
PHYSICAL REVIEW E 96, 032308 (2017)

Difference between memory and prediction in linear recurrent networks

Sarah Marzen*

Department of Physics, Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 29 June 2017; revised manuscript received 14 August 2017; published 11 September 2017;

corrected 22 October 2018)

Recurrent networks are trained to memorize their input better, often in the hopes that such training will increase
the ability of the network to predict. We show that networks designed to memorize input can be arbitrarily bad at
prediction. We also find, for several types of inputs, that one-node networks optimized for prediction are nearly
at upper bounds on predictive capacity given by Wiener filters and are roughly equivalent in performance to
randomly generated five-node networks. Our results suggest that maximizing memory capacity leads to very
different networks than maximizing predictive capacity and that optimizing recurrent weights can decrease
reservoir size by half an order of magnitude.

DOI: 10.1103/PhysRevE.96.032308

Often, we remember for the sake of prediction. Such is the
case, it seems, in the field of echo state networks (ESNs) [1,2].
ESNs are large input-dependent recurrent networks in which
a “readout layer” is trained to match a desired output signal
from the present network state. Sometimes, the desired output
signal is the past or future of the input to the network.

If the recurrent networks are large enough, they should
have enough information about the past of the input signal
to reproduce a past input or predict a future input well, and
only the readout layer need be trained. Still, the weights
and structure of the recurrent network can greatly affect the
predictive capabilities of the recurrent network, and so, many
researchers are now interested in optimizing the network itself
to maximize task performance [3].

Much of the theory surrounding echo state networks centers
on memorizing white noise, an input for which memory is
essentially useless for prediction [4]. This leads to a rather
practical question: How much of the theory surrounding
optimal reservoirs, based on maximizing memory capacity
(MC) [5–9], is misleading if the ultimate goal is to maximize
predictive power?

We study the difference between optimizing for memory
and optimizing for prediction in linear recurrent networks
subject to scalar temporally correlated input generated by
countable hidden Markov models. Reference [10] gave closed-
form expressions for the memory function of continuous-time
linear recurrent networks in terms of the autocorrelation
function of the input and closely studied the case of an
exponential autocorrelation function. Reference [11] gave
similar expressions for discrete-time linear recurrent networks.
Reference [12] gave closed-form expressions for the Fisher
memory curve of discrete-time linear recurrent networks,
which measure how many changes in the input signal perturb
the network state; for linear recurrent networks, this curve is
independent of the particular input signal.

We differ from these previous efforts mostly in that we study
both memory capacity and newly defined “predictive capacity
(PC)”. We derive an upper bound for predictive capacity
via Wiener filters in terms of the autocorrelation function

*semarzen@mit.edu

of the input. Two surprising findings result. First, predictive
capacity is not typically maximized at the “edge of criticality”,
unlike memory capacity [5,7,9]. Instead, maximizing memory
capacity can lead to minimization of predictive capacity.
Second, optimized one-node networks tend to achieve more
than 99% of the possible predictive capacity, whereas (un-
optimized) linear random networks need at least five nodes
to reliably achieve similar memory and predictive capacities,
and ten-node nonlinear random networks cannot match the
optimized one-node linear network. The latter result suggests
that optimizing reservoir weights can lead to at least half an
order-of-magnitude reduction in the size of the reservoir with
no loss in task performance.

I. MODEL

Let s(n) denote the input signal at time n, and let x(n) denote
the network state at time n. The network state updates as

x(n + 1) = Wx(n) + s(n)v, (1)

where W,v are two reservoir properties that we wish to
optimize. We restrict our attention to the case that W is
diagonalizable,

W = P diag(�d)P −1, (2)

where P is the matrix of the eigenvectors of W and �d’s are the
corresponding eigenvalues. For reasons that will become clear
later, we define a vector,

ω = P −1v. (3)

We further assume that the input s(t) has been generated by
a countable hidden Markov model so that its autocorrelation
function can be expressed as

Rss(t) =
∑
λ∈�

A(λ)λ|t |, (4)

where � is a set of numbers with a magnitude less than 1.
See Ref. [13] or Appendix A. To avoid normalization factors
and to ensure that this autocorrelation function represents that
from an HMM, we assert that

Rss(0) =
∑
λ∈�

A(λ) = 1. (5)

2470-0045/2017/96(3)/032308(7) 032308-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.032308

SARAH MARZEN PHYSICAL REVIEW E 96, 032308 (2017)

The power spectral density of this input process with

Rss(t) = 1

2π

∫ π

−π

S(f)eif tdf (6)

is

S(f) =
∞∑

k=∞
Rss(k)e−if k (7)

=
∑
λ∈�

A(λ)
∞∑

k=−∞
λ|k|e−if k (8)

=
∑
λ∈�

A(λ)
1 − λ2

(1 − λe−if)(1 − λeif)
, (9)

by the Wiener-Khinchin theorem.

II. RESULTS

The memory function is classically defined by [5]

m(k) := p�
k C−1pk, (10)

where

pk = 〈s(n − k)x(n)〉n, (11)

and

C = 〈x(n)x(n)�〉n. (12)

Due to Eq. (5), we need not divide p�
k C−1pk by the variance of

the input. This memory function is also the squared correlation
coefficient between our optimal linear estimate of input s(n −
k) from network state x(n) and the true input s(n − k).

Memory capacity usually is defined as
∑

k=0 m(k), but since
Eq. (1) updates x(n) with s(n − 1) instead of s(n), we have

MC =
∞∑

k=1

m(k), (13)

and we define the predictive capacity as

PC :=
∞∑

k=0

m(−k). (14)

Intuitively, MC is higher when the present network state is
better able to remember inputs, whereas PC is higher when the
present network state is better able to forecast inputs based on
what it remembers of past inputs.

We have made an effort here to find the most useful
expressions for MC and PC so that one might consider using
the expressions here to calculate MC, PC instead of simulating
the input and recurrent network. As shown in Appendix B,

PC = 2πω�(DPC � B−1)ω, (15)

where

B :=
∫ π

−π

S(f)

(
ω

e−if − �d

)(
ω

eif − �d

)�
df, (16)

which is related to 2πC by a similarity transform, and where

DPC :=
∑

λ,λ′∈�

A(λ)A(λ′)
1 − λλ′

(
1

λ−1 − �d

)(
1

(λ′)−1 − �d

)�
. (17)

The expression for memory capacity is more involved

MC = 2πω�(
DMC � B−1

)
ω, (18)

where the matrix DMC has entries,

(DMC)ij =
∑

λ,λ′∈�

A(λ)A(λ′)
(

1 + didjλ(λ′)3 + didjλ
′λ3 + didj (λλ′)2 − didjλλ′ − didj (λ′)2 − didjλ

2 − d2
i d2

j

(1 − λλ′)(1 − diλ)(1 − diλ′)(1 − djλ)(1 − djλ′)(1 − didj)

− di(1 − didj)λ2λ′ + dj (1 − didj)λ(λ′)2

(1 − λλ′)(1 − diλ)(1 − diλ′)(1 − djλ)(1 − djλ′)(1 − didj)

)
, (19)

as shown in Appendix B. Together, these expressions explain
why simple linear ESNs [14] can perform just as well as
nonsimple linear ESNs on the maximization of MC; from
Eq. (18), the memory capacity of a linear ESN is the same as
the memory capacity of a simple linear ESN with v = ω and
W = diag(�d).

It is unsurprising but not often mentioned that the reservoirs
which maximize memory capacity are different than the
reservoirs that maximize predictive capacity. To illustrate how
different the two reservoirs might be, we consider the capacity
of a one-node network subject to two types of input.

The first type of input considered has autocorrela-
tion Rss(t) = e−α|t |. Some algebra reveals that MC =
e4α−2eαW+2e3αW−W 2

(e2α−1)(e2α−W 2) and PC = e2α (1−W 2)
(e2α−1)(e2α−W 2) . Inspection of

these formulas or inspection of the plots of these formulas in
Fig. 1 (blue lines) for α = 0.1 shows that MC is maximized at
the edge of criticality W → 1 at which point x(n) is an average
of observed s(n)—i.e., x(n) = 〈s(k)〉k�n. Interestingly, at that
point, PC is minimized, i.e., PC = 0. Instead, for this particular
input, PC is maximized at W = 0 at which point x(n) =
s(n − 1)—i.e., x(n) is the last observed input symbol.

Both memory and predictive capacities can increase without
bound by increasing the length of temporal correlations
in this input: limW→1 MC = coth(eα/2) and limW→0 PC =
1
2 (coth α − 1). These results mirror what was found in
Ref. [10] for continuous-time networks: limW→1 MC = 2

α
plus

corrections of O(α) and limW→0 PC = 1
2α

plus corrections
of O(1).

032308-2

DIFFERENCE BETWEEN MEMORY AND PREDICTION IN . . . PHYSICAL REVIEW E 96, 032308 (2017)

−1.0 −0.5 0.0 0.5 1.0

W

0

1

2

3

4

5

P
C

(b)

−1.0 −0.5 0.0 0.5 1.0

W

0

5

10

15

20

M
C

(a)

FIG. 1. [Top (a)] MC and [bottom (b)] PC as a function of W

for Rss(t) = e−0.1|t | (blue lines) and Rss(t) = 1
2 e−0.1|t | + 1

2 e−|t | (green
lines), computed using Eqs. (15) and (18) in the main text. Whereas
PC is maximized for some intermediate W that depends on the input
signal, MC is maximized in the limit W → 1. When |W | � 1, the
network no longer satisfies the echo state property, and so we only
calculate PC, MC for |W | < 1.

It is a little strange to say that W = 0 can maximize the
predictive capacity of a reservoir as W = 0 implies that there
essentially is no reservoir. But such arg maxW PC is unusual.
Consider input with Rss(t) = 1

2e−0.1|t | + 1
2e−|t | to a one-node

network. Memory capacity still is maximized as W → 1, but
predictive capacity is now maximized at W ≈ 0.8. See Fig. 1
(green lines). Interestingly, we still minimize any error in
memorization of previous inputs by storing their average value.

The scaling of capacity with the network size is also very
different for memory and prediction. MC for linear recurrent
networks famously scales linearly with the number of nodes
for linear recurrent networks [5]. Unlike memory, PC is
bounded by the signal itself. The Wiener filter kτ (n) minimizes
the mean-squared error 〈[s(n + τ) − ŝ(n + τ)]2〉n of future
input s(n + τ) and a forecast of future input from past input
ŝ(n + τ) := ∑∞

m=0 kτ (m)s(n − m). Recall that minimizing the
mean-squared error is equivalent to maximizing the correlation

0 1 2 3 4 5 6

N

0

5

10

15

20

25

M
C

(a)

0 1 2 3 4 5 6

N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
C

(b)

FIG. 2. [Top (a)] MC and [bottom (b)] PC as a function of
N for Rss(t) = 1

2 e−0.1|t | + 1
2 e−|t | and ω, �d drawn randomly: ωi ∼

U[0,1], di ∼ U[−1,1]. The signal-limited maximal PC is shown in
green, whereas MC is network limited. Both MC, PC were computed
using Eqs. (15) and (18) in the main text.

coefficient between a future input and an optimal linear
estimate of this future input. Hence, we can place an upper
bound on PC in terms of Wiener filters, which, after some
straightforward simplification shown in Appendix C, takes the
form

PC �
∞∑

τ=0

�r�
τ R−1�rτ , (20)

where (�rτ)i = Rss(τ + i) and Rij = Rss(i − j).
As PC is at most finite, the scaling of PC with the number

of nodes of the network N must eventually be o(1). See Fig. 2
(bottom). For instance, for Rss(t) = 1

2e−0.1|t | + 1
2e−|t |, Eq. (20)

gives PC � 1.652, which nearly is attained by the optimal
one-node network, for which maxW PC is ≈1.65. And this
is not a special property for a cherry-picked input signal;
similar results hold for other different randomly chosen �,Aλ

combinations not shown here.

032308-3

SARAH MARZEN PHYSICAL REVIEW E 96, 032308 (2017)

(a)

A B1
2 | −

√
2

1
2 |

1√
2

1| 1√
2

0 2 4 6 8 10

N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
C

(b)

FIG. 3. At the top (a), the hidden Markov model generating input
to the nonlinear recurrent network. Edges are labeled p(x|g)|x, where
x is the emitted symbol and p(x|g) is the probability of emitting
that symbol when in hidden state g and the arrows indicate which
hidden state one goes to after emitting a particular symbol from
the previous hidden state. This hidden Markov model generates a
zero-mean unit-variance even process, which has the autocorrelation

function Rss(t) =
{

(− 1
2)|t |+1 |t | � 1
1 t = 0

. At the bottom (b), the predictive

capacity of random nonlinear recurrent networks whose evolution
is given by Eq. (21) with f (x) = tanh(x) and entries of W and v

drawn randomly: Wij ,vi ∼ U[0,1], where W then is scaled so that its
largest magnitude eigenvalue has an absolute value of 1/1.1. Twenty-
five random networks are surveyed at each N , and the blue line
tracks the mean. The green line shows both the predictive capacity
of the optimized one-node linear network and the upper bound from
Eq. (20).

The surprisingly good performance of optimized one-node
networks leads us then to ask how big random (unoptimized)
networks need be in order to achieve similar results. Unop-
timized random networks need ≈5 nodes to reliably achieve
similar results for the optimized one-node network for both
memory and predictive capacities. See Fig. 2 in comparison to
Fig. 1.

Finally, we ask whether any of the lessons learned here
for linear recurrent networks extend to nonlinear recurrent
networks in which

x(n + 1) = f [Wx(n) + s(n)v] (21)

for some nonlinear function f . From Eq. (B1), we see
that linear recurrent networks forecast input via a linear
combination of past input; therefore, as noted previously,
their performance is bounded from above by the performance
of Wiener filters. The performance of nonlinear recurrent

networks is bounded above by a quantity that depends on
the nonlinearity, which in principle might surpass the bound
on predictive capacity given by Eq. (20).

However, optimizing the weights of nonlinear recurrent
networks is far more difficult than for linear recurrent net-
works. This is illustrated by Fig. 3 (bottom), which shows
the estimated PC of random nonlinear networks. We estimate
the predictive capacity from simulations via

∑M
k=0 p̂�

k Ĉ−1p̂k ,
where p̂�

k is the sample covariance of s(n + τ), x(n),Ĉ is
the sample variance of x(n), and M is taken to be 100 as the
correlation coefficient dies off relatively quickly. The reservoir
properties W and v are chosen randomly in that both matrix
elements Wij and vector elements vi are drawn randomly at
uniform from the unit interval and the matrix W is rescaled so
that the eigenvalue of maximum magnitude has a magnitude
of 1/1.1 and the nonlinearity is set to f (x) = tanh x. The
input to the network is generated by the hidden Markov model
shown in Fig. 3 (top). For comparison, the green line shows
the upper bound on predictive capacity for linear recurrent
networks given by Eq. (20), which is achieved by one-node
linear networks with W = 0. These numerical results are
qualitatively similar to results attained when comparing the
memory capacity of linear and nonlinear recurrent networks
in that linear networks tend to outperform nonlinear networks
[12,15].

III. DISCUSSION

The famous Wiener filter is a linear combination of the past
input signal that minimizes the mean-squared error between
the said linear combination and a future input. Linear recurrent
networks are, in some sense, an attempt to approximate the
Wiener filter under constraints on the kernel that come from
the structure of the recurrent network. Here, the linear filter
is not allowed access to all the past of the signal but is only
allowed access to the echoes of the signal past provided by
the present state of the nodes. The advantage of such an
approximation is that one only need store the present network
state as opposed to storing the entire past of the input signal.
In other words, the present network state provides a nearly
sufficient echo of the input signal’s past for input prediction.

We have studied the resource savings that can come from
optimizing the recurrent network and readout weights as
opposed to just optimizing the readout weights. Surprisingly,
we find that a network designed to maximize memory capacity
has arbitrarily low predictive capacity; see Fig. 1. More
encouragingly, we find that an optimized single-node linear
recurrent network is essentially equivalent in terms of both
memory and predictive capacities to a five-node random
linear recurrent network and near maximal predictive capacity.
Finally, numerical results suggest that nonlinear recurrent
networks have more difficulty achieving high predictive
capacity relative to the Wiener filter-placed upper bound
on linear recurrent networks, even though these nonlinear
networks might in principle surpass such an upper bound.

It is unclear whether or not the factor of 5 will generalize
to nonlinear recurrent networks or for inputs generated by
uncountable hidden Markov models, e.g., the output of chaotic
dynamical systems. Perhaps more importantly, predictive
capacity is not necessarily the quantity that we would most

032308-4

DIFFERENCE BETWEEN MEMORY AND PREDICTION IN . . . PHYSICAL REVIEW E 96, 032308 (2017)

like to maximize [16]. Hopefully, the differences between
memory and predictive capacities presented here will stimulate
the search for more task-appropriate objective functions and
for more reservoir optimization recipes.

ACKNOWLEDGMENTS

We owe substantial intellectual debts to A. Goudarzi, J. P.
Crutchfield, S. Still, and A. Bell and thank I. Nemenman,
N. Ay, C. Hillar, S. Dedeo, and W. Bialek for very useful
conversations. S.M. was funded by a MIT Physics of Living
Systems Fellowship.

APPENDIX A: AUTOCORRELATION FUNCTION
OF HIDDEN MARKOV MODELS

This is a simple version of the argument in Ref. [13] that
assumes diagonalizability of the transition matrix. Let T (x) be
the labeled transition matrices of the hidden Markov model, let

T =
∑

x

T (x) (A1)

be the transition matrix, and let �peq = eig1(T) be the stationary
distribution over the hidden states. Assuming zero-mean input,
we have

R(t) = 〈x(t − 1)x(0)〉 (A2)

=
∑
x,x ′

xx ′ Pr(Xt−1 = x, X0 = x ′) (A3)

=
∑
x,x ′

xx ′�1�T (x)T t−1T (x ′) �peq (A4)

=
∑
x,x ′

�1�(xT (x))T t−1(x ′T (x ′)) �peq (A5)

= �1�
(∑

x

xT (x)

)
T t−1

(∑
x

xT (x)

)
�peq. (A6)

If T is diagonalizable (and it typically is), then T =
P diag(�λ)P −1 leads to

R(t) = �1�
(∑

x

xT (x)

)
P diag(�λt−1)P −1

(∑
x

xT (x)

)
�peq, (A7)

and so R(t) is a linear combination of λt
i .

APPENDIX B: DERIVATION OF CLOSED-FORM
EXPRESSIONS FOR PC, MC

From Eq. (1), we have

x(n) =
(∞∑

k=1

Wk−1s(n − k)

)
v, (B1)

assuming the echo state property. Thus,

pk = 〈s(n − k)x(n)〉n (B2)

=
∞∑

m=1

Wm−1Rss(k − m)v, (B3)

and

C = 〈x(n)x(n)�〉n (B4)

=
∞∑

m,m′=1

Wm−1vv�(W�)m
′−1Rss(m − m′). (B5)

Substituting Eq. (6) into the above equation gives

C = 1

2π

∞∑
m,m′=1

Wm−1vv�(W�)m
′−1

∫ π

−π

S(f)eif (m−m′)df (B6)

= 1

2π

∫ π

−π

S(f)

(∞∑
m=1

eif mWm−1

)
vv�

(∞∑
m′=1

(W�)m
′−1e−if m′

)
df (B7)

= 1

2π

∫ π

−π

S(f)

(∞∑
m=0

eif mWm

)
vv�

(∞∑
m′=0

(W�)m
′
e−if m′

)
df (B8)

= 1

2π

∫ π

−π

S(f)(I − eif W)−1vv�(1 − e−if W�)−1df, (B9)

and using Eq. (2),

C = 1

2π
P

[∫ π

−π

S(f)

(
ω

1 − eif �d

)(
ω

1 − e−if �d

)�
df

]
P −1. (B10)

Returning to Eq. (B3) and using Eq. (4), we have

pk =
∞∑

m=1

Wm−1

(∑
λ∈�

A(λ)λ|k−m|
)

v (B11)

=
∑
λ∈�

A(λ)
∞∑

m=1

Wm−1λ|k−m|v (B12)

032308-5

SARAH MARZEN PHYSICAL REVIEW E 96, 032308 (2017)

=
⎧⎨
⎩

∑
λ∈� A(λ)

∑∞
m=1 Wm−1λm−kv, k < 1,∑

λ∈� A(λ)
(∑k

m=1 Wm−1λk−m + ∑∞
m=k+1 Wm−1λm−k

)
v, k � 1

(B13)

=
⎧⎨
⎩

∑
λ∈� A(λ)λ−kW−1

(∑∞
m=1 Wmλm

)
v, k < 1,∑

λ∈� A(λ)
(
λkW−1 ∑k

m=1 Wmλ−m + W−1λ−k
∑∞

m=k+1 Wmλm
)
v, k � 1

(B14)

=
{∑

λ∈� A(λ)λ−k(λ−1 − W)−1v, k < 1,∑
λ∈� A(λ)[(Wk − λk)(W − λ)−1 + Wk(λ−1 − W)−1]v, k � 1.

(B15)

Using Eq. (2),

pk = P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
λ∈�

A(λ)λ−k

(
ω

λ−1 − �d

)
, k < 1,

∑
λ∈�

A(λ)diag

(�dk − λk

�d − λ
+

�dk

λ−1 − �d

)
ω, k � 1.

(B16)

Thus we have

PC =
∞∑

k=0

p�
−kC

−1p−k (B17)

= 2π

∞∑
k=0

[∑
λ∈�

A(λ)λk

(
ω

λ−1 − �d

)]�
B−1

[∑
λ∈�

A(λ)λk

(
ω

λ−1 − �d

)]
(B18)

= 2π
∑
λ∈�

A(λ)A(λ′)
1 − λλ′

(
ω

λ−1 − �d

)�
B−1

(
ω

(λ′)−1 − �d

)
(B19)

= 2π
∑
i,j

∑
λ∈�

A(λ)A(λ′)
1 − λλ′

(
ωi

λ−1 − di

)
(B−1)ij

(
ωj

(λ′)−1 − dj

)
(B20)

= 2π
∑
i,j

ωi

(∑
λ∈�

A(λ)A(λ′)
1 − λλ′

1

λ−1 − di

1

(λ′)−1 − dj

)(
B−1)

ij
ωj , (B21)

which gives the formula in the main text. Similar manipulations with the help of Mathematica give the more involved formula
for MC.

APPENDIX C: DERIVATION OF THE UPPER BOUND FOR PC

Recall that

PCτ = 〈s(t + τ)ŝ(t + τ)〉2
t

〈ŝ(t)2〉t , (C1)

and

PC =
∞∑

τ=0

PCτ . (C2)

As our problem setup naturally restricts us to causal linear filters, PCτ is maximized with ŝ(t + τ) = ∑∞
n=1 s(t − n)kτ (n) with

kτ (n) as a Wiener filter. In particular, suppose that kτ (n) satisfies the Wiener-Hopf equation,

Rss(τ + t) =
∞∑

m=1

Rss(t − m)kτ (m). (C3)

In matrix form, this reads ⎛
⎜⎝

Rss(τ + 1)
Rss(τ + 2)

...

⎞
⎟⎠ =

⎛
⎜⎝

Rss(0) Rss(−1) Rss(−2) . . .

Rss(1) Rss(0) Rss(1) . . .
...

...
...

. . .

⎞
⎟⎠

⎛
⎜⎝

kτ (1)
kτ (2)

...

⎞
⎟⎠, (C4)

032308-6

DIFFERENCE BETWEEN MEMORY AND PREDICTION IN . . . PHYSICAL REVIEW E 96, 032308 (2017)

and so ⎛
⎜⎝

kτ (1)
kτ (2)

...

⎞
⎟⎠ =

⎛
⎜⎝

Rss(0) Rss(−1) Rss(−2) . . .

Rss(1) Rss(0) Rss(1) . . .
...

...
...

. . .

⎞
⎟⎠

−1⎛
⎜⎝

Rss(τ + 1)
Rss(τ + 2)

...

⎞
⎟⎠. (C5)

For ease of notation, we define R as

R :=

⎛
⎜⎝

Rss(0) Rss(−1) Rss(−2) . . .

Rss(1) Rss(0) Rss(1) . . .
...

...
...

. . .

⎞
⎟⎠, (C6)

and

�rτ :=

⎛
⎜⎝

Rss(τ + 1)
Rss(τ + 2)

...

⎞
⎟⎠, (C7)

so in short, �kτ = R−1�rτ . Then, 〈s(t + τ)ŝ(t + τ)〉t = 〈ŝ(t)2〉t , and so then

PCτ = 〈s(t + τ)ŝ(t + τ)〉t =
∞∑

n=1

Rss(τ + n)kτ (n) = �r�
τ

�kτ = �r�
τ R−1�rτ . (C8)

As these �kτ ’s are the causal linear filters that maximize the correlation coefficient between s(t + τ) and ŝ(t + τ), we have

PC �
∞∑

τ=0

�r�
τ R−1�rτ (C9)

for any linear recurrent network.

[1] H. Jaeger, The “echo state” approach to analyzing and train-
ing recurrent neural networks-with an erratum note, Bonn,
Germany: German National Research Center for Informa-
tion Technology GMD Technical Report No. 148 2001
(unpublished).

[2] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,
Science 304, 78 (2004).

[3] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci. Rev.
3, 127 (2009).

[4] Memory can be used to estimate the bias of the coin, but
nothing else about the past provides a guide to the future
input.

[5] H. Jaeger, Short term memory in echo state networks, German
National Research Center for Information Technology, Techni-
cal report GMD-Forschungszentrum Informationstechnik 2001
(unpublished).

[6] O. L. White, D. D. Lee, and H. Sompolinsky, Short-Term
Memory in Orthogonal Neural Networks, Phys. Rev. Lett. 92,
148102 (2004).

[7] J. Boedecker, O. Obst, J. T. Lizier, N. M. Mayer, and M. Asada,
Information processing in echo state networks at the edge of
chaos, Theory Biosci. 131, 205 (2012).

[8] I. Farkaš, R. Bosák, and P. Gergel’, Computational analysis of
memory capacity in echo state networks, Neural Networks 83,
109 (2016).

[9] P. Barančok and I. Farkaš, Memory capacity of input-driven
echo state networks at the edge of chaos, in International Con-
ference on Artificial Neural Networks (Springer, Cham, 2014),
pp. 41–48.

[10] M. Hermans and B. Schrauwen, Memory in linear recurrent
neural networks in continuous time, Neural Networks 23, 341
(2010).

[11] A. Goudarzi, S. Marzen, P. Banda, G. Feldman, C. Teuscher, and
D. Stefanovic, Memory and information processing in recurrent
neural networks, arXiv:1604.06929.

[12] S. Ganguli, D. Huh, and H. Sompolinsky, Memory traces in
dynamical systems, Proc. Natl. Acad. Sci. USA 105, 18970
(2008).

[13] P. M. Riechers, D. P. Varn, and J. P. Crutchfield, Pairwise
correlations in layered close-packed structures, Acta Crystallogr.
Sect. A: Found. Adv. 71, 423 (2015).

[14] G. Fette and J. Eggert, Short term memory and pattern matching
with simple echo state networks, in Artificial Neural Networks:
Biological Inspirations—ICANN 2005, Warsaw, 2005, edited
by W. Duch, J. Kacprzyk, E. Oja, and S. Zadrożny (Springer,
Berlin/Heidelberg, 2005), pp. 13–18.

[15] T. Toyoizumi, Nearly extensive sequential memory lifetime
achieved by coupled nonlinear neurons, Neural Comput. 24,
2678 (2012).

[16] J. Collins, J. Sohl-Dickstein, and D. Sussillo, ICLR 2017: 5th
International Conference on Learning Representations, Toulon,
France, 2017 (ICLR, 2017).

032308-7

https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1103/PhysRevLett.92.148102
https://doi.org/10.1103/PhysRevLett.92.148102
https://doi.org/10.1103/PhysRevLett.92.148102
https://doi.org/10.1103/PhysRevLett.92.148102
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2009.08.008
https://doi.org/10.1016/j.neunet.2009.08.008
https://doi.org/10.1016/j.neunet.2009.08.008
https://doi.org/10.1016/j.neunet.2009.08.008
http://arxiv.org/abs/arXiv:1604.06929
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1107/S2053273315005264
https://doi.org/10.1107/S2053273315005264
https://doi.org/10.1107/S2053273315005264
https://doi.org/10.1107/S2053273315005264
https://doi.org/10.1162/NECO_a_00324
https://doi.org/10.1162/NECO_a_00324
https://doi.org/10.1162/NECO_a_00324
https://doi.org/10.1162/NECO_a_00324

