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In online social dynamics, a robust scale invariance appears as a key feature of collaborative efforts that
lead to new social value. The underlying empirical data thus offers a unique opportunity to study the origin
of self-organized criticality (SOC) in social systems. In contrast to physical systems in the laboratory, various
human attributes of the actors play an essential role in the process along with the contents (cognitive, emotional)
of the communicated artifacts. As a prototypical example, we consider the social endeavor of knowledge creation
via Questions and Answers (Q&A). Using a large empirical data set from one of such Q&A sites and theoretical
modeling, we reveal fundamental characteristics of SOC by investigating the temporal correlations at all scales
and the role of cognitive contents to the avalanches of the knowledge-creation process. Our analysis shows
that the universal social dynamics with power-law inhomogeneities of the actions and delay times provides the
primary mechanism for self-tuning towards the critical state; it leads to the long-range correlations and the event
clustering in response to the external driving by the arrival of new users. In addition, the involved cognitive
contents (systematically annotated in the data and observed in the model) exert important constraints that identify
unique classes of the knowledge-creation avalanches. Specifically, besides determining a fine structure of the
developing knowledge networks, they affect the values of scaling exponents and the geometry of large avalanches
and shape the multifractal spectrum. Furthermore, we find that the level of the activity of the communities that
share the knowledge correlates with the fluctuations of the innovation rate, implying that the increase of innovation
may serve as the active principle of self-organization. To identify relevant parameters and unravel the role of
the network evolution underlying the process in the social system under consideration, we compare the social
avalanches to the avalanche sequences occurring in the field-driven physical model of disordered solids, where
the factors contributing to the collective dynamics are better understood.
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I. INTRODUCTION

In recent years, the self-organized criticality (SOC) is
considered as one of the principal mechanisms responsible
for the emergence of new features at a larger scale in various
complex systems. The transition from the microscopic interac-
tions to the collective behavior involves nonlinear dynamical
phenomena when the system is driven out of equilibrium (for
an overview of physical systems exhibiting SOC, see recent
reviews in [1–3] and the references there). In this context,
SOC refers to the dynamical self-organization among the
interacting units in response to repeatedly applied infinitesimal
driving; the system’s adaptation to the driving force leads
to robust metastable states with system-wide correlations,
fractal dynamics, and avalanches as the key signatures of
criticality [2–6]. In this context, an avalanche is recognized
as a mesoscopic dynamical structure consisting of a sequence
of connected elementary events (a precise definition is given
in Sec. II). It has been newly pointed out that SOC plays a role
in the functioning of biological [7] and diverse other complex
systems from neuronal dynamics [8,9] to animal behavior [10]
and human history [11]. For instance, the analysis of vast
amounts of the available brain imaging data and theoretical
modelings provided the evidence that supports SOC as an
underlying mechanism of the brain functional stability [8,12].

Although the avalanching behavior and other signatures
of criticality are readily observable in the empirical data
of online social dynamics [13–19], much less attention has

been devoted to understanding the origin and the precise
role of SOC in social systems. The key open question is
whether the social avalanches represent a unique class of
self-organized phenomena or, otherwise, they can be reduced
to standard models of physical SOC systems, describing the
transition from the microscopic interactions to the observed
complex spatiotemporal patterns. Another interesting aspect
of the problem concerns the interplay of the coevolving
network structure and the social dynamics that it supports.
The question whether the SOC process shapes the structure,
or the network evolution enables the self-tuning towards the
criticality remains open. Here, we address these issues by
analysis of the empirical data of knowledge-creation social
endeavors and using theoretical modeling.

In physics, striking examples of the multiscale dynam-
ics characterizing SOC are observed in the turbulent flow
[2,20–22] and the kinetics of earthquakes [23,24]. The sig-
natures of SOC are also found in experiments with stressed
granular materials [25,26], driven disordered systems at a
hysteresis loop [27–30], and porous shape-memory alloys
[31,32]. Furthermore, the avalanching dynamics is charac-
teristic of the conduction in the assembled networks of
living neurons in a solvent [33] and nanoparticle films with
single-electron tunnelings conduction [34], as well as to
the motion of topological objects, such as vortices [35,36]
and domain walls [37–39]. The theoretical concepts were
developed to describe the emergence of collective behaviors
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from the microscopic interactions among many constitutive
elements both in the classical and quantum systems [40].
In this regard, often paradigmatic models were used as the
instruments for investigations. Further, the use of scaling and
renormalization group ideas provided a better understanding
of the role of different scales in the dynamical systems driven
away from the equilibrium [41–43]. The precise description of
the interactions in these physical systems allows investigating
the microscopic mechanisms responsible for the triggering
and propagation of an avalanche. The standard feature of all
SOC systems is the accumulation of free energy, which then
dissipates through the avalanches. While the energy source
and triggering mechanisms are physics specific, common to
all SOC systems is that the avalanching response is not
in proportion to the forcing. Consequently, the power-law
distributions of the avalanches appear as one of the key features
of SOC states. It has been recognized that the propagation
of avalanches involves three phases [2]: the initial growth
phase is supported by multiplicative chain reactions until the
maximum dissipation is reached in the peak period, after
which the activity is reduced and eventually diminishes, in
the stopping phase. Often, the essence of SOC can be captured
by the elementary dynamics of sand-pile automata [4,5] on a
two-dimensional lattice. In real systems, however, the presence
of many physical parameters that can influence the dynamics
makes it difficult to distinguish the potential SOC states
(attractor with a large basin of attraction) from the dynamical
phase transition, which occurs by fine tuning of a relevant
parameter.

In this work, we investigate the nature of avalanches in
the prototypical human collaborative endeavor of knowledge
creation [44]. In this process, the knowledge and exper-
tise of individual actors are transferred into a social value
[45,46]—the collective knowledge, which is shared by all
participants in the process. In contrast to the physical systems
in the laboratory, the human cooperation, as well as the new
collective states, are evident [44,47]. Therefore, the empirical
data on these social systems represent a valuable source to
investigate the origin of self-organized criticality. On the
other hand, certain attributes of the human participants are
crucial to the social cooperation; they remain elusive to
the accurate theoretical modeling of the interactions, which
underlie the avalanche formation. In particular, the process
of knowledge creation requires the appropriate expertise of
the participating actors among other human attributes. Thus,
the subdynamics representing the use of the communicated
cognitive contents tends to constrain the social process itself.
In this regard, it remains unclear how these different aspects
(social and cognitive) of the dynamics contribute to the
appearance and propagation of the avalanches. To address
this question, we combine the analysis of the empirical data
from Questions and Answers (Q&A) site Mathematics Stack
Exchange (https://math.stackexchange.com/) with the agent-
directed modeling; the cognitive contents of each artifact are
systematically encoded in the considered data sets. The agent’s
attributes are statistically similar to the users in the data, while
their expertise is varied. The system is driven by the arrival
of new agents. Our analysis reveals that the occurrence of
avalanches is a robust social phenomenon, whereas their
fine structure, geometrical, and fractal characteristics are

affected by the distribution of the expertise over the actors.
Furthermore, the interplay between the social and knowledge
processes is fueled by the constant tendency towards the
expansion of innovation. For a deeper understanding of the
potential mechanisms, we use a comparison with the better
controlled avalanching dynamics in physical systems. For
this purpose, we analyze the model of a disordered system
of the interacting spins, where the critical states at the
hysteresis loop appear in the interplay between the driving
by the applied magnetic field and the domain-wall pinning
along the implanted magnetic (soft) and structural (hard)
defects. Although an analogy between spin alignments can be
extended to knowledge matching among the social subjects,
our objective here is different. We compare the fractal features
of the avalanche sequences in both systems, which appear to
be similar in a particular range of parameters of the physical
system. These comparisons permit us to identify certain factors
of the social dynamics that are essential to the appearance of
the collective state and can motivate further research towards
a viable modeling of the social self-organization.

In the following Sec. II, we introduce the essential char-
acteristics of the processes of Q&A and describe details
of the agent-based model and the structure of the bipartite
network that coevolves with the social interaction. Then
Sec. III presents a detailed analysis of the knowledge-bearing
avalanches both from the empirical data and simulations. The
simulations and analysis of the avalanches in the driven spin
system are given in Sec. IV. A summary of the results and the
discussion are given in Sec. V.

II. THE STOCHASTIC PROCESS OF KNOWLEDGE
CREATION AND THE COEVOLVING NETWORKS

The knowledge creation via Questions & Answers is a
collaborative social endeavor, in which the knowledge of
each participant is shared with others. By its nature, the
interaction between these participants is indirect, mediated
by questions and answers, in a way similar to user interactions
via posted texts on blogs [13,48,49]. Thus, the environment of
the knowledge sharing can be represented as a coevolving
bipartite network with the actors (users, agents) as one
partition, and the artifacts (questions, answers) as the other
partition [44]. In epistemology, to create a common value
(knowledge), meaningful social interactions are required, in
which the actor’s response is adequate to the needs of others
[45,46]. Specifically, the actor possessing an expertise can
meaningfully act on the artifact where this particular expertise
is required. Thus, the essence of the dynamics is the contents-
matching rule, as schematically illustrated in Fig. 1(a). A
part of the evolving network extracted from the empirical
data is also shown in Fig. 1(b). Hence, the knowledge-
creation process consists of two mutually interconnected
factors: the social dynamics and the constrained use of the
cognitive contents. The strict use of the available expertise
in the knowledge-creation processes is in marked contrast
with the informal social communications on blogs and similar
systems, where the user’s natural interests and emotions drive
the activity [13].

In the data from the analyzed Q&A site, the cognitive
content of each artifact is encoded by up to five tags, according

032307-2

https://math.stackexchange.com/


MECHANISMS OF SELF-ORGANIZED CRITICALITY IN . . . PHYSICAL REVIEW E 96, 032307 (2017)

FIG. 1. (a) Schematic view of the knowledge exchange via Q&A on a bipartite network of actors (blue nodes) and questions and answers
(red nodes); boxes of different colors represent the cognitive contents (tags). A directed link from question to actor node indicates activity on
that question, where the matching (at least in one tag) between the actor’s expertise and the contents of the question is required; the outgoing
link represents posting the question or answer, whose content contains the actor’s knowledge. Panels (b),(c) show two bipartite networks
extracted from the empirical data; the user nodes (blue) connect to question nodes (red) which compress all existing answers to that question,
and the direction of the link indicates the question on which the user was active either by posting or answering it. Specifically, (b) the innovation
layer in the evolving bipartite network extracted at the end of year one, consists of the recently active questions and the users whose activity
on these questions occurred in the last T0 = 100 min and the nodes to which they were connected within the time depth of 6T0. (c) A close
up of the compressed bipartite network of users and the questions filtered such to contain the tag “Linear Algebra” among other tags; the
network represents the activity within the first two months of the considered empirical data. (d) The explicit-knowledge network containing
the innovation tags attached to the tags of year one.

to the standard mathematical classification scheme (MCS),
for example, “Graph Theory,” “Probability,” “Stochastic Pro-
cesses,” “Linear Algebra,” “Algebraic Topology,” “Differential
Geometry,” and others. Whereas, the information about the
user’s expertise participating in the process can be inferred

statistically as described in methods of [44]; see the inset
to Fig. 2(a). This figure suggests a rather broad distribution
of the expertise (i.e., different number of tags 2Ei ) over
the users in the native system. The main Fig. 2(a) shows
another key characteristic of the experimental system: the
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FIG. 2. (a) The distribution P (Ni) of the number of actions Ni per
user, the dependence g(Ni), and the delay time P (�T ) of the users in
the empirical data set. Inset: The distribution of entropy P (Ei) based
on the probability of the users’ expertise; the data are extracted from
the empirical set and used for designing the attributes of the agents.
(b) Scatter plot of the user-averaged delay times 〈�T 〉 against the
number of actions Ni .

user’s heterogeneity in the number of actions Ni and a broad
range of their interactivity times �T . While the scaling
exponents indicated by these histograms are system specific,
the prominent power-law decay of both quantities manifests
the universally observed characteristics of the human behavior
online. Further patterns of the user’s activity can be determined
from the time stamp. Notably, a significant part of the actions
of the present users is directed towards the issues posted
by new arrivals. Occasionally, an active user looks for an
older question with currently searched contents and brings
it to the view of others. The ratio of the posted versus
answered questions g(Ni) was found to depend on the number
of actions of a user; cf. Fig. 2(a). The very active users
are in the minority; they often respond to the questions.
On the other side, the majority of the least active users are
engaged in posting questions and, by getting the satisfactory
response, they disappear for a longer period. Note that a similar
dependence of the delay times on the number of actions applies
to the user-averaged delays; cf. Fig. 2(b), but not to each
particular user. Certain regularities may exist for groups of
users of a similar activity level [16], but they are not of interest
in the present context. The arrival of new users (referred to
the beginning of the data set) captured by the time series p(t)

represents a stochastic process, which depends on the user’s
off-line life. Here, we adopt the interval of 10 min as a suitable
time step for the pace of the activity in the system and use
the empirical time series p(t) and its randomized version, as
described in the following text, to create the number of agents
per time step in the simulations (on average less than one agent
per step). Then the reference time depth is T0 = 10.

Observing the requirements for the minimal agent-based
model (ABM) of the Web users [50], we have introduced a
model where the action rules and the attributes of the agents
are taken from these empirical distributions, whereas their
expertise can be varied [44]. Here, we briefly describe the
main features of the model which is used for the simulations
in this work. In particular, in each time step:

(i) Agents are created. The number p(t) of new agents is
created; their profiles are defined by the number of actions Ni ∈
P (Ni), the ratio of the posted vs answered questions g(Ni),
and the expertise (according to the selected distribution); the
new agents are placed on the active list;

(ii) The agent’s action performed. Each agent from the
active list either posts a new question or selects one from the
list of recently considered artifacts to act on it. The artifacts
that are connected to the agent’s network neighborhood are
looked at first; with a fixed probability (0.5) the agent also
finds a related question in the whole network, thus bringing
it to the currently active context. In each case, the expertise
matching rule applies.

(iii) The active questions and network are updated. The
list of active questions within time depth T0 is maintained, and
the network connections are updated according to the executed
actions; the agents linked to the questions on which the activity
occurred within the previous three steps are prompted for a new
action.

(iv) New delay times are determined. An agent gets a new
delay time �t ∈ P (�t) after every completed action or after
being prompted for a new action.

(v) The status of each agent is updated. The number of
actions of all agents is updated according to their activity,
and the agents, whose number of steps reached the predefined
Ni are removed; the delay times of each remaining agent is
updated, and each agent whose delay since the previous event
expired is placed on the active agents’ list.

The expertise of an agent is a set of tags taken randomly
from the list of 32 tags. The considered distributions of the
expertise are Exp1 and Exp3, corresponding to single-tag
and three-tag expertises, respectively, and a broad range of the
expertise ExpS, according to the empirical distribution shown
in the inset in Fig. 2. For a comparison, we also consider a
situation (μ process) where, instead of the actions described
above in step (ii), an agent finds an artifact in the entire system
and acts on it with a fixed probability (0.25) while disregarding
the expertise matching rule. Note that, in this case, the expertise
matching can occur by chance; the agent’s expertise is taken
from the distribution ExpS.

Considering the evolution of the system in [44], we have
shown that the process is characterized by the innovation
growth with the number of events. In this context, the inno-
vation is suitably defined as the number of new combinations
of tags. The innovation is introduced into the system by new
arrivals and the actions of the other agents through adding their
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expertise to the accumulating contents on different artifacts.
The innovation growth was observed both in the empirical
data as well as in the simulations [44]. It applies to various
distributions of the expertise, excluding the case where all
actors possess a strictly single-tag expertise. In this limiting
case, the tag-matching rule prevents interlinking with other
contents, thus leading to isolated communities that share the
same tag. In contrast, the innovation grows whenever at least a
single actor possesses a combination of different contents in its
expertise. The illustration in Fig. 1(a), for instance, indicates
how the green tag of the artifact Q3 remains detached until
the actor’s U6 expertise combines it with the contents of Q7
and the actor U2 who posted it. The observed pace of the
innovation growth depends on the distribution of the expertise
(by the fixed activity patterns of the actors) [44]. It is important
to stress that, in the empirical data, the combination of tags in
the expertise of each user already possesses a logical structure
of mathematical knowledge. Hence, through these meaningful
interactions that structure is preserved during the process.
Consequently, the developing network of the used contents
also exhibits the logical structure, as shown in [47] by the
community detection in the corresponding networks of tags;
an example of such an explicit knowledge network extracted
from the same data is shown in Fig. 1(d).

A. Growth of the bipartite networks by adding the
innovation layers

The interplay between the network structure and the
stochastic processes taking part on it consists of the central
problem in understanding the networks evolution and their
applications in various fields [51–53]. Typically, the graph
architecture represents geometrical constraints that shape the
diffusionlike processes, likely to cause an anomalous diffusion.
For example, the superdiffusion of the information packets
[54] occurs on the correlated scale-free network when the
traffic rules appropriately utilize the underlying structure.
Some unusual situations arise when the structure evolves at the
same pace as the SOC avalanching process on it. The random
rewiring during the steps of the SOC dynamics has been
shown to reduce the avalanche cutoffs [55], thus preventing
a catastrophic event to occur. When the rewirings are strictly
confined to the current avalanche area, the network appears
to have the scale-free degree distribution, where the scaling
exponent coincides with one of the avalanche size distributions
[56]. Other growth models that apply thresholdlike constraints
inspired by SOC dynamics may yield the nonextensive features
and scale freeness [57]. In bipartite networks, however,
each partition plays a different role in the process, which
leads to a more complicated structure–dynamics interplay.
As mentioned above, these types of networks often appear
in the social dynamics on websites which maintain indirect
communication between the users. The appropriate analysis of
the artifacts mediating the users revealed [13,44,48,49] how
their emotional or cognitive contents affect the network from
the node’s degree to the mesoscopic community structure.

In the Q&A data set that we consider here, the network
growth as well as the pattern of activity of each user and the
targeted questions can be extracted from the time stamp in
the data. Moreover, to visualize the bipartite networks, we

FIG. 3. The degree distribution of the actors and question nodes
in the bipartite networks for different expertise and driving indicated
in the legend. The power law fits with the exponent τU = 1.58 ±
0.07 and the stretching cutoffs in the range c ∈ [508,3920] between
two solid lines marked by ← U → are of the actor’s degree. The
distributions for the corresponding question nodes (indicated by the
same type of symbol) have smaller cutoffs d ∈ [5.8,42] between two
dashed lines marked by ← Q → and the exponent τQ = 1.09 ± 0.1.
In the case of Exp1 the exponents τQ ∼ 0.5 ± 0.16 apply in a very
narrow range, while the exponential distribution fits the data for the
μ process.

introduce a compressed node which includes the question and
all answers related to that question. A particular example of
such compressed bipartite network from the empirical data
is shown in Fig. 1(c). The corresponding networks from the
simulated data exhibit the mesoscopic structure. The structure
of communities sharing the emerging knowledge crucially
depends on how the expertise is distributed over the involved
participants, as it was shown in [44]. Here, we are interested in
the statistical properties of nodes in these bipartite networks.
The results of the degree distributions are shown in Fig. 3.
They can be fitted by the power law with stretched-exponential
cutoffs, which allows a comparison of the user properties in
Fig. 2(a). Statistically, the degree distribution of the agent’s
nodes in these networks follows the slope of the predefined
number of actions P (Ni), as expected, while their cutoffs
depend on the expertise of the agents. It is also interesting
to point out the constraints due to the power-law decay of the
delay time distribution; according to some recent studies [58],
it can contribute to the convergence towards scale invariance in
the growing systems. In the case of the question partition, the
cases where the expertise-matching dominates exhibit a similar
law but in a reduced range. In the meantime, the power-law
behavior is reduced and the cutoffs dominate in the case Exp1
and μ process (see Fig. 3).

For the purpose of this work, it is interesting to recognize
the innovation growth layer, see Fig. 1(b), as the segment of
the growing bipartite network where the most recent activity
occurs. As stated above, the new arrivals potentially bring the
new combinations of the knowledge contents in their expertise,
which is expressed in the questions and answers. The set
of currently active artifacts are posted or answered within a
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FIG. 4. (a) The driving signals that are used in simulations: p(t),
front curve, and its randomized version randPt, back curve. (b) Part
of the activity time series from the empirical data, exhibiting some
large and small avalanches above the baseline (dashed line).

relatively small time window (T0). These nodes often occur at
the outer layer of the network; see Fig. 1(b). Then the currently
active users connect to these new artifacts while obeying the
expertise matching rule; thus, they connect the new contents
to the issues of their previous activity and further through the
network of the connected users and their artifacts in a given
time depth. Therefore, the recently added artifacts connect
the in-depth network via the active users and their previously
established connections. Considering a particular time depth,
for instance, 6T0, with the window T0 = 100 min, we focus on
the currently active layer of the network. This layered growth
of the bipartite network is fundamentally conditioned by the
nature of online human communications, where the latest posts
appear on the top. Besides, at each event, an artifact older than
the considered time depth is searched with a small probability
and connected to the currently active matching contents. The
updated active layer then serves as an environment where the
next arrivals often attach to, and so on. In the context of open
dynamical systems, the addition of new users (or agents) and
their artifacts can be seen as the driving mode of this bipartite
networked system.

B. Extracting the time series and avalanches
from the sequence of events

Our focus in this work is on the avalanching behavior which
occurs as the network’s response to the driving. Therefore,
from the sequence of events in the empirical data or the
simulated events, we first construct the corresponding time
series that capture the fluctuations of the system’s activity over
time. The possible occurrence of the clustering of events along
these time series is a signature of the avalanching dynamics.
For the illustration, an example of the time series with the
avalanches is shown in Fig. 4(b). Specifically, an avalanche
is identified as a segment of the time series consisting of the
data points n(t) between two consecutive drops of the signal
to the baseline, which is set above a zero or the noise level. To
define the baseline, we use a standard approach, as described
in [27] for the experimental Barkhausen noise signal. When
the signal contains an (extrinsic) noise, the baseline is first
put as a horizontal line with a maximum number of intersects
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(b)avalanche-series:DATA

FIG. 5. (a) Examples of time series of the activity simulated by
the agent-based model for the different expertise of the agents and μ

processes. (b) Sequence of the avalanches determined in the empirical
data set—a closeup in the segments with large activity.

with the signal, then the part below the line is considered as
noise. The standard deviation σ of the noise is then computed,
and the baseline is shifted upward by the distance σ . In the
simulated quasistatic driving, Sec. IV, the signal drops to the
zero level before next driving event occurs, making the zero
level a natural baseline (see also the discussion below). The
two intersections of the signal with the baseline are recognized
as the beginning tb and the end te time of the avalanche. Then
the avalanche size s is given by the sum of all data points
between the marked beginning and the end of the avalanche
while the distance between these two points along the time
axis defines the avalanche duration T , i.e.,

s =
te∑

t=tb

n(t); T = te − tb. (1)

The representative examples of the time series studied in this
work are shown in Figs. 4 and 5(a). As the example in Fig. 4
shows, the avalanches in the considered stochastic process of
knowledge creation differ in size, duration, and shape, closely
reflecting the way that the activity propagates in the network.
Moreover, a massive avalanche may follow immediately after
a small one and vice versa. See also a closeup of the avalanche
sequence derived from the empirical data in Fig. 5(b).

It is important to notice that the time series studied in
Sec. III are fractal; hence, the avalanches defined through
Eq. (1) possess self-affinity. This implies that, by changing
a linear scale �, both the segment of the baseline along the
x axis, i.e., the avalanche duration T , and the corresponding
area above the baseline in the y direction, representing the
avalanche size s, scale with different exponents such that the
respective dimensionless quantities s/�D and T/�z remain
unchanged. Consequently, the distributions of the avalanche
sizes and durations then obey the following scale invariance
[1,2]

P (s,�) = sτsS(s/�D); P (T ,�) = T τT T (T/�z) , (2)

where τs and τT are the scaling exponents of the avalanche size
and duration, respectively, and D and z are the corresponding
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fractal exponents. Furthermore, for such self-affine objects,
the following relation holds between the size of avalanches
which have a given duration T and the duration T

〈s〉T ≡
tb+T∑
t=tb

n(t) ∼ T γST , (3)

with the scaling relation γST = (τT − 1)/(τs − 1). This prop-
erty of the analyzed avalanches, which we prove in Sec. III,
further implies that the scaling exponents are not sensitive to
the exact position of the baseline, which discriminates the noise
level. Note that we use the initial part of the empirical time
series comprising of 65 536 data points, where these methods
can be safely applied. In the next section, we quantitatively
study these features of the avalanches by considering the time
series from both the empirical data and the simulated events.

Figure 5(a) panel shows several examples of the time series
of the number of event n(t). Specifically, the time series
indicated by Exp1 corresponds to the case when each agent
possesses a single-tag expertise and these agents are added
with the pace p(t) as the new users appear in the real system.
The time series marked by randP t is the system of agents
with the distribution of the expertise ExpS taken from the
empirical data and driven by the randomly shuffled signal
p(t) signal. Apart from a few high values at the start, the
signal p(t) exhibits an increasing trend, which induces larger
activity at later times. By randomizing the time series, however,
these larger values may occur randomly along the time axis;
consequently, the initial part of the signal which is used for
simulations appears to be higher than the original p(t); cf.
Fig. 4(a). Hence, the underlying network grows faster when the
system is driven by randP t ; on average, the number of added
agents putting their artifacts per 1000 steps is 572, compared
to 199 in the case of the original signal p(t). In this way, this
accelerated network growth mimics a larger driving rate in the
context of SOC systems. The simulated data consist of 65 536
steps, corresponding to the first 15 months of the real system
time, where we find that 13 045 users were active, posting
21 998 questions and 179 537 answers. The bottom panel
of the same figure shows the avalanche sequence determined
from the empirical data set.

III. THE STRUCTURE OF AVALANCHES IN
KNOWLEDGE-CREATION PROCESSES

The use of fractal geometry and nonlinear analysis of time
series has advanced the understanding of complex systems.
Here, we employ the detrended multifractal analysis to study
the time series of events as well as the sequences of the
avalanches (clustered events) for various model parameters
and the empirical data of the knowledge-creation processes.
By investigating these complex time series at all scales, we
aim to reveal a fine structure of the underlying SOC states of
the system.

A. Temporal correlations and avalanche sizes

The occurrence of avalanches in composite signals is not
accidental but built on the temporal correlations at a larger
scale. These correlations are manifested in the corresponding
power spectrum as a power-law decay W (ν) ∼ ν−φ , for a broad

FIG. 6. The (a) power spectra and (b) avalanche size distributions
in the empirical data and ABM for different expertise. Inset: The
nonextensivity parameter qa vs τs for the considered cases.

range of frequencies ν. In Fig. 6(a), we show the results for the
power spectrum of the time series of events in the empirical
data and the simulated signals for different agent’s expertise
and two driving modes. The corresponding distributions of
the avalanche sizes obtained from these time series are shown
in Fig. 6(b). These figures indicate that an extended scaling
range occurs over several orders of magnitude in the power
spectrum as well as in the avalanche sizes. However, the driving
mode and the actor’s expertise affect the scale invariance in
a different manner. Specifically, the increasing trend in the
driving signal p(t) is pronounced in the power spectrum of the
empirical data and μ process. Whereas, the increased activity
in the innovation layer is balanced by the strict expertise-
matching, resulting in the correlations of the flicker-noise type
(middle curves). When the driving rate is elevated, i.e., randP t

case, the slope φ increases in the region of low frequencies and
decreases in the high-frequency region (top curve).

While the shape of the driving signal is essential for
the scaling in the power spectrum, the scale invariance
of the avalanches is equally sensitive to the actual expertise of
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FIG. 7. (a) The distribution of avalanche duration and (b) the
average size 〈S〉T of the avalanches of a fixed duration T plotted
against T for the empirical data and simulations with varied expertise
and driving rate, as indicated. (c) The average activity 〈n(t)〉T within
an avalanche of the duration T averaged over the avalanches in three
ranges: T � 10 (half-filled symbols, dotted line), T ∈ (10,100] (open
symbols, dashed lines), and T > 100 (filled symbols, full lines). The
symbol shape and color correspond to the legend in the panel (b).
(d) Extracted from the empirical data, the innovation I (t) increase
with time and the integrated activity time series N (t) = ∑

t n(t),
normalized by the ratio R = 〈n(t)〉/〈dI (t)/dt〉 = 32.5.

the agents. The slopes of the distribution of the avalanche sizes
τs are found in the range from 1.33 to 1.93, depending on the
expertise and driving; note that the degree distributions of user
and question partitions in Fig. 3 are within this range (see also
Discussion). However, the mathematical expressions that fit
these distributions are different. In particular, the distribution
of avalanche sizes, shown in Fig. 6(b) can be fitted by the
qa-exponential function

P (S) = A[1 − (1 − qa)S/S0]1/1−qa , (4)

where the parameter qa > 1 measures the degree of nonex-
tensivity in the underlying stochastic process [40,59–62].
The values of the scaling exponents of the avalanche size
distribution and the corresponding values of the nonextensivity
parameter qa are shown in the inset in Fig. 6(b). Notably, the
distribution of the avalanche sizes obtained from the empirical
data and simulations with the expertise of the agents ExpS

taken from the empirical distribution are similar and close to
the case of μ process. The probability of large avalanches
increases with the increased average expertise; the case Exp3
is shown. It is important to stress that the same type of
distribution with a power-law tail is also obtained in the case
of randP t , representing an increased driving rate with the
accelerated network growth, as mentioned above. Moreover,
the exponent of the distribution of avalanche sizes is smaller
than when the lower driving rate pertinent to p(t) signal is used;
see also Fig. 7(a) for the distribution of duration. The decrease
of the scaling exponents provides an observable measure
of the effects of avalanche merging, which occurs more
often at the elevated driving rate, to the critical state. These
findings are in agreement with the studies of SOC in cellular

automata [63] and physical systems [64] under various driving
rates.

B. Propagation and geometry of avalanches

Statistics of the avalanche sizes with power-law tails, as
shown in Fig. 6(b), is compatible with the occurrence of
self-organized dynamics. In the following, we show that the
propagation of avalanches and their shapes further confirm
these features of the underlying dynamics. The time-dependent
characteristics of the avalanches evaluated for the above-
studied sets of parameters are demonstrated in Figs. 7(a)–7(c).
Specifically, the distribution of the duration T of avalanches,
cf. Fig. 7(a), exhibits different scaling behavior for small
avalanches with the duration T < Tx ∼ 10 as compared to the
asymptotic scaling law P (T ) ∼ T b. In the asymptotic region,
we find that (within the numerical error bars) b = −2 for the
avalanche durations in the empirical data and a close value b =
−1.96 for the simulated system with ExpS. Gradually smaller
slopes are found for the cases Exp3 (not shown) and randP t .
Similarly, the scaling exponents in the short-avalanche region
vary with the expertise and the driving rate from a = −0.82 for
randP t to a = −1.35 for ExpS. The corresponding range for
the empirical data is even shorter; see Fig. 7(a). Given different
shapes, the size of the avalanches of a fixed duration can vary;
cf. Fig 4(b) and Eq. (1). Nevertheless, in the SOC systems,
the average size 〈S〉T of the avalanches of a given duration T

scales with T according to Eq. (3). Here, the tail exponent b

of the duration distribution appears, i.e., 〈S〉T ∼ T γST , where
the exponent γST = (b − 1)/(τs − 1). Figure 7(b) exhibits the
plots 〈S〉T against T corresponding to the avalanches studied
in this work. The apparent power-law dependence in this plot
suggests that the scale invariance of the avalanches can not be
affected by a reasonable shift of the baseline, for instance, by
2σ . The average exponent γST = 1.23 ± 0.07 suggests rather
narrow avalanches; apart from the duration range, which varies
with the simulation parameters, the variations of the exponent
are rather small.

The precise shape of the avalanche of the duration T is given
by the sequence of the elementary pulses n(t) over time. In
Fig. 7(c), we show the average height 〈n(t)〉T belonging to the
avalanche of a given duration T evaluated in bins of the reduced
time t/T . Three groups of avalanches are distinguished, in
particular, the small avalanches of the durations T � 10,
medium-duration 10 < T � 100, and large avalanches for the
durations T > 100. As the Fig. 7(c) shows, the shape of the
small avalanches is practically independent of the system’s
parameters. The same conclusion applies for the medium-size
avalanches in the peak region, whereas they slightly differ in
the decaying phase and even more in the raising phase. In the
case of the large avalanches, however, the major differences
occur in the peak phase. Moreover, the peak shifts towards
later times when the total expertise is increased, or a larger
driving rate applied.

In the panel (d) of Fig. 7, we show how the total innovation
I (t) increases over time. The innovation, which is precisely
defined as the number of unique combinations of tags, is
obviously related to the activity but its fluctuations over time
is a more subtle feature of the process, which depends on
the available expertise of the agents, as shown in [44]. Here,
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FIG. 8. For the case ExpS, (a) the avalanche sequence, (b)
the fluctuation function of the avalanche size series, and (c) the
generalized Hurst exponent H (q) for the avalanche series and the
underlying time series and their randomized versions. The panel
(d) shows the singularity multifractal spectrum for the avalanche
sequences determined for the cases with the varied expertise and
driving, as indicated in the legend.

we compute the temporal dependence of the innovation from
the empirical data. The total activity (scaled by a constant
factor) as a function of time is also shown in Fig. 7(d). These
results suggest that, apart from the excess of the innovation in
the initial period, the asymptotic law is the same for the total
activity and the innovation growth with time. While the average
activity is 32.5 times larger, we can conclude that the activity is
driven by the fluctuations of the innovation rate. As mentioned
earlier, the innovation is brought by the expertise of the actors.
Hence, the increase of the innovation can be considered as a
driving force for the knowledge-creation processes.

C. Avalanche sequences and multifractality

Compared to the time series of the number of events n(t),
the avalanches are the objects occurring at a mesoscopic scale.
Each avalanche consists of a certain number of the elementary
pulses, cf. (1); these pulses are combined in a different way
to embody the growth, peak, and relaxation phase of the
avalanche. Thus, the sequence of avalanches in time contains
additional information about the nature of the underlying
stochastic process. For instance, the avalanche return [61,62]
in many different complex systems reveals a non-Gaussian
relaxation. For the knowledge-creation processes, we have
demonstrated [44] that the avalanche first-return statistics
obeys a qr -Gaussian distribution with a large parameter qr ≈
2.45. Here, we apply multifractal analysis to examine another
signature of the complexity of these avalanche sequences. In
particular, we analyze the temporal sequences of the avalanche
sizes Sk , where k = 1,2, . . . ,Kmax is the index of the avalanche
and Kmax stands for the total number of avalanches that occur in
a particular time series. We consider the avalanche sequences
obtained for the combinations of the parameters studied in the
preceding sections and the empirical data; two examples of
such avalanche sequences are displayed in Fig. 5 (bottom) and
Fig. 8(a).

To determine the multifractal spectrum 	(α) for the
sequences Sk , we apply the detrended multifractal analysis
(DMFA); we use the approach which was applied to different
types of complex signals, as described in Refs. [65–68].
According to the standard procedure, the profile of the signal
is first constructed by the integration

Y (i) =
i∑

k=1

(Sk − 〈S〉). (5)

The profile is then divided into Ns = int(Kmax/n) nonover-
lapping segments of equal length n. Then for each segment
μ = 1,2 . . . ,Ns , the local trend yμ(i) is determined and the
standard deviation around the local trend

F 2(μ,n) = 1

n

n∑
i=1

{Y [(μ − 1)n + i] − yμ(i)}2 (6)

is found. Similarly, the procedure is repeated starting from the
end of the signal, resulting in F 2(μ,n) = 1

n

∑n
i=1{Y [N − (μ −

Ns)n + i] − yμ(i)}2 for μ = Ns + 1, . . . ,2Ns . Combining the
deviations at all segments, the qth order fluctuation function
Fq(n) is obtained according to

Fq(n) =
⎧⎨
⎩

1

2Ns

2Ns∑
μ=1

[F 2(μ,n)]q/2

⎫⎬
⎭

1/q

∼ nH (q) , (7)

and plotted against the varied segment length n ∈
[2,int(Kmax/4)]. The scale invariance of Fq(n) against the
segment length n is examined to determine the corresponding
scaling exponent H (q). Here, the distortion parameter q takes
a range of real values. The main idea is that the segments of the
signal with potentially different fractal features will be suitably
enhanced by a particular q value to become self-similar to
the full signal and the corresponding scaling exponent H (q)
as a function of q is measured. Notably, different small
fluctuation segments are enhanced by the negative values of
q, and the segments with large fluctuations dominate the
fluctuation function for the positive values of q. In the limiting
case of monofractal, H (q) = H (q = 2) is the standard Hurst
exponent. Using the scaling relation τ (q) = qH (q) − 1, the
exponent τ (q) of the box probability, defined in the partition
function method [65], is computed. Thus, the generalized
Hurst exponents H (q) can be related with the singularity
multifractal spectrum via the Legendre transform 	(α) =
qα − τ (q), where α = dτ/dq is the singularity strength.

Figures 8(a)–8(c) shows the results for the case ExpS,
which incorporates the features of the empirical data and
the expertise matching in the simulations. Specifically, the
avalanche series, the corresponding fluctuation function, and
the generalized Hurst exponent are shown to demonstrate the
procedure. Also, we show the results of the DMFA applied
to the underlying time series for the same parameters. For
the comparison, the analysis is performed for the randomized
signals; the corresponding scaling exponents H (q) are also
depicted in Fig. 8(c). Notably, both the time series of the
activity and the related avalanche series exhibit multifractal
features. The span of the generalized Hurst exponent is
much larger in the avalanche series. In the randomized case,
the avalanche series exhibit almost unchanged multifractality
while the time series of pulses becomes a monofractal with the
properties of white noise [H (q) = 0.5 within the numerical
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error bars]. These findings indicate that the origin of the
multifractality in the time series may be found in the temporal
correlations, which are of the 1/ν type; see Fig. 6(a). While,
for the avalanche series, the scale invariance of the distribution
of sizes can be the sole reason for the observed multifractality.
In this regard, it is interesting to analyze the width of the
singularity spectrum 	(α) for different parameters of the
model. These results are shown in Fig. 8(d). In agreement
with the values of H (q) for the case ExpS in the panel
(c), the spectra corresponding to the avalanche series and
the randomized avalanche series are wide. In contrast, the
multifractality of the original time series results in the narrow
range; further, the spectrum is reduced to a close vicinity of
the point 	(α = 0.5) = 1, corresponding to the monofractal
randomized time series. For the varied expertise of the actors,
we obtain wide spectra of the avalanche series, where the
singularity strength α ∈ [0.2,1.7]; cf. Fig. 8(d). Notably, the
various parameters of the model mostly affect the right
side of the spectrum, corresponding to q < 0 region, i.e.,
small fluctuation segments in the avalanche series. While,
the variations are less pronounced for the large fluctuation
segments, appearing in the left end of the spectrum 	(α).
In this end, the empirical data and model simulations lead
to similar results. These findings indicate how the sequences
of small and large avalanches are affected by the available
expertise; the occurrence of the large fluctuations in the
avalanche sizes might be chiefly conditioned by the number of
the actors involved.

IV. THE IMPACT OF VACANCIES ON MULTIFRACTAL
SPECTRUM: A COMPARISON TO SPIN-ALIGNMENT

AVALANCHES

As mentioned in the Introduction, the complexity of
the social interactions prevents the exact description of the
mechanisms at the elementary scale, calling for a comparison
to better-understood physics models. In this regard, the
interacting spin system described by the random-field Ising
model at zero temperature and driven along the hysteresis loop
represents a paradigm of complex dynamical behavior far from
the equilibrium [69]. In this example, the spin alignment along
the slowly increasing external field is balanced by spin-spin
interactions and the local constraints due to the random-field
disorder. The dynamics of spin flips under the disorder induced
constraints and interactions was often employed to model
opinion formation [70], processes driven by social balance
[71] and other cases. For the purpose of this work, we aim
to explore the impact of vacancies in the underlying network
onto the multifractal spectrum of the avalanche sequences. We
consider spin-alignment avalanches in the zero-temperature
random-field Ising model (ZTRFIMc) with the two-state
spin site Si(t) = ±1 at each lattice site i = 1,2, . . . ,N with
a fraction c > 0 of defect sites where the spin is absent.
The energy H = −∑

i h̃i(t)Si(t) is minimized by the spin
alignment along the current value of the local field h̃i(t), where

h̃i(t) =
∑
j∈nn

JijSj (t) + hi + B(t); Si(t + 1) = sgn[h̃i(t)]

(8)

Here, hi is the local quenched random field, which is described
by the Gaussian distribution of zero mean and the width �.
Starting from a large negative value, the system is driven
quasistatically, i.e., by the slowly increasing external field
B(t + T ) = B(t) + δB after an avalanche stops. The ferro-
magnetic interaction Jij among the pair of spins at the adjacent
sites i,j has the positive mean 〈Jij 〉 = J and the second
cumulant Jc(1 − c), where c > 0 is the probability that the
spin is absent at a randomly selected site. The dimensionless
parameters f ≡ �/J and r ≡ δB/J characterize the pinning
strength and the driving rate, respectively.

Given the domain structure in these disordered systems,
the magnetization reversal occurs in a series of jumps by
the slow field ramping along the hysteresis loop. These
magnetization changes are directly related to the motion of the
domain walls, accompanying the expansion of the domains
which are oriented parallel to the field. The size of the
magnetization changes thus occur in the interplay between
the driving by the external field and pinning of the domain
walls at by the local random fields, oriented opposite. These
magnetization changes in time represent the data points in the
Barkhausen noise, a complex time series from which then the
avalanches can be determined. The scale-invariant behavior
of the Barkhausen avalanches and their dependence on the
strength of the random-field disorder has been well understood
[27,69,72–74]. Recently, it has been shown [68] that the
Barkhausen noise exhibits multifractal structure. Moreover,
the dynamical regime in the central part of the hysteresis loop,
where large avalanches can occur for the weak disorder, has
a significantly different spectrum from the dynamics at the
beginning of the hysteresis loop. In contrast, the presence of
hard defects in ZTRFIMc has been much less investigated.
Specifically, even in the weak random-field pinning that allows
system-wide avalanches, the presence of hard defects induces
a characteristic length, which affects the cutoff size of the
avalanches and also the universality of the scaling exponents
[75,76]. Here, we are interested in the dynamics of the
avalanches in the presence of site defects.

We consider a small concentration of the randomly dis-
persed site defects c = 0.05 on top of the weak random
field disorder and slow driving; thus we use a representative
set of parameters in this regime [68]: f = 2.3 < fc and
r = 0.02 in the three-dimensional cubic lattice of 1003 spins.
In the absence of the site defects (c = 0), the system of
this dimension would undergo a domain-wall depinning via
large avalanches in the central part of the hysteresis loop
[68]. However, the small percentage of site defects suffices
to perturb this critical behavior by the pinning of the domain
walls at a distance � ∼ 1/c; whereas, at the distances x � �

the domain wall motion is accelerated by the external field,
corresponding to the regime of the weak random-field pinning.
Consequently, the small avalanches are similar as in the case
of weak pinning without site defects, while the propagation
of large avalanches is considerably hindered. These effects
are reflected in the multifractal spectrum of the avalanche
sequences, in particular, by increasing the difference in the
generalized Hurst exponent for q > 0 and q < 0 values. The
resulting singularity multifractal spectra are shown in the inset
to Fig. 9. Although the avalanches tend to be larger in the
central part of the hysteresis loop, the presence of site defects
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FIG. 9. The avalanche sequence at the beginning of the hysteresis
loop (HLB) of the ZTRFIMc for c = 0.05 and weak random field
pinning. Inset: The singularity multifractal spectra in the hysteresis
loop center (HLC) and the loop beginning (HLB) for c = 0.05 and
c = 0.0.

induces a mixture of small and large events, which results in
the substantial broadening of the spectrum in comparison to
the case of c = 0.

It is interesting to point the similarity between the spectra
in the avalanche series that are affected by site defects in Fig. 9
with the spectra of social avalanches of knowledge creation,
Fig. 8. In this case, the avalanche propagation is conditioned
by the actor’s activity patterns and the (non)possession of the
required expertise. According to Fig. 2(a), a large number
of users (agents) stops to be active after a given number of
actions, while their artifacts are still available and can be the
subject of interest to others. Thus, each avalanche becomes
pinned by reaching the network node of such a user, in
the manner that a site defect pins the moving domain wall.
Also, the users whose delay time is typically larger than the
avalanche duration may have a similar effect on the current
avalanche propagation. On the other hand, the extremely
active users [a small fraction, represented by the end of the
distribution in Fig. 2(a)] accelerate the propagation through
their numerous connections and also by being active at more
than one question within a short time interval. This type of the
actor’s heterogeneity results in a typical mixture of small and
large events, as seen in the analysis in Sec. III. Beyond the
shape of the multifractal spectra, representing a combination
of small and large events, the avalanche distributions differ in
the random-site ferromagnetic model. Among other reasons,
the evolving bipartite networks of the actors and their artifacts
are identified as those being of the key importance.

V. DISCUSSION AND CONCLUSIONS

Considering the large data set from Q&A site Mathematics
Stack Exchange and the agent-directed modeling, we have
analyzed the avalanching behavior and the bipartite network
that underlies the creation of collective knowledge. Given
the complexity of modeling the human actors, we have
kept the agent’s properties statistically similar to the features
of the users, detectable from the same empirical data. In

particular, the agent’s activity pattern is designed by the
distributions of the number of actions per user P (Ni) and
the interactivity time P (�t) as well as the arrival rate p(t),
which are mutually interconnected and characterize the human
dynamics in the considered empirical system. We have varied
the agent’s expertise, as the most relevant feature to the
knowledge creation. To evaluate its impact, the expertise
matching to the contents of the artifact has been clearly
observed in the simulations. (Other potential extensions of
the model, e.g., neglecting or altering the above distributions
independently, that goes beyond human dynamics [50], are not
discussed in this work.)

The analysis indicates that the knowledge-creation process
represents a particular class of social dynamics, in which the
self-tuning towards the criticality is controlled by the use of
knowledge in the meaningful actions and the coevolution of
the underlying network. Our key findings are here discussed.

The self-organized criticality. The robustly observed tem-
poral correlations, avalanching and multifractality, as well as
the scale-invariance dependence on the driving rate, indicate
that the criticality might occur in these stochastic processes
in a self-tuned manner. The social dynamics, driven by the
arrival of new actors and innovation that they bring, represents
the main source of the avalanching behaviors. Whereas, the
altered degree of branching (e.g., in the μ process) and,
more importantly, the strict use of the expertise imposes
the constraints to the social dynamics, which affects the
avalanche propagation. These constraints then manifest in the
nonuniversal scaling exponents of the avalanche sizes and
durations. Moreover, the relative fraction of the small and
large avalanches, which appear to be mixed in the course
of the process, depends on the available expertise of the
actors, thus affecting the width of the multifractal spectrum.
Nonextensivity (qa > 1) is another remarkable feature of
the knowledge-creation process, where the qa-exponential
distribution applies to the avalanche sizes and the qr -Gaussian
distribution to the avalanche returns. Although the observed
multifractality of the avalanche series is compatible with these
distributions, more theoretical work is needed to unravel their
origin.

The structure of network partitions. In this process, the
growth of the bipartite network occurs by the addition of
layers, which contain new arrivals and other active agents,
and their artifacts. How the network will grow is strongly
related to the expertise-conditioned linking. After a sufficient
time, the network exhibits a broad distribution of the degree of
nodes in both partitions. The scaling exponent of the agent’s
degree distribution in each case is close to the introduced
distribution of the activity P (Ni). However, the cutoffs of the
distributions, indicating the actual size of the network, vary
with the considered apportionment of the expertise. Notably,
the network size increases when the agents possess a larger
expertise in the average. In this case, the probability of an
agent to connect to a suitable artifact is elevated. Similarly,
the network growth is accelerated by the addition of a larger
number of actors in the initial stages of the process, which
results in a greater number of the available artifacts. Thus,
in the social process, the scale freeness of the user partition
is determined by the actual activity profiles alone. Where
the corresponding edges will appear in the network, and,
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consequently the network’s community structure [44], depends
on the available expertise and how it is distributed over
the actors. On the other hand, the question-partition degree
distribution strongly depends on the expertise. Note that in
both cases the determined scaling exponents are smaller than
2. These results suggest that the effective mechanisms might
be different from the popular “preferential” attachment-and-
rewiring rule that leads to the exponents larger than 2.

The self-tuning factors. The heterogeneity of the actor’s
profiles and the activity patterns, with the extended range of
delay times and the number of actions, is certainly an important
factor for the appearance of the avalanches in the studied social
dynamics. Apart from these “human factors,” it is stipulated
that some other ingredients of the knowledge creation may
contribute to the paths towards the criticality. Specifically, the
importance and the use of expertise in the human collaborative
endeavor makes the social process substantially different from,
for instance, the activity on popular blogs, where the negative
emotional charge of comments may lead to a supercritical
avalanche [13,14]. Here, the required expertise of the actors
needs to match the contents of the question, resulting in
a balanced activity (resembling the energy balance in the
driven physical system). Consequently, the activity stops
when sufficient knowledge is built through the answers on
a particular question, depending on the available expertise
of the actors. The same artifacts may become a focus in
the later stages when new necessary knowledge becomes
available, i.e., by the arrival of new players. Thus, in contrast
to the standard social dynamics, a kind of optimization of
the available expertise applies, which is also compatible with
the nonextensive dynamics mentioned above. Note that the
optimization of the system’s efficiency is often associated with
the functioning of biological systems [7] and the avalanching
process in neuronal assemblies [8,9] and the brain [12], which
are still not well understood. Furthermore, the underlying
network evolution by the addition of the innovative contents in
the active layer can be seen as another decisive factor to provide
a particular type of critical behavior. Theoretically, changing
the random environment for the self-organizing process affects
the universality of the critical behavior that can be achieved.
The renormalization group study of the critical sandpile model
in the presence of quenched [43] or annealed [42] random
currents has demonstrated that a new stable fixed point appears,
which is controlled by the variance of the random variable. For
the knowledge creation in the online Q&A communities, it
is relevant to mention that the innovation expansion builds

the network of contents with a logical structure, which
originates in the participant’s individual knowledge. For the
same empirical data, this aspect of knowledge creation was
demonstrated in [47] by analysis of the knowledge network
(containing the cognitive contents that are used in all questions
and answers, and encoded by the standard mathematical
classification scheme). Further research is needed to disclose
the potential importance of avalanches of knowledge creation
in the off-line social communities, where knowledge sharing
can lead to the creation of a common opinion and other
collective behavior [13,19].

In summary, the creation of collective knowledge through
questions and answers is a self-organized critical process
where the mechanisms of self-tuning are provided by the
interplay of the social and cognitive layer. The observed
SOC is robust to the increased driving rate within limits
pertinent to the considered experimental system. Our study
suggests some questions for further theoretical considerations,
in particular: the formal differences between knowledge
creation and common social dynamics; the potential similarity
between the knowledge creation and the brain avalanching
dynamics; the origin of the nonextensivity (although the
nonextensive character of the dynamics is intuitive in the
context of knowledge, the formal origin of the q-Gaussian
fluctuations is not understood), and other issues. The presented
results, based on the empirical data and the agent-directed
model, which is almost equally complex as the empirical
system itself, reveal many factors that act in unison and
contribute to the observed SOC. The presented comparison
to the driven spin system with site defects suggests that apart
from the expertise, the heterogeneity of the actor’s activity
patterns is an essential factor that prevents the appearance
of the supercritical avalanches. Our findings may help design
formal theoretical models of SOC, e.g., of the cellular automata
type or the continuous models suitable for the renormalization
group analysis, which may be capable of describing the unique
role of each of these factors.
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[6] B. Tadić and D. Dhar, Emergent Spatial Structures in Critical
Sandpiles, Phys. Rev. Lett. 79, 1519 (1997).

[7] T. Mora and W. Bialek, Are biological systems poised at
criticality? J. Stat. Phys. 144, 268 (2011).

[8] A. Levina, J. M. Herrmann, and T. Geisel, Dynamical synapses
causing self-organized criticality in neural networks, Nat. Phys.
3, 857 (2007).

032307-12

https://doi.org/10.1016/j.physrep.2013.11.002
https://doi.org/10.1016/j.physrep.2013.11.002
https://doi.org/10.1016/j.physrep.2013.11.002
https://doi.org/10.1016/j.physrep.2013.11.002
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.79.1519
https://doi.org/10.1103/PhysRevLett.79.1519
https://doi.org/10.1103/PhysRevLett.79.1519
https://doi.org/10.1103/PhysRevLett.79.1519
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1038/nphys758
https://doi.org/10.1038/nphys758
https://doi.org/10.1038/nphys758
https://doi.org/10.1038/nphys758


MECHANISMS OF SELF-ORGANIZED CRITICALITY IN . . . PHYSICAL REVIEW E 96, 032307 (2017)

[9] J. G. Orlandi, J. Soriano, E. Alvarez-Lacalle, S. Teller, and J.
Casademunt, Noise focusing and the emergence of coherent
activity in neuronal cultures, Nat. Phys. 9, 582 (2013).

[10] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati,
F. Stefanini, and M. Viale, Scale-free correlations in starling
flocks, Proc. Natl. Acad. Sci. USA 107, 11865 (2010).

[11] D. S. Zhukov, V. V. Kanishchev, and S. K. Lyamin, Application
of the theory of self-organized criticality to the investigation
of historical processes, SAGE Open 6, 2158244016683216
(2016).

[12] J. Hesse and T. Gross, Self-organized criticality as a fundamental
property of neural systems, Front. Syst. Neurosci. 8, 166 (2014).
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TADIĆ, DANKULOV, AND MELNIK PHYSICAL REVIEW E 96, 032307 (2017)

[46] Social Interactions and the Development of Knowledge, edited
by J. I. M. Carpendale and U. Müller (Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, 2013).
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driven user communities at popular blogs, Eur. Phys. J. B 77,
597 (2010).
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