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We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double
well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two
crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential
wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from
one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In
particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an
analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional
zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with
the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the
structural disorder caused by the quench of the barrier height.
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I. INTRODUCTION

Since their development many decades ago [1–3], ion traps
have established themselves as a powerful tool in physics
with applications ranging from mass spectroscopy [4,5] to
high-precision tests for quantum electrodynamics [6–8] and
quantum information processing [9–11].

The development of new trapping techniques, such as
optical trapping [12] and the miniaturization of ion traps
on chip technologies (microfabrication) [13,14] opens new
possibilities for controlling the ions and accessing physically
interesting and yet unexplored trapping conditions. Conse-
quently, the experimental and theoretical understanding of the
behavior of ions (both single species and mixtures) in different
traps has become the focus of many recent studies [15–18].

A particular example is the study of Coulomb crystals.
Using several cooling techniques, such as Doppler cool-
ing [19,20], electromagnetically induced-transparency (EIT)
[21,22], or sympathetic cooling [21], it is possible to reduce
the kinetic energy of the trapped particles to the regime of μK
where the ions self-organize to the so-called Wigner crystals
[23]. The structures of such crystals depend on the trap parame-
ters and range from concentric rings (2D), shells (3D) [24–26],
and string-of-disks configurations [27] to two-component
Coulomb bicrystals [28]. By tuning the parameters of the trap
potential, such as the amplitude of the AC and the amplitude
and frequency of the DC potential in the case of a Paul trap or
the number of ions, Wigner crystals can undergo various tran-
sitions from one structure to another [25,29]. Special attention
has been given in the literature to the case of the second order
phase transition from the linear to the zigzag chain of ions
[30–32], which results in structures with [33–35] or without
[36,37] topological defects (so-called kinks). In such a way the
structural transitions of trapped ions serve among others as a
playground for studying fundamental processes in physics, an
example being that of the Kibble-Zurek mechanism introduced
originally in the field of cosmology [34].
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Given the wealth of effects resulting from a trapping
of ions in an ordinary Paul trap [1], it is natural to ask
for the effects stemming from a more involved trapping
potential. Such a potential can be provided for ions through
microfabrication, where for example segmentation can be
added to the standard Paul trap [38,39] giving rise to a
plethora of new possibilities for trapping potentials [11],
like a double well with tunable positions of minima used for
studying ion transport [40] or for splitting small ion crystals
[41–44].

Focusing on the case of the double-well trapping potential,
the long-range inter- and intrawell interactions among the
Wigner crystals occupying each potential well give rise to
a very complex nonequilibrium dynamics. In particular for a
symmetric population of the two wells, we have recently shown
[45] that a quench in the barrier height induces interesting non-
linear dynamics, involving both regular and irregular phases of
motion. Here we extend this study to the case of an asymmetric
population of the double well potential. This asymmetry results
in an even richer dynamics involving ion transfers between the
two wells, scattering processes and crystal melting. A special
focus is on the ion transfer mechanisms. We observe a nons-
mooth (steplike) dependence of the time instant at which an
arbitrary ion passes above the barrier on the quench amplitude,
relating to the oscillation frequencies of the ion closest to the
barrier, as well as to the collective center-of-mass motion of
both crystals. After an ion transfer the smaller crystal melts due
to the mass and energy excess a fact depicted nicely in the be-
havior of the so-called Voronoi measure [45,46] of the crystal.

The paper is structured as follows. In Sec. II we present
the general Hamiltonian of trapped ions in the effective
potential of a Paul trap, introduce our setup, and describe
its ground-state configurations. Section III is divided into
two parts: we first present and analyze the ion transfer
processes for crystalline structures of different dimensionality
and then discuss their effects on the order of the two
crystals, quantified by the Voronoi measure. At the end of
Sec. III we comment briefly on the possibility of realizing
our setup experimentally. Finally, in Sec. IV we summarize
our results and give a short outlook for further possible
investigations.
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II. SETUP, HAMILTONIAN, AND GROUND STATE

A. General Hamiltonian

We consider N ions, modeled as classical point particles
with mass m and charge Q, confined along the radial direction
(x,y) to a linear quadrupole Paul trap and along the axial
direction z to a double well potential (segmented trap) [47].

The general expression for the radially confining potential
�(x,y,t) [in the (x,y) plane] reads

�(x,y,t) = Udc

2
(cx2 + cy2) + Urf

2
cos (ωrf t)(cx

2 − cy2),

(1)
where Udc and Urf are the applied constant and radiofrequency
(rf) voltages, respectively; ωrf denotes the (radio)frequency
and c is a parameter specifying the geometry of the trap.

The ion dynamics in the radial rf trap is composed of a
fast motion, the so-called micromotion, and a comparatively
slow average motion ruled by an effective harmonic potential
[48] V (x,y) = m

2 (ω2
xx

2 + ω2
yy

2). Here, ωx = ωrf

2

√
a − q2/2

and ωy = ωrf

2

√
a + q2/2 are the effective trapping frequencies

with a = 4QUdc

mω2
rf

c and q = 2QUrf

mω2
rf

c being dimensionless param-

eters. In the following we will neglect the fast micromotion,
for reasons of simplicity, being less relevant for the averaged
system dynamics.

For the confinement in the z direction we assume the
following phenomenological double-well potential [49]:

Vd (z) = m

2
ω2

zz
2
0 + m

2
ω2

zz
2 − m

2

√
4C2 + 4ω4

zz
2z2

0, (2)

with wells centered at ≈ ±z0 and separated by a barrier of
height

B = m

2

(
ω2

zz
2
0 + C2

ω2
zz

2
0

)
− mC with C ∈ (

0 ,ω2
zz

2
0

]
, (3)

illustrated in Figs. 1(a) and 1(b). It can be shown that such
a potential leads to individual approximately harmonic wells
centered at ≈ ±z0, up to terms proportional to C2.

Under the aforementioned assumptions, the total Hamilto-
nian of our system, including the radial V (x,y) and the axial
Vd(z) trapping potentials as well as the Coulomb interactions

among the ions, reads

H ({ri ,pi}) =
n∑

i=1

pi
2

2m
+

n∑
i=1

[Vd (zi) + V (xi,yi)]

+
n∑

i=1,j<i

Q2

4πε0rij

, (4)

with ri=(xi,yi,zi), rij=
√

(xi− xj )2+ (yi− yj )2+ (zi− zj )2,
and p = (px,py,pz). We arrive then at the dimensionless
Hamiltonian H ∗ by introducing rescaled time tu = 1/ωz and
space xu = K ≡ [Q2/(4πε0mω2

z )]1/3 units and defining

t∗ = ωzt ; x∗ = x

K
; y∗ = y

K
; z∗ = z

K
; z∗

0 = z0

K
;

r∗
ij = rij

K
; C∗ = C

K2ω2
z

; α = ωx

ωz

; β = ωy

ωz

. (5)

Note that in the following we omit the star for simplicity
and we present all our results in these dimensionless units.

B. Specific setup parameters and ground-state configurations

Having the dimensionless Hamiltonian we proceed to
find its ground state (GS) configuration. Finding the global
minimum of a many-ion potential is generally a highly
nontrivial task. In our case, however, and for large enough
values of the potential barrier B [low values of C, Fig. 1(b)],
it turns out that we can find the GS configuration by using a
root-finding algorithm [50], given as an initial guess the GS
of the ions in two individual harmonic wells (approximating
the double well potential), which is known in the literature
[28,36,51–53].

Using this GS configuration as the initial state of the
system, we then perform a quench in the barrier height. To
analyze the nonequilibrium dynamics of the system following
the quench we integrate the resulting Newtonian equations of
motion (EOM) employing an implicit Gaussian fourth-order
Runge-Kutta algorithm [50].

In this paper, we study a system of N = 33 ions confined
in a combined trap with a harmonic potential in the radial
direction and a double-well potential in the axial direction,
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FIG. 1. (a) The double-well trapping potential in axial direction Vd (z) for different values of C (blue solid line C = 0.02, red dashed line
C = 3, black dashed-dotted line C = 10) and (b) the barrier height B as a function of C.
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FIG. 2. Initial ion ground-state configurations for different potential parameters: (a) linear chains for α = 100, β = 100, (b) zigzag chains
for α = 5.6, β = 8, (c) circles for α = 1, β = 8, (d) spheres for α = 1, β = 1. The background of the figures depicts the values of the
corresponding trapping potential. All configurations and their dynamics are calculated in three dimensions with their dimensionality being
restricted only by the frequency ratios α and β.

described by Eq. (4). Initially, the barrier height in the axial
direction has a large value corresponding to Ci = 0.02 [Eq. (2),
Fig. 1(a)], leading to well-separated potential wells, which are
asymmetrically filled with ions, i.e., the right potential well
contains NR = 20 ions, whereas the left potential well contains
NL = 13 < NR ions. Regarding the radial confinement, we
examine here four qualitatively different cases corresponding
to different aspect ratios α = ωx

ωz
and β = ωy

ωz
and allowing for

GS configurations of different dimensionality, ranging from
linear to zigzag, circular, and spherical crystals (Fig. 2). To
take into account also the effect of a finite (low) temperature,
we add a small random initial velocity to the ions leading to
small oscillations around their GS positions.

III. ION DYNAMICS

Having described our setup allowing for a variety of
equilibrium configurations (see Fig. 2), we now proceed to
investigate the resulting dynamics, induced here by a change
of the barrier height. In particular, we are interested in the
transfer dynamics of the ions following a sudden quench of
the barrier height which is characterized by the parameter
C, i.e., a quench of the axial potential Vd from C = Ci

to C = Cf . We investigate therefore in the following the
nonequilibrium dynamics of the Coulomb crystals in different
confining potentials (Fig. 2) as a function of Cf .

With all the necessary information about the properties
of our system at hand, let us now briefly introduce some
of the basic features of its nonequilibrium dynamics. After
a sudden quench of the barrier height, due to the energy
excess, the ions constituting the Coulomb crystals start to
move. Their dynamics is complex, involving among others
a rather regular center of mass (CM) motion of the crystals,
shock waves, multiple scattering processes, and transfer of
ions over the barrier caused by the asymmetric population of
the two potential wells. Especially for the cases of the circular

and spherical GS configurations also rotations and reordering
of the crystals occur.

We first proceed in analyzing the ion transfer process
between the two potential wells and then discuss its effects
on the structure of the two Coulomb crystals.

A. Ion transfer

Among the features characterizing the ion transfer follow-
ing a quench of the barrier height we are particularly interested
in two aspects, to be analyzed below: the time instant at which
an arbitrary ion passes above the barrier for the first time and
the number of times each ion in the Coulomb crystal travels
back and forth between the two wells.

Our results for the time instant of the first transfer of an
arbitrary ion leaving the large crystal as a function of the
final quench value Cf are presented in Fig. 3 for the different
trapping geometries depicted in Fig. 2. For the facility of
inspection we show only the first four traveling ions. In all the
cases one can distinguish between two qualitatively different
regions. The first one occupying the upper part of the plots
(large transfer times t > 10) shows a steplike behavior (with
varying Cf ) consisting of small smooth regions separated by
gaps, whereas the lower part (small transfer times t < 10)
exhibits a continuous behavior. We see that depending on
the value of Cf more than one ion can be transferred. Each
individual ion transfer follows the same qualitative behavior
with respect to its time scale. For small quench amplitudes and
subsequently large transfer times the time instant of the first
transfer of each ion has a steplike character, whereas beyond
a certain quench amplitude the transfer time continuously
decreases as a function of the final value Cf .

As a characteristic example of this behavior, without loss
of generality in the remaining part of this subsection, we
focus on the case of the zigzag configuration [Fig. 3(b)] and
consider only the transfer of the first ion (Fig. 4). The first
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FIG. 3. Time instant of the first transfer of the first four traveling ions (order: first, blue triangle; second, yellow squares; third, black dots;
fourth, red diamonds) as a function of Cf for (a) linear chains, (b) zigzag chains, (c) circles, (d) spheres. For lower Cf values than the ones
depicted in the figures there is no ion transfer as explicitly shown in (a).

necessary condition for the transfer of an ion above the barrier
is obviously that this ion lies close to the barrier. To examine
therefore the possibility of transfer it is instructive to analyze
the dynamics of the ion of the bigger crystal lying closest
to the barrier, which we will refer to in the following as the
innermost ion. Such an analysis can be facilitated by examining
a case in which ion transfer although energetically possible
does not occur, i.e., corresponding to a quench value inside a
gap of Fig. 4. A case satisfying these criteria and consequently
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FIG. 4. Time instant of the first transfer of the first traveling ion as
a function of Cf for the case of the zigzag chain [zoom of Fig. 3(b)].

allowing for an analysis of the long-time dynamics of the
innermost ion without interruptions by ion transfer processes
is that of a final quench value Cf = 3.3403.

The time evolution of the axial position of the innermost
ion of the large crystal for Cf = 3.3403, as well as its Fourier
spectrum are shown in Fig. 5. The motion appears to be
oscillatory and quite regular with one dominant frequency,
a fact supported also by the Fourier spectrum which shows
essentially the contribution of three frequencies, with one of
them possessing a dominant role (largest amplitude). To test
whether this frequency is generic for our system, we have
investigated the Fourier spectra of the innermost ion motion
for four different values of Cf , which do not lead to transfer.
The results are depicted in Fig. 6. Obviously in all the cases
there is one predominant frequency in the range of ω ≈ 0.84
to 0.88, which in turn yields a period T ranging approximately
from 7.1 to 7.4. A comparison of this period with the time
between the subsequent steps in Fig. 4 leads to the conclusion
that the latter is equal to one or two times the period T (Fig. 7)
within a range of 3.5%. This fact explains the existence of
the steps in the ion transfer process as a direct consequence
of a preferred oscillation phase (closest to the barrier) of the
innermost ion. What remains to be answered is why not every
time separation equal to the period T leads to transfer and
why some time separations between the steps are two times
the period T , i.e., some steps are absent.

To provide an answer to this question it is essential to take
into account also the dynamics of the other ions constituting
the Coulomb crystals.

After the quench all ions constituting the two Coulomb
crystals move towards the barrier, as it can be seen by
inspecting their CM motion [Fig. 8(a)]. Since the two crystals
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FIG. 5. The axial motion of the innermost ion of the zigzag configuration and its Fourier spectrum for Cf = 3.3403.

interact via repulsive Coulomb forces, the repulsion exerted
by the small crystal hinders the transfer of the innermost ion
of the large crystal. If the energy introduced by the quench
is high enough to overcome the Coulomb interaction and the
barrier, the innermost ion travels, otherwise the two crystals
start to oscillate without any ion transfer, as depicted in their
CM dynamics [Fig. 8(a)]. The Fourier analysis of this CM
motion shows that the frequencies of the left and right crystals
differ [Fig. 8 (b)] due to their different sizes. Therefore, there
is a variety of possibilities for the position of the two crystals
during the time evolution [see Fig. 8(a)]: (i) they can both
be close to the barrier [line A in Fig. 8(a)], (ii) both can be
far away from the barrier [line B in Fig. 8(a)], (iii) the large
crystal can be close to the barrier and the small far away [line
C in Fig. 8(a)], or (iv) the opposite of (iii) [line D in Fig. 8(a)].
Obviously, the case with the small crystal being far and the
large crystal being close to the barrier (case C) is optimal for
the transfer, both in terms of energy and spatial configuration.

It turns out that the two CM frequencies depend also on
the value of the barrier height, thus the time instant when
the optimal conditions are fulfilled changes slightly with
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FIG. 6. Comparison of the Fourier spectra of the innermost ion
motion for four different values of Cf . The color depicts their
amplitude.

Cf , leading to different times for ion transfer appearing as
different steps in Fig. 7. In the same line of arguments, it is
possible, depending on Cf , that the innermost ion is close
to the barrier when the CM of the larger crystal is not and
thus due to the lack of energy the ion transfer is prohibited,
leading to some steps being skipped and the subsequent steps
appearing after a time 2T (Fig. 7). In Fig. 8(b), we also
see that apart from the main frequencies ωp for the two
crystals, there also exist additional beating frequencies ωb.
This results in an amplitude modulation [see Fig. 8(a)], which
also influences the transfer dynamics. Interestingly enough, the
pairs of ωp,ωb frequencies for the small and the large crystal
are approximately degenerate, a fact that could be attributed
to their Coulomb coupling.

Another feature of the CM dynamics is the damping of
the oscillations of the big crystal with time [Fig. 8(a), lines
E], limiting the time available for ion transfer and giving
rise to the observed gaps of Figs. 3 and 4. The origins of
this damping are the repulsive interactions between the two
crystals, the transfer of energy in the radial directions (here
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FIG. 7. The time instant for the first transfer of the innermost ion
as a function of Cf for the zigzag configuration. The horizontal lines
mark the multiples of the period T of the innermost ion.
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especially in the less confining direction), and the mode
coupling between the CM modes and other modes, due to the
inherent nonlinearity of the system.

In contrast to the above discussion, if the energy introduced
by the quench is large enough, the details of the dynamics of
the CM motion seize to rule the transfer process of an ion,
resulting in a smooth behavior of the time instant for an ion to
cross the barrier as a function of Cf (Fig. 3).

So far we have focused on the first time instant at which
an ion is transferred from one well to the other. But as already
mentioned, an ion can travel back and forth thereby passing the
potential barrier several times. To extract information on the
number of transfers per ion, we have sorted the ions in their
initial GS configuration according to their positions in the
axial direction in increasing order and we have counted for
each one the number of transfers occurring in the time interval
considered for the dynamical evolution. Using this convention,
the first 13 ions are at t = 0 in the small and the next 20 in
the big crystal. In Fig. 9, the results for the different initial
configurations (Fig. 2) are shown.

We have already seen (Fig. 3) that for the linear and the
zigzag configurations, in the considered region of Cf , only
five ions travel. These are the ions that are located in the big
crystal closest to the barrier (ion numbers 14 to 19). As we
observe [Figs. 9(a) and 9(b)] these five ions travel several
times forth and back over the barrier during our simulation
time, whereas none of the other ions in the two crystals ever
crosses the barrier. The reason for this is the strict confinement
in the radial direction for these two cases, which is especially

true for the linear chains. For the zigzag case, as long as the ion
order in the axial direction is preserved the exclusive transfer
of only five ions also holds, but for larger values of Cf > 6.5
(where the strict axial order is destroyed), further ions do also
get the possibility of being transferred [compare Fig. 9(b)].

In contrast to the above, for the cases of the circle and sphere
configurations [Figs. 9(c) and 9(d)] all ions can be transferred.
The low aspect ratios (α = 1) of the radial confining potentials
of the circle and the spherical configurations enable rotations of
the whole crystals, as well as rearrangements with respect to
the order of the ions constituting them. Thus, in the course
of the dynamics, the order of the ions in the axial direction
changes and different ions are located at different times
closer to barrier, resulting for larger Cf in a nearly uniform
distribution of the number of transfers among the ions of the
two crystals. Having understood the basic features of the ion
transfer processes, let us now examine how these do affect the
order and the structure of the two involved Coulomb crystals.

B. Crystalline order

The ion transfer processes discussed above yield a complex
nonequilibrium dynamics of the two resulting Coulomb
crystals involving reordering processes and the emergence of
structural disorder. To characterize and analyze the order of
the resulting crystals we make use of a measure based on
the Voronoi diagrams introduced in Refs. [45,46]. A Voronoi
diagram partitions a given region into subsets, based on the
distance of each point in the region from particular points
that are called seeds (here these correspond to the positions
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FIG. 9. Number of transfers per ion as a function of Cf for (a) linear chains, (b) zigzag chains, (c) circles, (d) spheres. The (pink) dashed
line separates the ions of the small from the ions of the large crystal.

of the ions). Each subset assigned to a specific seed (Voronoi
cell) constitutes a region consisting of all points closer to that
seed than to any other. The Voronoi cells in the d-dimensional
Euclidean space possess, in general, an arbitrary polyedric
shape. Of particular importance is the minimum distance
of the seed from any side of this polyedron. Using this as
a radius we can construct a d-dimensional sphere assigned
to each seed, termed here as Voronoi sphere. The sizes of
these Voronoi spheres can be used to characterize effects
such as clustering through the so-called Voronoi measure.
This measure is constructed by summing the d-dimensional
volumes of all the Voronoi spheres. Interestingly, the time
evolution of this measure has been proven to capture well the
change in the crystalline order of Coulomb crystals during
dynamics [45], a fact that justifies its use also in the current
work.

In the specific setup we study here, the two Coulomb
crystals have different sizes causing them to behave differently.
For each crystal located in a certain well we determine its
Voronoi measure value, taking also into account that the
number of ions per well (crystal) changes in time due to
the ion transfer processes. Considering also the factor of
dimensionality we arrive at the following definition of our
Voronoi measure �,

�(t) = γ
1

N

∑
i

(
rij (t)

2

)d

, (6)

where N is the number of ions in the well and rij is the distance
of each particle i from its nearest neighbor j . Therefore, for
our setup this measure corresponds to the sum of the volumes
of spheres centered in each ion i, with a diameter equal to rij

(Voronoi spheres), i.e., the sum of volumes in which only one

ion can be found (see Fig. 10). The variables d and γ depend on
the dimensionality of the configurations. For the linear chains
(1D) we have that d = 1 and γ = 1, for the zigzag chains
and the circular structures (2D) d = 2 and γ = π and for the
spherical configurations d = 3 and γ = 4π/3.

In the course of the dynamics the system of ions alternates
between clustered and dispersed ion configurations resulting in
an alternating Voronoi measure. The clustered structures that
in most cases give visually the impression of order lead to low
values in the time evolution of the Voronoi measure, whereas
a scattered distribution of the ions leads to larger values of
�(t) [45].

An example of the time evolution of the Voronoi measure
�(t) after the quench of the barrier height is shown in Fig. 11(a)
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FIG. 10. Snapshots of the ion dynamic (blue dots, initial position
of the ion is in the small crystal; red dots, initial position is in the
big crystal) and the respective Voronoi spheres (gray circles) used
to calculate the Voronoi measure. Here the trapping parameters are
chosen so that the two crystals self-organize in circular shells [see
Fig. 2 (c)]. The snapshots correspond to a value � = 2.85 for the left
and � = 3.35 for the right well.
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FIG. 11. The time evolution of (a) the Voronoi measure (�) of
the two ion crystals [large ion crystal, black; small ion crystal, light
blue (gray)] and (b) the axial position of the innermost ion for the
zigzag configuration and Cf = 3.34.

for the zigzag Coulomb crystals [Fig. 2(b)] and for the final
quench value Cf = 3.34 for which a single ion is transferred
at t ≈ 59 [Figs. 3(b) and 4]. For comparison we also present
the time evolution of the axial coordinate of the traveling
ion [Fig. 11(b)]. We observe that initially (i.e., before the
ion transfer) the Voronoi measure exhibits regular oscillations
with a much larger amplitude for the large crystal compared
to the smaller one. This can be attributed to the larger shell
diameter of the former, which allows for larger deformations
(i.e., compressions and expansions).

At the time instant when the ion crosses the barrier
[Fig. 11(b)] the Voronoi values of both the large and the small
crystal exhibit a prominent peak [Fig. 11(a)] resulting from
the change in the number of ions per crystal and the fact
that the distance of the traveling ion from its nearest neighbors
maximizes when it crosses the barrier. After the ion transfer the
Voronoi measure of the small crystal performs highly irregular
oscillations with an increased amplitude, pointing to the
irregular and disordered dynamics of the ions constituting the
crystal (crystal melting). In contrast, the oscillation amplitude
of the Voronoi measure for the large crystal decreases slightly
after the ion transfer due to the increment of available space
for the ion dynamics and the substantial loss of energy caused
by the loss of the highly energetic traveling ion. Similarly to
the case of the smaller crystal the oscillations after the transfer
become more irregular involving multiple frequencies.

These results suggest that the Voronoi measure �(t) and
especially its oscillation amplitude encapsulates substantial
information on the out-of-equilibrium many-body ion dynam-
ics following the quench of the barrier height. Nevertheless, to
proceed to an analysis of the crystalline order as a function
of the final quench parameter Cf we would like to have
a single value characterizing each time series. A measure
related closely to the average oscillation amplitude of �(t)
(i.e., capturing well the average dynamics of the crystals) is its
standard deviation 
� in time. The larger the value of 
�,
the stronger the fluctuations in the Voronoi measure �(t); i.e.,
the ion structures alternate strongly between clustered and
dispersed.

The resulting values for the standard deviations 
� as
a function of Cf are shown in Fig. 12 for the different
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FIG. 12. Standard deviation of � as a function of Cf for (a) linear chain, (b) zigzag, (c) circle, and (d) sphere configurations [black line for
the large and light blue (gray) line for the small crystal].
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FIG. 13. Standard deviation and number of transfers per ion for
the linear chain configuration in the range Cf ∈ [2.6,2.85] [black
dashed line with diamonds for the large crystal and light blue (gray)
line with dots for the small crystal].

trapping potentials examined (Fig. 2). The standard deviation

� for the one [Fig. 12(a)] and two-dimensional [Figs. 12(b)
and 12(c)] ion configurations are highly irregular but for the
three-dimensional configuration [Fig. 12(d)] it is rather well
structured, giving immediate access to relevant information.

Focusing on the noisy character encountered, for example,
in the case of the linear chain, it turns out that many ion
transfer processes occur. This can be inferred by an inspection
of Fig. 13, where the behavior of 
� is compared to that
of the number of transfers per ion as a function of Cf in
the interval Cf ∈ [2.6,2.85]. Clearly every small change in
the transfer dynamics results in a substantial change in the
standard deviation of the Voronoi measure 
�, yielding the
highly irregular pattern of the latter.

For the zigzag and the circle configurations [Figs. 12(b)
and 12(c)], although there are intervals of 
� exhibiting a
relatively smooth behavior as a function of Cf (especially for
lower values of Cf ) the overall pattern is quite noisy as well
resembling the case of the linear chain [Figs. 12(a) and 13].
In direct contrast, in the case of the spherical configuration
[Fig. 12(d)] we observe a rather regular behavior of 
� as a
function Cf , allowing for extracting more directly information
regarding the order of the Coulomb crystals involved.

Note here that among others the Voronoi measure and its
standard deviation depend also on the dimensionality of the
configurations [Eq. (6)] and the space available for motion.
Therefore, as it is obvious [Fig. 12(d)], the values of 
�

for the three-dimensional configuration (spheres), where the
available volume for the corresponding motion is much more
enhanced, are orders of magnitude larger than that for the
cases of lower dimensionality [Figs. 12(a)–12(c)]. This results
in the former being less sensitive to small deviations yielding
the overall regular pattern of 
� for the case of spheres.

In particular, we observe that 
� exhibits a quite smooth
step-like behavior interrupted by pronounced peaks as Cf

increases. To understand this behavior we compare it to
the Cf dependence of the two quantities characterizing the
ion transfer: the number of times each ion in the Coulomb
crystal travels back and forth between the two potential wells
[Fig. 14(a)] and the time instant at which an arbitrary ion passes
above the barrier for the first time [Fig. 14(b)]. We observe that
at most Cf values for which an additional ion transfer occurs
the standard deviation of the Voronoi measure 
� possesses a
peak, followed thereafter by the steplike behavior of the other
quantities [Figs. 14(a) and 14(b)]. This can be interpreted as
an increment of the structural disorder in the two crystals
induced by the increasing amount of ion transfer processes
and maximized each time a new ion gets transferred.

C. Possible experimental realization

Let us finally address the experimental realization of
our setup, employing state-of-the-art ion technology. Typ-
ical experimental parameters for segmented Paul traps are
ωrf /2π = 4.2–50 MHz and Urf = 8–350 V with applied DC
voltages in the axial direction up to 10 V [42,54]. Depending
on the ion species and trap design these result in a radial
confinement frequency ω/2π = 1–5 MHz and in an axial
confinement frequency ωz/2π = 0–5 MHz. For the ion dy-
namics only the frequency ratio α = ω

ωz
matters and given the

aforementioned frequency ranges the scenario studied in this
work of α = 8.25 could be in principle realized (choosing, e.g.,
ω/2π = 4.5 MHz and ωz/2π = 0.545 MHz). The parameters
z0 and C, determining the well positions and the barrier height,
respectively, depend on the axial DC voltage and the trap
geometry, thus realistic values for the former are of the order of
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30 μm and for the latter up to 300 μm2 · MHz2. Regarding the
imaging of the ion configurations during their non-equilibrium
dynamics, this could be achieved by the use of fluorescence
light detected by CCD cameras [33,42].

IV. CONCLUSIONS

We have explored the nonequilibrium dynamics of two
Coulomb crystals of different sizes occupying the individual
wells of a double-well potential, following a quench of the
potential barrier height. The resulting complex dynamics is
governed by ion transfer processes from one well to the other,
depending on the quench amplitude.

The time instant at which an arbitrary ion passes the barrier
for the first time shows an interesting steplike behavior as a
function of the quench amplitude. By analyzing the crystal
dynamics we were able to explain the main features of this
dependence. It turns out that the most crucial quantities
determining whether ion transfer finally occurs are the center
of mass motions of both crystals and the oscillation frequencies
of the innermost ion.

Following the ion transfer the dynamics of the two crystals
becomes rather irregular and characterized by structural
disorder as well as reordering of the particles. A good quantity

to characterize the crystalline order is the so-called Voronoi
measure. Its standard deviation in time reflects well the degree
of the structural disorder resulting from the quench and serves
as a good indicator for the ion transfer processes.

A future work could investigate the case of two Coulomb
crystals (with or without kinks), separated by a potential
barrier, and aim at achieving a transport of medium-sized
crystals (i.e., 10–100 ions). Another promising direction for
future research is the nonequilibrium dynamics of Coulomb
crystals in multiple-well potentials resembling the optical
lattices used in studies of ultracold atoms. Finally, although for
our setup in the parameter regime studied here quantum effects
are negligible, an investigation of them for parameters allowing
the system to exhibit its quantum character would also be of
interest. It is expected that in such a case quantum tunneling
below barrier would add to the classical ion transfer shown
here, giving rise to an even richer nonequilibrium dynamics.
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