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Promoting information diffusion through interlayer recovery processes in multiplex networks
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For information diffusion in multiplex networks, the effect of interlayer contagion on spreading dynamics has
been explored in different settings. Nevertheless, the impact of interlayer recovery processes, i.e., the transition of
nodes to stiflers in all layers after they become stiflers in any layer, still remains unclear. In this paper, we propose
a modified ignorant-spreader-stifler model of rumor spreading equipped with an interlayer recovery mechanism.
We find that the information diffusion can be effectively promoted for a range of interlayer recovery rates. By
combining the mean-field approximation and the Markov chain approach, we derive the evolution equations of
the diffusion process in two-layer homogeneous multiplex networks. The optimal interlayer recovery rate that
achieves the maximal enhancement can be calculated by solving the equations numerically. In addition, we find
that the promoting effect on a certain layer can be strengthened if information spreads more extensively within
the counterpart layer. When applying the model to two-layer scale-free multiplex networks, with or without
degree correlation, similar promoting effect is also observed in simulations. Our work indicates that the interlayer
recovery process is beneficial to information diffusion in multiplex networks, which may have implications for
designing efficient spreading strategies.
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I. INTRODUCTION

The dynamical processes of information diffusion in social
networks have been extensively studied for a long time [1–11].
Due to the rapid evolution of different types of online social
networks, the means of information diffusion have been
greatly changed in recent years. For example, users often own
accounts on different online social networks simultaneously,
e.g., Twitter, Facebook, Snapchat, Instagram, and LiveJournal.
People frequently receive and diffuse knowledge, ideas, or
rumors not only in one platform, but also from one online
social network to another. Thus the multiplex network ap-
proach in which each layer corresponding to a certain online
social network is a natural way to describe this information
diffusion process [12–16]. In particular, understanding how
the interactions between layers affect the ultimate information
diffusion outcome is of great importance in both physics and
social psychology [6,17–19].

The research of contagion processes in multilayer networks
has been gaining much attention recently [20–23]. Many
studies focus on how the interconnections or interactions
between layers affect the contagion threshold of epidemics
[24–26]. Dickison et al. applied the susceptible-infected-
recovered model to two different interconnected network
systems that are either strongly coupled or weakly coupled,
and found that the presence of interconnections could enhance
epidemic spreading [27]. Buono et al. studied the epidemic
propagation processes in a partially overlapped multiplex
network and suggested that the epidemic threshold of the
multiplex network depended on both the topology of each layer
and the overlapping fraction [28]. Using a microscopic Markov
chain approach, Granell et al. showed that the awareness diffu-
sion was able to control the onset of epidemic outbreaks [29].
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Moreover, several studies use classical epidemic models to
examine information diffusion in multiplex networks [30–33].
These works mainly concentrate on the interlayer contagion
mechanism that can significantly affect the scope of informa-
tion delivery and the critical properties of diffusion processes.
In particular, Cozzo et al. studied the susceptible-infected-
susceptible model on complex networks using a contact-based
information-spreading mechanism with interlayer infections,
and found that the critical point of the multiplex system
was determined by one of the layers [34]. Li et al. studied
the susceptible-infected-recovered model with an interlayer
transmission rate and suggested that the contagion process
between layers could greatly enhance the information diffusion
[12].

Despite this progress, we still lack a proper understanding
of the interlayer recovery processes in information diffusion.
In information diffusion, once an individual becomes a stifler
in any one of the social networks, he or she should have a
probability to become a stifler in all the other social networks
immediately, as he or she has already known the rumor and
will no longer spread it. This interaction of recovery across
layers exhibits a fundamental difference between information
diffusion and epidemic spreading. Therefore, it is of particular
interest to examine how the interlayer recovery process affects
the scope of information delivery, especially the fraction of
stiflers on each layer.

In this paper, we present a framework of information
diffusion in multiplex networks in which a modified ignorant-
spreader-stifler (SIR) model is used to describe rumor spread-
ing within each layer. Here stifler originates from the classical
rumor spreading model proposed by Daley and Kendall
[35]. It represented the set of individuals who are reluctant
to tell stale news and will no longer spread the rumor.
Therefore we denote stiflers by R for reluctant, which also
corresponds to recovered status in epidemic SIR model.
To characterize the interactions between layers, we propose
two independent parameters, i.e., the interlayer contagion
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FIG. 1. Information diffusion processes on multiplex networks in the modified SIR model with interlayer recovery process. Step 1 refers
to the transmission processes within each layer, while step 2 shows both interlayer contagion and recovery processes. The multiplex system
will come to a stable state after iterating step 1 and step 2 for a sufficiently long time. Ignorant, spreaders, and stiflers are distinguished with
different colors.

rate and the interlayer recovery rate. For multiplex systems
composed of two well-mixed populations, two Erdös-Rényi
(ER) or scale-free networks, we find that both interlayer
recovery and contagion mechanisms can significantly improve
the information diffusion processes. In particular, as the
interlayer recovery rate increases, the stationary density of
stiflers will first increase and then drop gradually, peaking
at an optimal rate of interlayer recovery. For homogeneous
ER-ER multiplex networks, the optimal interlayer recovery
rate can be obtained by solving the evolution equations derived
using the mean-field approximation and Markov chain method.
The theoretical predictions agree well with simulation results
in ER-ER multiplex networks for various parameter settings.
Furthermore, we show that the enhancing effect of interlayer
recovery mechanism on a certain layer can be improved if
information spreads more extensively within the counterpart
layer. We also observe similar promoting effects in simulations
on two-layer scale-free networks, for both no-degree correlated
structure and maximally positive correlated structure (i.e., the
node degrees in different layers are maximally correlated in
their degree order).

II. MODELING FRAMEWORK

Consider a multiplex system composed of two undirected
layers, each standing for an online social platform. Within
each layer, N nodes are connected in a network with a
given degree distribution. Across layers, the same individual
is represented by two counterpart nodes connected by a
dashed link as shown in Fig. 1. For simplicity, we assume
that there is no degree correlation between layers [36]. The
information diffusion first takes place within each layer
separately following the SIR rumor diffusion model [37].
In the rumor model, an ignorant (I) represents an agent
who has not learned the new information, corresponding to
susceptible individuals in epidemiological models. Similarly,
spreaders (S) are equivalent to the infected population who can
transmit rumors, ideas, or knowledge. Stiflers (R) stand for the
people who are aware of the rumor and will no longer spread
it, such as the recovered population in epidemic spreading.
Complying with the notations in the classical rumor-spreading
model, we use ik(t) = Ik(t)/N, sk(t) = Sk(t)/N , and rk(t) =

Rk(t)/N to describe the fraction of ignorant, spreaders, and
stiflers in layer k (k = 1,2) at time t , respectively, where
ik(t) + sk(t) + rk(t) = 1. In the classical rumor-spreading SIR
model, the recovery process is only caused by the contact
interactions with neighbors. However, Wood concluded that
the motives from self, others, and reality can change one’s
attitude and have implications for information processing [38].
This indicates that self is one of the most important origins of
attitude change. Therefore taking into account the spontaneous
recovery process makes sense. Besides, studies have proven
that the information diffusion among social systems can be
generated by both peer-to-peer interactions through underlying
networks and external social influence from outside of the
network [39]. The external social influence, such as the mass
media, news web sites, TV, video, books, and so on, plays
an important role in the information diffusion process as well
[40]. The classical rumor-spreading SIR model only focuses on
the peer-to-peer communications via the underlying networks,
ignoring the external influence on individuals. However, the
spontaneous recovery process can describe the phenomenon
that an individual changes his/her status from a spreader to a
stifler because of the external social influence to some extent,
which will be an effective supplement. To characterize these
psychological origins in information diffusion, we assume
that two recovery mechanisms coexist in the single-layer SIR
process as a modification. One is the spontaneous-recovery
transition corresponding to the self-awakening and the other
one is the contact-recovery transition, which represents the
interaction process of recovery.

We start off by setting a small fraction of nodes as
spreaders, while keeping all other nodes ignorant in each
layer. The spreaders in two layers are not necessarily the same
individuals as the spreaders are chosen independently on each
layer. Then the information starts to diffuse within each layer
simultaneously according to the following rules. On layer k,
a spreader can make its ignorant neighbor become a spreader
with a probability λk . The spreaders have a probability μk1 to
turn into stiflers spontaneously. After that, stiflers can make
their neighbor spreaders change to stiflers with a probability
μk2. Here we assume that all the interactions are independent.
In the modified SIR model, the likelihood that a spreader
becomes a stifler is affected by the states of its neighbors. This
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makes it difficult to determine the information transmissibility
on a certain link. In this sense, the new SIR process in one
single layer is quite different from the classical model used in
previous works [41–45]. However, the modified model is more
realistic from a psychological perspective, as it accounts for
both spontaneous recovery and social contagion processes.

Beyond intralayer transmission, we use θ1 to characterize
how contagion process spreads between layers, i.e., the rate
at which an ignorant node gets aware of the information and
becomes a spreader if its counterpart on the other layer is a
spreader. Additionally, we use θ2 to denote the probability
that an ignorant node or a spreader changes to the stifler
state if its counterpart on the other layer is a stifler. To
some extent, previous work on interlayer transmission can
be regarded as the special case where θ2 is set to zero.
Within this framework, at each time step, information will
first spread in each layer independently and then transmit
across layers. After a sufficiently long time of evolution, the
multiplex system will reach a stationary state, in which the
final states are s1 = s2 = 0, r1 = r2 = r , and i1 = i2 = i if
θ2 �= 0.

III. THEORETICAL ANALYSIS

A. Intralayer diffusion on well-mixed populations

We first examine how the modified SIR model behaves
among well-mixed populations within a single layer and
without any network structure as an important limiting case.
Under the modified recovery rule, the transmission rate from
spreaders to stiflers on layer j (j = 1,2) at time t can be written
as

μ∗
j = μj1 + (1 − μj1)μj2rj (t). (1)

The first term accounts for the probability that a spreader
becomes a stifler spontaneously, while the second term
represents the probability that a spreader recovers under the
influence of its neighbors. Therefore, the evolution equations
of the densities of ignorants, spreaders, and stiflers within layer
j read

dij

dt
= −λj ij (t)sj (t), (2)

dsj

dt
= λj ij (t)sj (t) − μ∗

j sj (t), (3)

drj

dt
= μ∗

j sj (t). (4)

The equation for the density of ignorants can be formally
integrated, yielding

ij (t) = ij (0) exp

[
−λj

∫ t

0
sj (τ )dτ

]
. (5)

Inserting rj (t) = 1 − ij (t) − sj (t) and Eqs. (2) into Eqs. (4)
and neglecting s2

j items which is quite small when t becomes
larger, we get the following relation valid for a large time t:∫ t

0

drj

dt
dt = (μj1 + (1 − μj1)μj2)

∫ t

0
sj (τ )dτ

+ (1 − μj1)μj2

λj

∫ t

0

dij

dt
dt, (6)

or equivalently∫ t

0
sj (τ )dτ = 1

μj1 + (1 − μj1)μj2
[rj (t) − rj (0)]

− (1 − μj1)μj2

λj [μj1 + (1 − μj1)μj2]
[ij (t) − ij (0)]. (7)

Use rj (0) = 0,ij (0) ≈ 1 and ij∞ + rj∞ = 1 in Eqs. (5) and
let t → ∞. We have

ij∞ = e−βrj∞ , (8)

where β = 1 + λj −μj1

λj [μj1+(1−μj1)μj2] . Therefore we finally have the
transcendental equation for the fraction of stiflers at the steady
state

rj∞ = 1 − e−βrj∞ . (9)

It can also be written as rj∞ = F (rj∞), where F (x) = 1 −
exp(−βx) is a monotonously increasing continuous function
with F (0) = 0 and F (1) < 1. Thus a nonzero solution can exist
if and only if F ′(0) > 1, leading to the spreading condition for
a finite density of stiflers at large times

λj > μj1. (10)

Note that among well-mixed populations, the spreading con-
dition is mainly related to the contagion rate and spontaneous
recovery rate in our modified SIR model. In addition, we can
calculate the final fraction of stiflers precisely by numerically
solving Eqs. (2)–(4), or get an approximate solution by solving
Eq. (9), which neglects the effects of s2

j items.

B. Intralayer and interlayer diffusions
on ER-ER multiplex networks

We then consider the case of homogeneous multiplex
systems composed of two ER random networks with average
degree 〈k〉1 and 〈k〉2. We will further derive dynamical
equations considering both intralayer and interlayer diffusions
in this section. We start from the transmission dynamics within
each layer. Similar to the last section, the transmission rate
from spreaders to stiflers on a single layer can be written using
the mean-field approximation as

μ∗
j = μj1 + (1 − μj1)[1 − (1 − μj2)〈k〉j rj (t)]. (11)

The first term accounts for the spontaneous recovery while
the second term represents the effects of the node’s neighbors.
The evolution equations, which describe the modified SIR
processes within a single layer read

dij

dt
= −λj 〈k〉j ij (t)sj (t),

dsj

dt
= λj 〈k〉j ij (t)sj (t) − μ∗

j sj (t),

drj

dt
= μ∗

j sj (t). (12)

Now we focus on interactions between layers. For a small
value of interlayer contagion rate θ1, the probability of an
individual to be an ignorant or a spreader is approximately
independent across layers, since the interlayer contagion only
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affects a small number of people [46–48]. Therefore, at time t ,
the fraction of individuals who are ignorant in layer 1 while at
the same time are spreaders in layer 2 can be approximated by
i1(t)s2(t). This group of individuals contribute to the interlayer
contagion process and they can directly change from ignorants
to spreaders with the probability θ1 in layer 1. When dealing
with the interlayer recovery process, however, the situation
becomes more complicated. The major challenge is that the
fraction of population who are ignorants or spreaders in
layer 1 and stiflers in layer 2 at time t cannot be naively
approximated by [1 − r1(t)]r2(t) across all the spreading
process. This approximation should be valid at the early stage
of the spreading when the number of stiflers in layer 2 is small.
However, as the spreading proceeds, stiflers in layer 2 will be
accumulated to a relatively large size. Under this condition, in
contrast to the interlayer contagion process that involves only
a limited number of nodes, the interlayer recovery process
can affect a large group of people. Therefore, an individual
being a nonstifler in layer 1 and a stifler in layer 2 are far from
independent at the later stage of the spreading when stiflers are
abundant. An extreme example would be at the steady state
of the multiplex system. At this stage, each individual will
be either an ignorant or a stifler in both layers. Obviously the
fraction of people who are stiflers in layer 2 but still nonstiflers
in layer 1 is exactly 0, which cannot be approximated by
(1 − r1)r2 �= 0.

To overcome this difficulty, we use a Markov chain
approach. Denote V1i(T ) and V1s(T ) as the fraction of
ignorants and spreaders in layer 1 whose counterparts in
layer 2 are stiflers at time T , respectively. We will derive the
analytic form of V1(T ) = V1i(T ) + V1s(T ), which represents
the fraction of individuals who are already stiflers in layer
2 but still nonstiflers in layer 1. As shown in Fig. 2, V1(T )
can be calculated recursively by establishing its relation with
V1(T − 1) after a round of evolution between layers and within
layer 1. The changes from V1(T − 1) to V1(T ) are displayed
in the Venn diagram in Fig. 2 [49]. Specifically, region a is the
increasing part of individuals who have just become stiflers in
layer 2 but have not switched to stiflers in layer 1, which can
be approximated by [r2(T ) − r2(T − 1)][1 − r1(T )]. Region
b and region c represent the loss of nonstiflers in layer 1
among the population of V1(T − 1), caused by cross-layer
recovery and spontaneous or neighbor influenced recovery
respectively. The sizes of these two groups of individuals
are θ2V1(T − 1) and V1s(T − 1)μ∗

1 respectively. Therefore,
the remaining population of V1(T − 1) at time T is simply
(1 − θ2)V1(T − 1) − V1s(T − 1)μ∗

1. Summing up both the
increasing and remaining population, we get the recursive
formula of V1(T )

V1(T ) = (1 − θ2)V1(T − 1) − V1s(T − 1)μ∗
1

+[r2(T ) − r2(T − 1)][1 − r1(T )], (13)

and

V1s(T − 1) = V1(T − 1)
s1(T − 1)

i1(T − 1) + s1(T − 1)
. (14)

The update in layer 2 caused by interlayer contagion and
recovery can be obtained in a similar way. We then obtain

FIG. 2. The Venn diagram for the recursive relation of V1(T ).
The dotted oval represents the region of V1(T − 1). At time T , nodes
in region b change to stiflers in layer 1 due to interlayer recovery
transitions while nodes in region c also become stiflers following the
modified SIR dynamics within layer 1. At the same time, region a

represents the increased individuals who have just become stiflers in
layer 2 but still not change into stiflers in layer 1. Thus V1(T ) can be
calculated by the sum of proportions of region d and region a.

the full evolution equations of the multiplex system

i1(T + 1) = i1(T ) − λ1〈k〉1 i1(T )s1(T )

− θ1i1(T )s2(T ) − θ2V1i(T ),

s1(T + 1) = s1(T ) + λ1〈k〉1 i1(T )s1(T ) − μ∗
1s1(T )

+ θ1i1(T )s2(T ) − θ2V1s(T ),

r1(T + 1) = r1(T ) + μ∗
1s1(T ) + θ2V1(T ),

i2(T + 1) = i2(T ) − λ2〈k〉2 i2(T )s2(T )

− θ1i2(T )s1(T ) − θ2V2i(T ),

s2(T + 1) = s2(T ) + λ2〈k〉2 i2(T )s2(T ) − μ∗
2s2(T )

+ θ1i2(T )s1(T ) − θ2V2s(T ),

r2(T + 1) = r2(T ) + μ∗
2s2(T ) + θ2V2(T ) (15)

and

i1(t) + s1(t) + r1(t) = 1,

i2(t) + s2(t) + r2(t) = 1. (16)

During the evolution of spreading, it is clear that
V1(T ) depends on variables r1(t), r2(t), s1(t), and i1(t) (t =
1,2, . . . ,T − 1) according to Eqs. (13) and (14). Therefore,
it is hard to present the exact analytical form of V1(T ) in
terms of these variables. However, our concern is the ultimate
state of the multiplex system, i.e., the fraction of stiflers in
each layer rj∞ when t → ∞. At the stationary state, we
attempt to analytically derive the relationship between rj∞
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and parameters. From this perspective, for a small value
ε > 0, we define a time point Tc such that the increase of
stiflers in both layers rj (t + 1) − rj (t) < ε and the fraction
of spreaders sj (t) < ε (j = 1,2) for t � Tc. This is feasible
because drj (t)/dt = 0 and sj (t) = 0 (j = 1,2) as t → ∞.
Under this condition, Tc can be regarded as the demarcation
point of the two spreading stages, after which the stiflers in
layer 2 compose of a relatively large proportion such that
V1(T ) cannot be approximated by [1 − r1(T )]r2(T ). Following
Eqs. (13) and (14), for T → ∞ we have

V1(T ) = V1(Tc)
T −Tc∏
j=1

(
1 − θ2 − s1(T − j )μ∗

1

i1(T − j ) + s1(T − j )

)

+
T −Tc∑
l=1

{
[r2(T − l + 1) − r2(T − l)]

× [1 − r1(T − l + 1)]
l−1∏
j=1

×
(

1 − θ2 − s1(T − j )μ∗
1

i1(T − j ) + s1(T − j )

)}
, (17)

and specially we define

0∏
j=1

(
1 − θ2 − s1(T − j )μ∗

1

i1(T − j ) + s1(T − j )

)
= 1 (18)

to deal with the situation when l = 1 in Eq. (17).
Now we attempt to simplify Eq. (17) by neglecting the

items of the order up to O(ε). As defined above, it is clear that
r2(T − l + 1) − r2(T − l) < ε for all l � T − Tc. Because the
term

∏l−1
j=1 (1 − θ2 − s1(T −j )μ∗

1
i1(T −j )+s1(T −j ) ) decreases exponentially

and [1 − r1(T − l + 1)] is bounded below 1, we have

T −Tc∑
l=1

{
[r2(T − l + 1) − r2(T − l)][1 − r1(T − l + 1)]

×
l−1∏
j=1

(
1 − θ2 − s1(T − j )μ∗

1

i1(T − j ) + s1(T − j )

)}
∼ O(ε). (19)

Additionally, we have

s1(T − j )μ∗
1

i1(T − j ) + s1(T − j )
∼ O(ε) (20)

for j = 1,2, . . . ,T − Tc, as s1(T − j ) < ε and i1(T − j )
converges to a positive value i1∞. Applying the deductions
(19) and (20) to Eq. (17), V1(T ) can be approximately
given by

V1(T ) = V1(Tc)(1 − θ2)T −Tc . (21)

Naturally, we extend (21) to the continuous situation and reach
to the approximation formula of V1(t)

V1(t) =
{

(1 − r1(t))r2(t), t � Tc

V1(Tc)(1 − θ2)t−Tc , t > Tc.
(22)

When t → ∞, we have

V1(t) = r2(Tc)[1 − r1(Tc)](1 − θ2)t−Tc . (23)

The approximations of V1i(t) and V1s(t) are listed as follows

V1i(t) = r2(Tc)i1(Tc)(1 − θ2)t−Tc ,

V1s(t) = r2(Tc)s1(Tc)(1 − θ2)t−Tc . (24)

Here we propose two ways to determine Tc. One is to set a
fixed small value ε∗ > 0 and find a time critical point when
rj (t + 1)/rj (t) < 1 + ε∗ for both layers. The other one is to
fix Tc empirically. We observe in simulation that the multiplex
system we use tends to be steady within 300 ∼ 500 steps of
evolution. In addition, r increases rapidly in early stage of
diffusion and then grows slowly. Thus we can set Tc = 30 ∼
100, which is not strict but is efficient.

Therefore ij (Tc),sj (Tc),rj (Tc) in layer j can be calculated
numerically by substituting V1(t) = [1 − r1(t)]r2(t) for t �
Tc in Eq. (15). Analysis of layer 2 follows the same way.
Finally, substituting sj (t), Vj (t), Vji(t), and Vjs(t) (j = 1,2)
in the continuous form of Eq. (15) by using Eqs. (16), (23),
and (24), the nonlinear approximating differential equations
for the evolution processes read

di1

dt
= −λ1〈k〉1 i1(t)[1 − i1(t) − r1(t)]

− θ1i1(t)[1 − i2(t) − r2(t)]

− θ2r2(Tc)i1(Tc)(1 − θ2)t−Tc ,

dr1

dt
= μ∗

1[1 − i1(t) − r1(t)]

+ θ2r2(Tc)[1 − r1(Tc)](1 − θ2)t−Tc ,

di2

dt
= −λ2〈k〉2 i2(t)[1 − i2(t) − r2(t)]

− θ1i2(t)[1 − i1(t) − r1(t)]

− θ2r1(Tc)i2(Tc)(1 − θ2)t−Tc ,

dr2

dt
= μ∗

2[1 − i2(t) − r2(t)]

+ θ2r1(Tc)[1 − r2(Tc)](1 − θ2)t−Tc . (25)

IV. RESULTS

A. Theoretical and simulation results on multiplex
well-mixed populations

We start from a multiplex system composed of two well-
mixed populations. Each layer has N = 103 nodes. Initially
we have ten spreaders in each layer, i.e., ij (0) = 0.99 and
sj (0) = 0.01 on layer j, j = 1,2.

We show how the modified SIR model behaves in a single
layer among well-mixed population in Fig. 3. We set θ1 = θ2 =
0 to exclude the influence of interlayer dynamical processes.
In Fig. 3(a), we give three groups of μ11,μ12 and present the
stationary fraction of stiflers in layer 1 as a function of λ1.
Our theoretical predictions produced by numerically solving
differential equations (2)–(4) can well match the simulation
results, as shown in Fig. 3(a) by solid lines. The approximate
solutions solved by Eqs. (9) are also presented by dash lines.
Naturally, the threshold of information diffusion increases as
μ11 becomes larger, which can also be observed in Eqs. (10).
It is worthy of noting that among well-mixed populations
where the contagion process is less efficient compared with
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FIG. 3. How modified SIR model behaves in a single layer among
well-mixed population. (a) The stationary fraction of stiflers in layer
1 is presented as a function of λ1. We set μ11 = 0.1,μ12 = 0.2; μ11 =
0.2,μ12 = 0.3; μ11 = 0.3,μ12 = 0.4, respectively. The other param-
eters are set as follows, N = 103,θ1 = θ2 = 0. Theoretical predic-
tions produced by Eqs. (2)–(4) are shown by solid lines, while
theoretical solutions solved by Eqs. (9) are shown by dash lines.
(b) How contact-recovery mechanism affects the stationary fraction
of stiflers. We fix λ1 = 0.3,μ11 = 0.1; λ1 = 0.4,μ11 = 0.2; λ1 =
0.5,μ11 = 0.3, respectively and change μ12 from 0 to 1. The other
parameters are set as follows, N = 103,θ1 = θ2 = 0. Theoretical
predictions produced by Eqs. (2)–(4) are shown by dashed lines.

a network-structured population, the fraction of stiflers is less
than 1 as μ11,μ12 increases even when λ1 = 1. In Fig. 3(b),
we further explore the effects of contact-recovery mechanism
on the stationary fraction of stiflers. We fix λ1,μ11 and change
μ12 from 0 to 1. Results show that the stationary fraction
of stiflers decreases significantly as μ12 becomes larger. Our
theoretical predictions using Eqs. (2)–(4) agree well with the
simulation results when μ12 is not too large, as shown in
Fig. 3(b). As μ12 approaches to 1, we find that λ1 is much
smaller than μ∗

1 when the system becomes steady, which means
there exists a time period that the recovery rate is always larger
than the contagion rate. This leads to minor errors of our
predictions.

We also present the effects of interlayer recovery process on
the stationary fraction of stiflers among multiplex well-mixed
populations in Fig. 4. We give three sets of λj ,μj1,μj2, and
set θ1 = 0 in Figs. 4(a) and 4(c) while we fix the parame-
ters λj ,μj1,μj2 and change θ1 = 0,0.1,0.2, respectively in
Figs. 4(b) and 4(d). In this way, we attempt to establish a
firm grasp of how the interlayer recovery process, which is
directly controlled by the parameter θ2, affects information
diffusion under different circumstances. Results show that the
scope of information delivery is effectively promoted by the
interlayer recovery process when θ2 is not too large. Note that
in Fig. 4(b), a large θ2 shows an inhibitive effect on information
diffusion when θ1 > 0. An interesting phenomenon can also
be observed that in all cases a small interlayer recovery rate
has the maximal promoting effects. Additionally, all peak
points, i.e., the turning points of the curves, appear in the
vicinity of θ2 = 0.01 ∼ 0.02 in our simulations, according to
Figs. 4(c) and 4(d), which show a detailed view of how θ2

behaves.
We will add network structures and further explore the

behaviors of interlayer recovery process in the next two
sections. Moreover, theoretical predictions of the peak points
will be shown in multiplex systems composed of two ER
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FIG. 4. Effects of the interlayer recovery process on the stationary
fraction of stiflers among well-mixed populations. (a) We set N =
103,θ1 = 0,μ11 = μ12 = μ21 = μ22 = 0.2 for the three curves. Other
parameters are set as follows: diamond: λ1 = 0.28, λ2 = 0.32; circle:
λ1 = 0.34, λ2 = 0.38; square: λ1 = 0.4, λ2 = 0.44. (b) We change
θ1 = 0,0.1,0.2 to observe the influence of dynamical processes be-
tween layers. Other parameters are fixed: N = 103, λ1 = 0.28, μ11 =
μ12 = 0.2, λ2 = 0.32, μ21 = μ22 = 0.2. (c) and (d) show a detailed
view of how θ2 behaves, corresponding to (a) and (b) respectively.

networks. Explanations for the behaviors of our modified SIR
model as well as the influence of interlayer recovery process
will also be given.

B. Theoretical and simulation results on two ER networks

We construct a multiplex system composed of two ER
networks with N = 104 nodes in each layer, with no degree
correlations between layers. We set 〈k〉1 = 20 for layer 1
and 〈k〉2 = 30 for layer 2. Initially, we have ten spreaders in
each layer, i.e., ij (0) = 0.999 and sj (0) = 0.001. To make the
analysis more tractable, we assume μj1 = μj2 = μj (j = 1,2)
in Eq. (11) to simplify the dynamical process within the
same layer in the following parts. Extensive simulations are
implemented to crosscheck our theoretical analysis.

First, the results of modified SIR processes within a single
layer are shown in Fig. 5. In this scenario, we simply set
θ1 = θ2 = 0, which means the information diffusion processes
only occur within each layer separately. The stable fraction of
stiflers in layer i simply depends on λi and μi . Theoretical
analyses using Eqs. (12) and simulation results are presented in
Fig. 5. Theoretical lines can match the simulation results quite
well. It is worth noting that in the classical rumor spreading
SIR model, the rumor always has a nonzero probability of
pervading a macroscopic fraction of the system whatever the
values of the rates λ and μ are [37]. However, our modified
SIR process exhibits a continuous phase transition as shown in
Fig. 5. This is due to the fact that when ri is quite small,
μ∗

i ≈ μi1. This implies, the spontaneous recovery process
becomes the main channel to recover. Under this circumstance,
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FIG. 5. Information diffusion results within each layer, i.e., the
stationary fraction of stiflers in layer i(i = 1,2) as a function of λi .
The other parameters for the underlying multiplex networks and the
dynamical processes are set as follows, N = 104,〈k〉1 = 20,〈k〉2 =
30,θ1 = θ2 = 0. Theoretical predictions produced by Eqs. (12) are
shown by dash lines.

dri

dt
≈ μi1si(t), which is similar to the recovery mechanism

of classical susceptible-infected-recovered model in disease
propagation [37].

We then examine the effect of interlayer contagion process
on the stationary fraction of stiflers in each layer. We set
θ2 = 0 to make information contagion processes as the only
dynamical interactions between layers. In Fig. 6, we present
both theoretical and simulation results for the stable fraction
of stiflers in layer i as a function of θ1. The stifler fraction
ri greatly increases as θ1 grows. This indicates that the
interlayer contagion process can remarkably extend the scale
of information diffusion in multiplex systems. This is because
the fraction of spreaders in a certain layer can increase
significantly due to the interlayer contagion transmission, and
spreaders will eventually become stiflers in the steady state.

FIG. 6. Effects of the interlayer contagion process on the sta-
tionary fraction of stiflers in each layer. Theoretical results produced
by Eq. (25) are shown with dashed lines. The parameters are set
as N = 104,〈k〉1 = 20,〈k〉2 = 30,θ2 = 0,μ1 = 0.4,μ2 = 0.6. Other
parameters in (a) and (b) include: triangle: λ1 = 0.044,λ2 = 0.035;
circle: λ1 = 0.05,λ2 = 0.04; square: λ1 = 0.06,λ2 = 0.05.

FIG. 7. Effects of the interlayer recovery process on the stationary
fraction of stiflers. We present density of stiflers at the steady
state as a function of θ2 for the multiplex system composed of
two ER networks with N = 104 nodes. (a) We set θ1 = 0, μ1 =
0.4, μ2 = 0.6 for the three curves. Other parameters are set as follows:
triangle: λ1 = 0.04, λ2 = 0.03; circle: λ1 = 0.05, λ2 = 0.04; square:
λ1 = 0.06, λ2 = 0.05. (b) We change θ1 = 0,0.1,0.3 and fix other
parameters: λ1 = 0.06, μ1 = 0.4, λ2 = 0.05, μ2 = 0.6. Inset shows
the global trend of the curves. (c) and (d) show a detailed view of
how θ2 behaves in the region where θ2 � 1, corresponding to (a) and
(b), respectively.

We also notice that the theoretical results agree well with the
simulations when θ1 is not too large. As θ1 approaches to 1,
the accuracy of our prediction drops because it is more likely
for spreaders to cluster within local areas, which leads to a
nonrandom distribution in each layer. In this case, the fraction
of individuals who are ignorant in layer k and spreaders in
layer j can not be well approximated by ik(t)sj (t).

In Fig. 7, we show the impact of interlayer recovery process
on information diffusion. In Fig. 7(a), we test three groups of
λi, μi , and set θ1 = 0. Meanwhile, in Fig. 7(b), the parameters
λi and μi , which control the dynamical processes within each
layer are fixed and we change θ1 to observe the influence
of interlayer dynamical processes. To investigate in detail
how θ2 behaves near peaks, we increase the resolution in the
region where θ2 � 1 in Figs. 7(c) and 7(d), corresponding to
Figs. 7(a) and 7(b) respectively. Each point on the curves is
the average of 100 simulations. We denote r as the fraction of
stiflers in both layers for θ2 > 0. According to the evolution
rule, it is clear r = r1 = r2 if θ2 > 0. For θ2 = 0, we set r as
the smaller one of r1 and r2 to observe the effects on the weaker
layer where information spreads less broadly. Interestingly, in
all circumstances, the fraction of stiflers r increases sharply
at first and then decreases gradually as θ2 becomes larger.
However, even when θ2 = 1, the fraction of stiflers still remains
larger than that when there is no interlayer recovery process,
i.e., θ2 = 0. In summary, the interlayer recovery mechanism
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FIG. 8. How dynamical processes within a certain layer af-
fect the promoting effect of interlayer recovery process on the
counterpart layer. We set λ1 = 0.05, μ1 = 0.4, μ2 = 0.6, and λ2 =
0.03, 0.04, 0.05, respectively. Here we fix θ1 = 0 to exclude the
influence of contagion process between layers. The global trend
of curves is shown in (a) while the results near peaks are
displayed in (b).

promotes the information diffusion in multiplex systems.
Particularly, the enhancing effect is optimized at a small
interlayer recovery rate. As shown in Figs. 7(c) and 7(d), all
the average peaks appear in the range of θ2 = 0.006 ∼ 0.014,
or in the vicinity of θ2 = 0.01. The peak points here are
of great importance to further develop efficient information
diffusion strategies. This phenomenon can be explained by the
following reasoning. When θ2 is small, the interlayer recovery
processes help a small fraction of ignorants and spreaders to
become stiflers and thus promote the information spreading
within each layer. However, when θ2 becomes large, a larger
fraction of ignorants and spreaders directly change into stiflers,
which leads to a significant reduction of spreaders within each
layer. In other words, some individuals just skip the spreader
state and no longer spread the information before the system
becomes stable. To some extent, a large θ2 has an inhibitive
effect for information spreading among the whole multiplex
system.

In addition, we also discuss how dynamical processes
within a certain layer affect the promoting effect of interlayer
recovery process on the counterpart layer. In Fig. 8, we analyze
diffusion results as a function of λ2 by fixing λ1, μ1, and θ1,
so that we can learn about how changes on layer 2 affect
the enhancing effect on layer 1. As shown in simulations,
the enhancing effect of interlayer diffusion on layer 1,
characterized by θ2, becomes more significant as λ2 rises.
Thus, the promoting effect of interlayer recovery mechanism
on one layer can be strengthened if information spreads more
sufficiently on the other layer.

Furthermore, we present both theoretical predictions and
simulation results of the optimal interlayer recovery rate θ∗

2
that achieves the maximal enhancing effect. In Fig. 9, the
distribution of θ∗

2 in 100 simulations are shown by box plots,
illustrating the 0th, 25th, 50th, 75th, and 100th percentiles.
When calculating theoretical predictions by Eq. (25), we
choose to fix Tc = 40,60,100, respectively which is more
efficient as mentioned earlier. It can be observed that all
optimal rates fluctuate near 0.01, but the relative fluctuations
is large in different simulations. Most of the theoretical results
fall within the range of simulated values. Note that the absolute

0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05

λ
2

0

0.01

0.02

0.03

0.04

0.05

θ 2*

T
c
=40

T
c
=60

T
c
=100

FIG. 9. Theoretical predictions and simulation results of the
optimal interlayer recovery rate that achieves the maximal enhancing
effect. We use box plots to show the distribution of peak positions in
100 independent simulations. From bottom to top, the box shows the
0th, 25th, 50th, 75th, and 100th percentiles. We change Tc = 40, 60,
and 100 respectively in Eqs. (25). Other parameters are set as follows:
λ1 = 0.05, μ1 = 0.4, μ2 = 0.6, θ1 = 0.

error is quite small comparing with the whole parameter range
θ2 ∈ [0,1].

C. Simulation results on two scale-free networks

We also apply our model to multiplex systems composed of
two scale-free networks. In fact, the underlying structure of real
online social networks is closer to scale-free networks in which
the preferential attachment mechanism leads to a power-law
degree distribution pk ∝ k−γ [37]. Studies have shown that
the hubs who connect a large number of nodes in scale-
free networks can significantly accelerate the transmission
processes [50]. Also, we attempt to show how interlayer
dynamical processes affect the information diffusion under
this two scale-free multiplex networks topology. We generate
the scale-free networks using a preferential attachment model,
in which the preferential attachment mechanism is given by
pi ∼ ki + α. Here ki is the degree of node i and α denotes
the attractiveness of the vertices with no adjacent edges.
We add one vertex in each time step and the new vertex
initiates m edges to old vertices. Under this circumstance,
the exponential value of the scale-free graph can be calculated
by γ = 3 + α/m. We fix α = 1 and let m = 5,7, respectively.
Therefore, we have γ1 = 3.2 for layer 1 and γ2 = 3.14 for layer
2. In addition, the average degrees of the scale-free networks
are 10 and 14, i.e., 〈k〉 = 2m. In our simulations, both layers
have 104 nodes and we set sj (0) = 0.001.

In Fig. 10 we show the relation between interlayer recovery
and contagion process. We present the stationary density of
stiflers in layer 1 as a function of interlayer contagion rate. The
contagion process between layers can significantly promote
the information diffusion processes. We also set two groups
of parameters in which θ2 �= 0 for comparison. Results show
that when θ1 is small, θ2 plays a major role in the promoting
effects. However, as θ1 gradually approaches to 1, the effect
of θ2 becomes weaker and θ1 takes over the major promoting
effect. In other words, both interlayer contagion and recovery
mechanisms promote the information diffusion processes. The
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FIG. 10. Simulation results of the stationary fraction of stiflers as
a function of contagion rate between layers for a multiplex system
composed of two scale-free networks. Other parameters are set
as follows: triangle: λ1 = 0.08, μ1 = 0.3, λ2 = 0.06, μ2 = 0.3, θ2 =
0; circle: λ1 = 0.08, μ1 = 0.3, λ2 = 0.06, μ2 = 0.3, θ2 = 0.1; di-
amond: λ1 = 0.1, μ1 = 0.3, λ2 = 0.08, μ2 = 0.3, θ2 = 0; square:
λ1 = 0.1, μ1 = 0.3, λ2 = 0.08, μ2 = 0.3, θ2 = 0.1.

interlayer recovery mechanism plays a critical role in the
increase of stiflers if the interlayer contagion rate is small,
while the contagion mechanism between layers dominates
the enhancing effect if the interlayer contagion rate becomes
large. This is because a large θ1 can significantly increase the

fraction of spreaders in each evolution step. In contrast, θ2

only has influence on individuals who are stiflers in one layer
but nonstiflers in the other layer, which does not increase the
fraction of spreaders in both layers.

In Figs. 11(a)–11(c), we present effects of interlayer
recovery process on the stationary fraction of stiflers. We
change diffusion parameters within each layer and set θ1 = 0
in Fig. 11(a) while fix λ1, μ1, λ2, μ2, and vary θ1 in Fig. 11(b)
to see the influence of θ2 under different circumstances. The
fraction of stiflers still shows the trend of a sharp increase
followed immediately by a slow decline. Additionally, in
Fig. 11(c), we change λ2 to control diffusion results within
layer 2 and fix λ1, μ1, θ1 to observe how changes on layer
2 affect the enhancing effect characterized by θ2 on layer
1. Simulations show that the promoting effect of interlayer
recovery process on layer 1 is strengthened when information
spreads more sufficiently in layer 2. It can also be observed that
under all circumstances a small interlayer recovery rate has a
maximal effect on promoting information diffusion. Moreover,
all peak points appear in the vicinity of θ2 = 0.006 ∼ 0.01 in
our simulations.

Up to now, all simulations are implemented in uncorrelated
multiplex networks. However, there is no denying the fact
that degree correlations do exist in realistic social networks,
i.e., hubs are likely to be hubs in all platforms. Therefore,
we further investigate how interlayer recovery process affects
information diffusion in maximally positive correlated scale-
free multiplex networks for comparison, see simulation results
in Figs. 11(d)–11(f). In this maximally positive correlated case,
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FIG. 11. Effects of the interlayer recovery process on the stationary fraction of stiflers in the two layer scale-free multiplex networks.
(a)–(c) show different situations in uncorrelated multiplex networks while (d)–(f) give corresponding results in maximally positive correlated
networks. (a), (d): θ1 = 0, μ1 = μ2 = 0.3 are fixed for all curves and the other parameters are set as follows: triangle: λ1 = 0.06, λ2 = 0.08;
circle: λ1 = 0.08, λ2 = 0.1; square: λ1 = 0.1, λ2 = 0.06. (b), (e): We set θ1 = 0, 0.1 and 0.3 respectively and other parameters are fixed
as: λ1 = 0.1, μ1 = 0.3, λ2 = 0.08, μ2 = 0.3. (c), (f): We set θ1 = 0, λ1 = 0.1, μ1 = 0.3, μ2 = 0.3 and change λ2 as 0.06, 0.08 and 0.1,
respectively.
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the nodes degrees in different layers are maximally correlated
in their degree order [36]. Note that the degree distribution and
the network structure in a single layer is unchanged. Results
show that there is almost no difference between uncorrelated
structure and maximally positive correlated structure in our
model, except the curves in maximally positive correlated
situations are smoother, which represent smaller fluctuations
in different simulations. We give the following explanations.
When information diffusion takes place in a single layer
following our modified SIR model, hubs can easily receive
rumors and become a spreader. Meanwhile, the recovery rate of
the hub i μ∗ = μj1 + (1 − μj1)[1 − (1 − μj2)k(i)rj (t)] is close
to 1 even when rj (t) is relatively small, for the reason that k(i),
which represents the degree of hub i is quite large. In other
words, hubs can quickly change status from spreaders to stiflers
within a layer because of the contact-recovery mechanism in
our model. The effects of interlayer recovery process for hubs
is much smaller than that within a single layer and thus the
degree correlations between layers make no difference on the
final results.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we propose a modified rumor-spreading SIR
model, which incorporates an interlayer recovery mechanisms
to describe information diffusion processes in online social
networks. We examine how dynamical mechanisms between
layers, especially interlayer recovery mechanism, affect the
scope of information delivery in multiplex well-mixed popula-
tion and ER-ER multiplex networks. A theoretical framework
is presented by combining the homogeneous mean-field
method and the Markov chain approach. Results show that both
interlayer recovery and contagion mechanisms can promote
information diffusion processes. The contagion mechanism
between layers greatly promotes the fraction of stiflers in
each layer, especially when the contagion rate is large
and close to 1. As the interlayer recovery rate grows, the
fraction of stiflers exhibits a sharp increase and then a slow
decrease. This indicates a phenomenon that a small interlayer
recovery transmission rate has a maximum effect on promoting
information diffusion. Remarkably, the optimal interlayer

recovery rate that achieves the maximal enhancement can be
predicted by solving the equations numerically. Moreover, the
enhancing effect of the interlayer recovery mechanism on a
certain layer can be strengthened if information spreads more
sufficiently within the counterpart layer. We further apply
our model to multiplex systems of two scale-free networks.
Simulations show the same phenomenon as we observed in
ER-ER multiplex networks. In addition, when dealing with
how interlayer recovery process affects information diffusion,
we find the degree correlations between layers make no
difference.

Our work not only demonstrates a possible solution in
designing efficient spreading strategies in multiplex online
social networks, but also provides a theoretical framework to
explain and predict information diffusions involving interlayer
dynamics for future works. For instance, the simultaneous
transmission of two pieces of competing information, the
diffusion of controversial topics which contain different
viewpoints. The interlayer recovery rate in this work can
simply be substituted by the probability that an individual
delivers the opposite information from one layer to the other.
Furthermore, a more accurate mathematical description of
interlayer dynamical processes, which can better illustrate the
emergence of optimal interlayer recovery rate is also worthy
studying in the future.
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APPENDIX: ROBUSTNESS OF Tc

We supplement detailed studies of the robustness of Tc

in this Appendix. We use the same ER-ER multiplex system
where N = 104, 〈k〉1 = 20, 〈k〉2 = 30 as in Sec. IV B.

First, we present temporal dynamics of the fraction of
stiflers on layer 1 under different circumstances in Fig. 12.
Each point on the curves is the average of 100 simulations.
Results show that the fraction of stiflers on each layer increases
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FIG. 12. Temporal dynamics of the fraction of stiflers on layer 1 under different circumstances. (a) μ1 = 0.4,μ2 = 0.6,θ1 = 0,θ2 = 0.01,
other parameters: red line: λ1 = 0.04,λ2 = 0.03; blue line: λ1 = 0.05,λ2 = 0.04; green line: λ1 = 0.06,λ2 = 0.05. (b) We fix λ1 = 0.05,μ1 =
0.4,λ2 = 0.04,μ2 = 0.6,θ2 = 0.01 and change θ1 = 0,0.1,0.3, respectively. (c) We fix λ1 = 0.05,μ1 = 0.4,λ2 = 0.04,μ2 = 0.6,θ1 = 0 and
let θ2 = 0.01,0.02,0.1, respectively.
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FIG. 13. Temporal dynamics of the fraction of spreaders on layer
1 in different parameter groups. μ1 = 0.4,μ2 = 0.6 are fixed. Other
parameters are set as follows: red line: λ1 = 0.06,λ2 = 0.05,θ1 =
0,θ2 = 0.01; green line: λ1 = 0.05,λ2 = 0.04,θ1 = 0,θ2 = 0.01;
blue line: λ1 = 0.05,λ2 = 0.04,θ1 = 0.1,θ2 = 0.01; magenta line:
λ1 = 0.05,λ2 = 0.04,θ1 = 0,θ2 = 0.1.

rapidly in the first dozens of steps, then grows gradually
each step, and finally reaches steady state. According to
our definition in Sec. III, Tc first appears in the vicinity of
T = 30 and can be considered sustained until about T = 200,
if θ2 is quite small. It can be concluded from Figs. 12(a)
and 12(b) that Tc mainly depends on the parameters λi and μi ,
which control the dynamical processes within each layer and
θ1 accelerates the diffusion process which makes Tc appears
earlier. In addition, θ2 significantly shortens the processes
from slowly increasing state to the final steady state but have
little effects on the first appearance time of Tc, as shown in
Fig. 12(c).

Besides, in Fig. 13, we show temporal dynamics of the
fraction of spreaders on layer 1 in different parameter groups as
a verification. Simulations show that under all circumstances,
Tc first appears at about T = 30.

In conclusion, Tc is relatively robust because it is almost
unaffected by the interlayer dynamical processes. Moreover, it
is mainly determined by λi and μi . Thus Tc can be estimated
empirically, as we have implemented in Sec. IV B.
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