Sec. VII. An
extensive body of research has been devoted to this topic,
including analysis of the data collected from transportation
networks [20,21], mathematical modeling of trip durations in
human transportation networks at a macroscopic level [22],
shortest route in time-dependant networks [23], and delay in
delay performance of wireless delay-tolerant networks [4].

In a large fraction of studies on path formation and
travel duration in temporal networks, methods for measuring
various parameters in such networks which are applicable
to deterministic (known) temporal networks are proposed
[1,23,24]. However, in this paper, we assume that the adjacency
evolution of the network graph over the observation time
is unknown and only the probabilities of edges’ presence
between nodes are available. For a special case of such
random temporal networks, i.e., the clique network, and from
a macroscopic-level perspective, the speed of information
dissemination is studied in Ref. [25]. Another relevant paper
to the context of accessibility in random temporal networks
is Ref. [26], where the probability of being infected by an
epidemic disease is obtained where the individuals are in
contact with given probabilities. However, the fundamentally
important notion of the dependencies between the paths
connecting two nodes caused by common edges between such
paths is ignored. In this paper, we deal with this dependency
and provide an analytical upper bound and two lower bounds
on the accessibility probability. In particular, the theoretical
approach used in this paper for obtaining the upper bound
is based on a Fortuin-Kasteleyn-Ginibre (FKG) correlation
inequality [27,28], which gives deeper insight to the problem
and provides a basis for analyzing further complex models.
Moreover, in our model we consider the very general scenario
of time-varying arbitrary probabilities of edges’ existence.

II. SYSTEM MODEL

We consider a random temporal network with N nodes
(vertices) represented by V = {1, . . . ,N} and a set of discrete
time slots T = {0,1,2, . . . ,T }. There are a total of M(T ) :=
NT −1 vertex sequences of length T between two vertices i and
j . This is because at each time we can choose any node in the
graph to be the next step (except for the last time slot where
node j has been selected). The mth sequence (possibly with
repeated nodes) is represented by

Aij
m(T ) = vij

m (0) . . . vij
m (T ), (1)

where

vij
m (t) ∈ {1, . . . ,N},∀t ∈ T \{0,T },vij

m (0) = i,vij
m (T ) = j.

Such a sequence of nodes is called a temporal path. An edge
between a pair of distinct nodes u and v at time t is denoted
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by the triple

(u,v,t), where u,v ∈ {1, . . . ,N} and t ∈ T .

The triple is defined to be open if in the realization of the
network the link between these two nodes is physically present.
We assume that an edge is open between two nodes u and v

with probability puv(t), independent of other edges [puv(t) =
1 if u = v, which models the waiting at node u at time t]. A
temporal path A

ij
m(T ) is said to be an open path if any pair

of distinct successive nodes v
ij
m (t)vij

m (t + 1) in the sequence
is an open edge. In other words we use the terms open edge
and open path adopted from percolation theory to identify the
realization of an edge or a path. A pair of successive nondistinct
nodes v

ij
m (t)vij

m (t + 1) is an indication of remaining at the same
node from time t to t + 1.

We use the following compact notation to denote the
probability of the event that a given path is open:

P
[
Aij

m(t)
] ≡ P

[
Aij

m(t) is open
]
.

We apply this convention to all the probabilities of the sets
corresponding to the temporal paths, including edge triplets
(u,v,t).

Moreover, we denote a temporal path from i to j with
v

ij
m (T − 1) = � by B

i�j
m (T ). The set of all paths inclusive of �

as their node at time T − 1 is denoted by

Bi�j (T ) = {
B

i�j

1 , . . . ,B
i�j

M(T −1)

}
.

Our objective is to find the probability that at least one open
temporal path exists from a given node i to another node j

over the time window T .

III. EXACT METHOD FOR EQUAL EDGE PROBABILITIES

In this section, we assume that puv(t) = p(t) (i.e., the
probability can change over time but is identical for all the
edges in the network at each time t). In other words, at each
time slot t the network is equivalent to a classic Erdös-Rényi
graph. We start at node i and begin visiting other nodes. Any
node u at time t = 1 is labeled as visited if (i,u,1) is open.
We denote the set of nodes visited for the first time at time
slot t ′ by ω(t ′) and the set of all nodes visited from t = 1 to
t = t ′ by W (t ′). Therefore, W (t + 1) = W (t) ∪ ω(t + 1). A
node is labeled as visited in time t if there exists an open edge
between any node in W (t − 1) and this node. Obviously, the
total number of visited nodes in t = 1 is a binomial random
variable B[N − 1,p(1)]. If we assume that |W (t − 1)| = �,
we have |ω(t)| ∼ B{N − 1 − �,1 − [1 − p(t)]�}. Therefore,
we can conclude that

P [|W (t)| = k] =
k∑

�=0

P [|W (t − 1)| = �]

(
N − 1 − �

k − �

)

×{1 − [1 − p(t)]�}k−�[1 − p(t)]N−1−k.

(2)

The probability P (i
T−→ j ) is equivalent to the probability

of j being labeled as visited by time T (see Fig. 2).

FIG. 2. Node j has not been visited by time t . In time slot t + 1,
node j falls into the set of nodes labeled as visited.

Therefore,

P (i
T−→ j ) = P [j ∈ W (T )]

=
N∑

�=1

P [j ∈ W (T )||W (T )| = �]P [|W (T )| = �]

=
N∑

�=1

�

N − 1
P [|W (T )| = �], (3)

and one can obtain P (i
T−→ j ) recursively.

IV. UPPER BOUND

Generalizing the exact method in Sec. III to the case of
arbitrary time-varying probabilities is not straightforward; and
even if possible, it would be computationally intractable.
Therefore, we propose a different method in this section,

which provides an upper bound on P (i
T−→ j ) given that the

probabilities pij (t) can take any value (between 0 and 1) at
each time slot. The event of at least one open path existing
from node i to j is the complement of the event that no open
paths exist from i to j . Thus, obtaining the probabilities of
every path from i to j should give the desired accessibility
probability. However, it should be noted that, first, even finding
the probability of one path is not straightforward because
the number of trials at each node to jump to the next node
(waiting time at each node) is a random variable by itself
and in general, of a different probability distribution; second,
the number of paths from i to j grows exponentially with t ;
third and most important, different paths might be positively
correlated if they have any edge in common in the same time
slot. In the following, the derivation of the upper bound is
discussed.

We associate a dependant variable αij (t) to any pair of
nodes (i,j ). This variable is formed recursively and given
as follows:

αij (t) = 1 −
N∏

�=1

[1 − αi�(t − 1)p�j (t)],

αij (1) = pij (1). (4)
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In the following theorem, we show that αij (t) is an upper bound
for the probability of an open temporal path existing from any
node i to any node j .

Theorem 1: P (i
T−→ j ) � αij (T ), for all (i,j ) ∈ V × V and

any positive integer T � 1.

Proof. We use induction by showing that P (i
T +1−−→ j ) �

αij (T + 1) given that P (i
T−→ j ) � αij (T ). Obviously, the

theorem holds for T = 1 because αij (1) = pij (1) by definition
(4). At time T , we have

P (i
T−→ �) = P

[
M(T )⋃
m=1

Ai�
m(T )

]
� αi�(T ),

where the inequality follows from the induction assumption.
This implies that

P

[
M(T )⋃
m=1

Ai�
m(T )

]
p�j (T + 1) � αi�(T )p�j (T + 1). (5)

Since the existence of open edges between nodes are indepen-
dent random variables, we have

P

[
M(T )⋃
m=1

Ai�
m(T )

]
p�j (T + 1)

= P

{[
M(T )⋃
m=1

Ai�
m(T )

]
∩ (�,j,T + 1)

}

= P

{
M(T )⋃
m=1

[
Ai�

m(T ) ∩ (�,j,T + 1)
]}

= P

[
M(T )⋃
m=1

Bi�j
m (T + 1)

]
. (6)

Combining (5) and (6), we have

P

[
M(T )⋃
m=1

Bi�j
m (T + 1)

]
� αi�(T )p�j (T + 1)

⇒ P

[
M(T )⋂
m=1

B
i�j

m (T + 1)

]
� 1 − αi�(T )p�j (T + 1),

(7)

where B
i�j

m (T + 1) is the complement of the event Bi�j
m (T + 1).

Each set of paths
⋃M(T )

m=1 B
i�j
m (T + 1) for � = 1, . . . ,N is a

family of monotonically decreasing events.2 Therefore, using
the Harris-FKG inequality (Theorem 6.3.2 in Ref. [29]), we

2A family A of subsets of K = {1,2, . . . ,k} is monotone decreasing
if A ∈ A and A′ ⊆ A ⇒ A′ ∈ A. The collection of any open path
(viewed as an edge set) and all its subpaths (also viewed as edge sets)
form a monotonically decreasing family. This is because if a path
is open (and consequently in the family of open paths), any subpath
would also be open and hence an element of the family. Here, to avoid
unnecessary complication in the notations, we have used Bi�j

m (T + 1)
to represent such a family of events.

can establish the proof

P

[
M(T +1)⋃

m=1

Aij
m(T + 1)

]
= P

{
N⋃

�=1

[
M(T )⋃
m=1

Bi�j
m (T + 1)

]}

= 1 − P

{
N⋂

�=1

[
M(T )⋂
m=1

B
i�j

m (T + 1)

]}

� 1 −
N∏

�=1

P

[
M(T )⋂
m=1

B
i�j

m (T + 1)

]

� 1 −
N∏

�=1

[1 − αi�(T )p�j (T + 1)]

= αij (T + 1), (8)

where the first inequality follows from the Harris-FKG
inequality and the second inequality follows immediately
from (7). �

It is worthwhile to mention that the upper bound, in the way
formulated above, includes the paths in which the destination
node j could be visited more than once. This is because αij (t)
depends on αi�(t), which is itself in a recurrent way depending
on paths passing through node j . Therefore, the upper bound
can be further tightened by defining a specific value α

j

i�(t) for
obtaining αij (t) by excluding the path with node j in between.
In other words,

α
j

i� = 1 −
N∏

r=1,r �=j

[1 − αir (t − 1)pr�(t)]b.

The upper bound is derived the same as in (4) except that
αi�(t) is replaced with α

j

i�(t). Although this will tighten the
bound, if the objective is to find the bound for the entire
set of pairs between any two nodes in the network, the
computational complexity increases with an order O(N ). This
is because the variable α

j

i�(t) is only valid for the pairs with
j as the destination node and therefore the calculation of
α

j

i�(t) should be repeated for each value of j = 1, . . . ,N . In
a more general sense, finding the probability of accessibility
via nonbacktracking paths (temporal paths without loops) is a
more complicated problem. In this paper, we have considered
the probability of accessibility via all temporal paths (including
the backtracking ones), which is also consistent with the
definition of accessibility used in Ref. [1] and upper bounds the
probability of accessibility via nonbacktracking paths. Also in
our numerical experiments, removing the paths with repeating
destination node showed a negligible impact on the upper
bound, and hence was skipped.

V. LOWER BOUNDS

In this section, we provide two alternative lower bounds

on P (i
T−→ j ). The performance of each bound depends on the

distribution of the probabilities of edges across the network
and over the observation window.
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A. Lower bound I

The first lower bound on P (i
T−→ j ) relies on finding a clique

graph inside the temporal network such that the probability
of all the edges in this clique is above a certain threshold
over the entire window of observation. More formally, we find
a subset of nodes V̂ ⊆ V for a fixed value pmin such that
i,j ∈ V̂ and p�m(t) � pmin,∀�,m ∈ V̂ ,t ∈ {1, . . . ,T }.

For any such V̂ and pmin, we generate a new temporal
network GV̂ for which we set the probability of all edges to
be p′

�m(t) = pmin,∀�,m ∈ V̂ ,t ∈ {1, . . . ,T }. Since the proba-
bilities of edges are assumed to be identically pmin, we can
apply the method in Sec. III to the resulting temporal network
with the vertex set V̂ and find the probability βij (T ) :=
P̂ (i

T−→ j ), where we use the notation P̂ (as opposed to P )
to distinguish the probability of accessibility in the derived
network (defined by vertex set V̂ and identical probability
pmin) from the probability of accessibility in the original
network.

From the construction of GV̂ , it is easy to conclude βij (T ) �
P (i

T−→ j ) in the original network. Therefore, any such subset
V ′ and pmin provides a lower bound for the probability of
accessibility between two nodes i and j . Such a clique is not
unique as it depends on the choice of pmin. It should be noted
that the size of a clique by itself does not identify the bound.
For instance, a smaller clique with a higher value of pmin

might result in a higher probability of accessibility and hence
a better bound. Therefore, different values of pmin should be
examined, and the highest accessibility probability should be
selected as the lower bound. Based on this heuristic, for a fixed
pmin, we obtain the corresponding lower bound as follows (see
also Fig. 3):

Step 1: Find the sets Ec = {(�,m) : p�m(t) � pmin,1 �
t � T } and Vc = {� : ∃m such that p�m(t) � pmin,1 � t �
T }. Form the corresponding equivalent static graph Gc =
(Vc,Ec).

Step 2: Using the Bron-Kerbosch [30] algorithm, find the
set of all maximal cliques of Gc.

Step 3: Select the largest clique V̂ from the subset of
cliques that includes (i,j ). Generate the temporal network
GV̂ according to the selected clique, such that p�m(t) =
pmin,∀�,m ∈ V̂ .

Step 4: Apply the method in Sec. III to GV̂ and find

P̂ (i
T−→ j ).

By examining the above method and finding the maximum
value of βij (T ) [denoted by β∗

ij (T )] for different values
of pmin (possibly for all values of pmin = p�m(t) : p�m(t) �
mint {pij (t)}), one can obtain

β∗
ij (T ) � P (i

T−→ j ).

B. Lower bound II

The second lower bound is established based on finding a
set of edge-disjoint paths, because the events of such paths
being open are statistically independent. This independence
results in finding the probability of at least one path (from
the selected edge-disjoint subset of all the paths) being open,
without being concerned about the correlation between the
paths (as there is no common edge between any two paths
within the selected set). It is worthwhile to mention that in
general the definition of an edge disjoint path in a temporal
network is different from its equivalent in static graphs. In
temporal networks, an edge (i,j,t) is not only identified by its
two end nodes i and j but also with a label of time t . Two
edges (i,j,t) and (i ′,j ′,t ′) are disjoint if i �= i ′ or j �= j ′ or
t �= t ′. Therefore, two edge disjoint paths might share the link
between two nodes with two distinct time labels.

If we denote the waiting period at each node on a path

Rk = i,v1, . . . ,vLR−1,j

of length LR by t1, . . . ,tLR
, the existence of an open path

between i and j implies that t1 + · · · + tLR
� T . The waiting

time at each node is the number of time slots from the current
time slot to the time slot in which an edge to the next node in
the path becomes open. Clearly finding the probability of all
sequences of numbers with summation less than T given the
probabilities of all the edges on this path (which are possibly
time variant as well) is computationally costly. However, if we
set

pmin = min
Rk

min
t

{piv1 (t),pv1v2 (t), . . . ,pvLR−1j (t)},

then we can assume all the edges have at least a success
probability pmin. Therefore, P [Rk(T )], the probability of Rk

being open before time T , can be lower bounded by the
following inequality:

P [Rk(T )] � 1 −
LR−1∑
m=1

(
T

m

)
pm

min(1 − pmin)T −m. (9)

JIJI JI(0.5, 0.7, 0.5)

0.7 0.6

0.3

0.5

0.70.2

0.5

0.5

0.5

FIG. 3. Lower bound I: Searching for a clique based on a given threshold pmin = 0.5. The triplet on each edge represents the probabilities
of links being open in time slots t = 1, t = 2, and t = 3.
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FIG. 4. Comparing two paths Ra = I,K,J and Rb = I,K,L,J

based on their quality (10), f (Ra(10)) = 0.26 (on the left) and
f (Rb(10)) = 0.98 (on the right).

The inequality holds because the probability of Rk (of length
LR) being open is translated to the probability of observing
at least LR successful outcomes of T Bernoulli trials with
parameter pmin.

In what follows, it will be helpful to define the quality of
path to be

f (Rk(T )) = 1 −
LR−1∑
m=1

(
T

m

)
pm

min(1 − pmin)T −m. (10)

Our objective is to find edge disjoint paths with high qualities

to obtain a tighter lower bound for P (i
T−→ j ) (however, any

set of disjoint paths would result in a lower bound). Figure 4
compares two paths for their quality f (Rk(T )). As it can be
observed, a longer path (of length 3) can have a higher quality
than a shorter path (of length 2).

To obtain the lower bound, we form a set of edge disjoint
paths. This is done by first forming a random graph Gmin

where we set the probability p�m = mint {p�m(t)} for any pair
of nodes in the network. We sort the outgoing edges from i

such that pil1 � pil2 � · · · . We start from (i,l1) to form the first
path, i.e., R1(T ). Initially, this path would be i,l1,j . At each
step, the quality of path f (R1(T )) is measured, the outgoing
edges from the last node (the node before j ) are sorted and
the edge with maximum probability (between the current last
node and a node m) is selected. If adding node m as the last
node before arriving at j increases the quality of the path, the
discovered path is updated by adding m to the path just before
j . For instance, in Fig. 4, for T = 10, we initially examine the
path I,K,J , and then we update the path to I,K,L,J as
the latter has a higher quality. We stop adding nodes to the path
as soon as the quality of the path begins to decrease. Once the
path R1(T ) is formed, we remove all the edges of this path from
Gmin and we start generating a new path by repeating the same
procedure on Gmin, starting from the next outgoing edge from
i in the sorted list of edges. We continue this algorithm until
we cannot generate any new paths from i to j . This algorithm
of path selection is represented in Algorithm 1. If we denote
the set of generated paths by R, the lower bound II is given as
follows:

P (i
T−→ j ) � 1 −

|R|∏
k=1

[1 − f (Rk(T ))] = γij (T ). (11)

Algorithm 1 Path selection.

While ∃ path ∈ Gmin do
current node ← i

next node ← arg max� pi�,� �= i

k ← 1
R′

k ← i,next node
Rk ← R′

k,j

g ← 0
While f (Rk(T )) � g do

g ← f (Rk(T ))
current node ← next node
next node ← arg max� pcurrent node,�,� �= current node
R′

k ← R′
k,next node

Rk ← R′
k,j

end while
k ← k + 1

end while

VI. QUANTIZATION OF CONTINUOUS
RANDOM ON-OFF LINKS

In many scenarios, a temporal network evolves in a
continuous-time fashion. Said in a different way, we may have
the probability distribution of the ON or OFF intervals in the
continuous-time domain. The ON period refers to the time in-
terval in which there exists an open edge between two specific
nodes. By splitting the entire observation window into time
slots of a given length, and deriving the probability of the state
of an edge being observed at the end of each time slot, we can
quantize such continuous distributions. Such a quantization
associates a discrete probability to each time slot. This enables
us to use the bounds given above to estimate the probability of
accessibility between any two nodes in the network.

The link between any two nodes could have started from
being ON or OFF at t = 0 and could have been switched ON and
OFF any m number of times between m = 0 to m = ∞ during
the interval t = 0 to t = T0 (see Fig. 5). Therefore, an infinite
number of possible events should be considered when deriving
the probability of observing the edge in the ON position.

If we are given the probability distributions of the ON

and OFF periods (for a specific edge) denoted by fON (τ )
and fOFF (τ ) and also the probability of starting from the
ON position at t = 0 (represented by p0), we can obtain the
probability of being in the ON position (denoted by ξ = 1, and
ξ = 0 for OFF) at time T0, which is derived as follows:

P (ξ = 1) = p0

∞∑
m=0

∫ T0

0
fSON

m
(s)[1 − FON (T0 − s)]ds

+ (1 − p0)
∞∑

m=0

∫ T0

0
fSOFF

m
(s)

× [1 − FON (T0 − s)]ds, (12)

where

fSON
m

(s) =
⎧⎨
⎩

1 m = 0
fON ∗ · · · ∗ fON︸ ︷︷ ︸

m

∗fOFF · · · ∗ fOFF︸ ︷︷ ︸
m

m > 0 ,
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FIG. 5. Different possibilities (events) based on starting from ON

or OFF position for a given edge.

f
SOFF
m

(s)=fON ∗ · · · ∗ fON︸ ︷︷ ︸
m

∗fOFF · · · ∗ fOFF︸ ︷︷ ︸
m+1

, and FON is the

cumulative distribution function (CDF) of the ON time distri-
bution. Also SON

m represents the random variable describing
the sum of m periods of ON-OFF (an ON period followed by
an OFF period), assuming that at t = 0 the edge has been ON.
Similarly, SOFF

m represents a similar sum with the assumption
that at t = 0, the edge has been OFF. Starting from ON (with
probability p0) or OFF (with probability 1 − p0) at t = 0
are two mutually exclusive events. For each of these two
possibilities, the summation of the probabilities of infinitely
many exclusive events are calculated as in Eq. (12). Each
of these many events corresponds to a given m number of
switchings (ON-OFF periods). To derive the probability of such
an event (i.e., being in an ON position at t = T0 starting from an
ON position at t = 0 with m switchings), one needs to obtain
the probability of the event that SON

m � T0 (the total duration of
the m ON-OFF periods is less than T0) and after these m periods
an ON period lasts at least until t = T0 and possibly onward.
Similar arguments apply to the case of starting from the OFF

position at t = 0, which is reflected in the integrals within
the second summation in Eq. (12). The integral terms inside
the summations give the probability of such events. Since the
last ON period can take any value larger than T0 − SON

m , its
probability is 1 − FON (T0 − s).

It should be noted that this calculation provides the
probability of an edge being open if it is observed at a specific
instance of time T0. However, another useful probability would
be the probability of observing at least one ON period between
t = 0 and t = T0 to be reported as the probability of the edge
being open over the corresponding time slot. Moreover, in
practice one can choose the quantization step of time (T0) very
small such that with high probability at most one switching
occurs within each time slot to ease the calculations. We skip
the details of these last two possibilities. However, we apply
these simplifications to the numerical experiment in Sec. VII B.

0 2 4 6 8 10 12 14 16
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 o

f a
cc

es
si

bi
lit

y

Simulations
Upper Bound
Lower Bound I
Lower Bound II

FIG. 6. Probability of accessibility between two (randomly se-
lected) nodes in a network with N = 20 nodes. The probability of
each edge is uniformly selected from the range [0.05, 1] and remains
constant during the observation window of 16 time slots.

VII. NUMERICAL EXPERIMENTS

The bounds and mapping from continuous interval distribu-
tions to discrete probabilities of edges introduced in this paper
have been examined against synthetically generated networks
(Monte Carlo simulations) as well as a real-world vehicular
network dataset [2] collected from the GPS devices of the taxis
in Rome, Italy. In the following, these experiments and their
results are reported.

A. Synthetically generated networks

In our first experiment, we considered a network with N =
20 nodes and the probability of any edge (�,m) was selected
randomly from the range [0.05, 0.1]. We fixed this probability
for the observation window t = 1, . . . ,16. Figure 6 shows the

evolution of the probability of accessibility P (i
t−→ j ) for a

randomly selected pair of nodes i and j over the mentioned
window. As can be observed from the figure, the upper bound is
very close to the expected probability of accessibility obtained
from Monte Carlo simulations.3 It is of interest to observe how
the probability of accessibility and the bounds are affected by
the distribution of the probabilities of the edges. Figure 7
depicts the evolution of the probability of accessibility for a
different distribution of edge probabilities. In this case, we
have assumed that a fraction α = 0.5 of the edges have a fixed
and identical probability puv = 0.1 and the probabilities of
other edges are zero all the time (we name such a network
as partially connected). As can be observed, the upper bound
remains tight whereas the lower bounds behave differently.

3For convenience, in the presentation we have shown the probability
distributions over a continuous domain by interpolation in Figs. 6
and 9.
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FIG. 7. Probability of accessibility between two randomly se-
lected nodes for the partially connected network. In this network of
N = 20 nodes, a fraction α = 0.5 of the edges are assumed to be
open with a fixed probability p = 0.1 and the rest of edges will not
be open at any time.

Below, we bring extreme examples of networks where one of
the lower bounds clearly outperforms the other.

Figure 8 compares the upper bound and the Monte Carlo
simulations for the probability of accessibility in four time slots
for a set of 40 randomly selected pairs of nodes. It should be
emphasized that the scales over the vertical axes are different
for the four subfigures. This figure shows the evolution of the
range of such probabilities over time. One can see that these
probabilities have more variance at the beginning but their
variance reduces as time increases (intuitively because there
will be larger number of common subpaths between different
pairs). Moreover, this figure shows the goodness of the upper
bound as an estimate of the probability of accessibility.
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FIG. 8. Comparison between the upper bound and Monte Carlo
simulations of the probability of accessibility for 40 randomly
selected pairs in four time slots, t = 2, t = 4, t = 6, and t = 8.

It should be noted that lower bound I is computationally
slow because of the clique search algorithm; however, the other
bounds, and particularly the upper bound, are easily applicable
to large-scale networks as well. The tightness of these bounds
and their superiority over each other depend on the distribution
of the edge probabilities across the network. For instance, in an
extreme example, if the probabilities of edges are identical and
constant over time for all the edges, the problem is reduced
to the special case of Sec. III. Therefore, in this case lower
bound I will match with the probability of accessibility and
therefore will outperform lower bound II. In another extreme
example, suppose there are a number of edge-disjoint paths
between two nodes i and j , where the probabilities of all the
edges on these paths are positive, identical, and constant all
the time and the probabilities on the other edges (including
the direct link between i and j ) are zero. In this case, lower
bound II will match the probability of accessibility, whereas
lower bound I will be trivially zero. In general, an exact
analysis on the goodness and of these bounds seems intractable
due to the complex nature of the correlation between the
paths.

Another interesting observation is the relationship between
accessibility and delay (or trip duration) between two given
nodes in the network. We define the accessibility delay from
node i to j to be the first time slot t that an open temporal path
from i to j becomes present starting from t = 1. We denote the
accessibility delay by Di→j . The probability of accessibility

P (i
t−→ j ) can be interpreted as the cumulative distribution

function (CDF) of the delay. Therefore, the delay probability
distribution function (pdf), denoted by π (Di→j = t), would
be immediately available by calculating the derivative of the
probability of accessibility, i.e.,

π (Di→j = t) = dP (i
t−→ j )

dt
. (13)

Therefore, the bounds given in this paper can be similarly
differentiated to approximate the density function that de-
scribes the delay distribution. Figures 9 and 10 show the
distributions of delay for the experiment settings in Figs. 6 and
7, respectively, as well as approximated distributions obtained
by differentiating the lower and upper bounds. It might be
useful to obtain the average accessibility delay, i.e., D̄ =∑T

t=1 tπ (Di→j = t). In that case, the average over the bounds
can be also used to bound the average delay. For instance, in the
setting of Figs. 6 and 9, D̄1 = 3.42, D̄2 = 3.51, D̄3 = 4.40,
and D̄4 = 5.55 are the average values derived from the upper
bound, Monte Carlo simulations, lower bound I, and lower
bound II, respectively. It should be noted that the average
accessibility delay lower bounds the average traversal time
(the time it takes for a traveler to get from the source node to
the destination node).

Another experiment was performed to verify the ON-OFF

model derived in Sec. VI. In our experiment, we assumed
that the ON and OFF periods for an edge follow exponential
distributions with parameters βON and βOFF , respectively.
Therefore, the probability distribution of the total length of
being ON (or OFF) given m switchings (changing from ON to
OFF or from OFF to ON) is the convolution of m exponentials,
i.e., a 
 distribution 
(βON,m) [or 
(βOFF ,m)]. Therefore,
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FIG. 9. Accessibility delay distribution (for the experiment set-
ting of Fig. 6). Such delay is defined as the elapsed time for a node j to
become accessible from i for the first time (for uniform probabilities
of edges).

the pdf of the random variable SON
m (or SOFF

m ) is obtained
by calculating the convolution of the two 
 distributions with
different parameters. Various methods for such calculations
are available in the literature [31,32].

We considered a window observation of T = 10 units of
time in the continuous domain and observed the status of an
edge over the mentioned window. We assumed that the ON and
OFF periods are exponentially distributed with βON = 2 and
βOFF = 3, respectively. Moreover, we assumed that starting
from ON or OFF positions was equally probable (i.e., p0 = 0.5).
We have run 10 000 trials for this edge and measured the status
of the edge (ON or OFF) at the end of every time slot of length
0.5 from t = 0 to t = 10 and averaged them over these trials.
Since in a practical setting the total number of switchings
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FIG. 10. Accessibility delay distribution (for the partially con-
nected network setting experiment in Fig. 7).
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FIG. 11. Comparing probability of an edge existing between
two specific nodes (randomly selected) obtained from simulations
and ON-OFF analytical model for exponentially distributed ON-OFF

periods.

cannot be infinite, we limited the number of switchings to be
from m = 0 to m = 40. The comparison between the results
of this experiment and the probability obtained from Eq. (12)
is shown in Fig. 11, which verifies the accuracy of the method
in Sec. VI for the mentioned range of m.

B. Real-world dataset

As can be seen from the experiments on synthetically
generated networks, the gap between the upper bound and
estimated probabilities from Monte Carlo simulations for
networks with randomly assigned probabilities on edges is
fairly narrow. Hence, the bound can be naturally nominated
as a predictor for the probability of accessibility in real-
world networks. However, it would be crucial to observe the
performance of the given bound beyond the abstractions of
the previously mentioned synthetic networks and under more
realistic conditions. With this objective, we have used the
data collected from the GPS devices of a group of taxis in
Rome [2]. A vehicular network has been selected for this
experiment because such networks are mathematically more
tractable. The reason for this is that in such networks the
intercontact time has been shown to follow an exponential
distribution [33]. From the entire set of 387 taxis in the original
dataset, we have randomly selected 25 and observed them
over a period of one month (February). The time period of
observation has been split to T = 2688 time slots of 15 min.
We have assumed that two taxis are in contact if their distance
is less than R = 50 m at any fraction of time within a given
time slot. The occurrence of a contact between two vehicles
over a given time slot can be represented by the existence
of an edge in the equivalent adjacency graph over that time
slot (where each vehicle is represented by a vertex in such a
graph).

We further assume that the duration of a contact is negligible
when compared to the length of a time slot. If two vehicles
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FIG. 12. Comparing the expected delay derived from the upper
bound and estimated edge probabilities over the training phase, and
the average delay from the 10 experiments. Due to the relatively small
size of the dataset and possibility of unexpected events (e.g., absence
of a vehicle from the network) a few points of discrepancy are not
surprising.

are in contact for a longer period, this can be considered as
several consecutive contacts. With this assumption and given
the memorylessness of the exponential distribution, the origin
of time would not have any impact on the probability of a
contact occurring between two vehicles over a given time slot.
If we denote the inter-contact time between two vehicles by
random variable X ∼ λe−λx and the duration of time slot by
t0, the probability of a contact occurring over a given time slot
can be approximated by

∫ t0
0 λe−λtdt = 1 − e−λt0 . It should be

noted that here we have assumed that t0 � 1
λ

. Therefore, it can
be assumed that with a high probability at most one contact
occurs between the two vehicles. Therefore, transforming
the continuous distribution of intercontact time between the
vertices in the corresponding graph would be considerably
simpler than the general procedure described in Sec. VI.

The experiment is composed of two phases. In the first
phase, the distribution of intercontact time between any two
individual vehicles is estimated by fitting to an exponential
distribution. In other words, the first phase is used for training.
We have allocated the period 1 � t � 1100 for training. In
the second phase, we use the distributions obtained from the
training to predict the probability of accessibility between pairs
of vehicles over the period 1101 � t � 2600. We divide this
period of 1500 time slots to 10 equal and distinct subperiods of
150 time slots. For each time slot, the number of experiments
in which any vehicle j has been accessible from i is assumed
to be an estimate of the probability of accessibility from i to j .
Figure 12 compares the average delay obtained empirically
from the second phase and the predicted expected delay
(obtained by using the upper bound as the predictor for
accessibility probability) from the training phase for a subset
of vertex pairs. We have only selected those pairs in which
accessibility has been established in at least 8 out of the 10
experiments. To avoid a dense figure, half of the pairs have
been randomly selected and their delays are compared in the
figure.
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FIG. 13. Pearson’s correlation coefficient between the predicted
probabilities of accessibility and the empirically estimated values.

Moreover, to evaluate the goodness of the upper bound as
a predictor for the accessibility probability, we have measured
the Pearson’s correlation coefficient [34] between the vector
of all estimated probabilities obtained from the experimental
phase and the vector of probabilities predicted by the upper
bound for the entire set of pairs of vertices.

Figure 13 represents the variations of the correlation
coefficient over time. As can be observed, even for such a small
number of experiments (10) and for a relatively short phase of
training (1100 time slots), the correlation coefficient remains
above 0.7 almost all the time. Therefore, the combination of
the upper bound (as the predictor) and the contact probability
estimation (based on a learning phase) performs with a very
good accuracy.

VIII. CONCLUSION

Formation of paths in complex networks with time-varying
edges where the presence and absence of edges is a function
of time, and possibly random, is far more complicated than
static graphs. In this paper, we studied the formation of such
paths and the notion of accessibility between nodes in random
temporal networks at a microscopic level. Finding the exact
probability of having access from one node to another in such
networks is rather complicated. We provided a set of bounds
on this probability for a very general setting of probabilities.
Moreover, we extended our result to continuous-time domain
networks. We evaluated our analytical results with numerical
experiments. The microscopic level analysis given in this paper
can be a ground for macroscopic analysis of random temporal
networks in future.
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