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Whitham modulation theory for the two-dimensional Benjamin-Ono equation
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Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system
of five quasilinear first-order partial differential equations is derived. The system describes modulations of
the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free
hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are
discussed, the formulation of initial value problems is considered, and the system is used to study the transverse
stability of traveling wave solutions of the 2DBO equation.
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I. INTRODUCTION

Small-dispersion limits and dispersive shock waves
(DSWs) have been intensely studied during the last fifty
years. There are numerous physical applications of DSWs in
fluid dynamics, nonlinear optics, Bose-Einstein condensates,
magnetic films, and thermal media, among others, see [1–10]
and references therein. Most of the studies in the literature
have been devoted to (1+1)-dimensional systems, however,
and much less is known about multidimensional systems.

Following some earlier works [11–13], considerable atten-
tion has been devoted recently to the study of small dispersion
problems for (2+1)-dimensional systems [14–16]. One of the
goals of this work is to develop tools that can be used to
describe the behavior of DSWs in multidimensional settings.

Steps forward in this direction were recently presented in
[14,15]. In particular, the formation of DSWs along curved
fronts was studied in [14], and in [15] a two-dimensional (2D)
generalization of Whitham modulation theory was formulated
in terms of Riemann-type variables and used to study important
properties associated with the small dispersion limit of the
Kadomtsev-Petviashvili (KP) equation [17].

In this work we use similar methods to study the small dis-
persion limit of the two-dimensional Benjamin-Ono (2DBO)
equation [18]

(ut + uux + εH[uxx])x + λuyy = 0, (1)

where subscripts x,y,t denote partial differentiation, 0<ε�1
is a small parameter quantifying the relative strength of
dispersive effects, and H is the Hilbert transform operator,
defined by

H[f (x)] = 1

π
−
∫ ∞

−∞

f (y)

y − x
dy,

where −∫ denotes the Cauchy principal value integral (cf.
[19]). Equation (1) is a 2D extension of the classical (i.e.,
one-dimensional) Benjamin-Ono (1DBO) equation [20,21]

ut + uux + εH[uxx] = 0, (2)

and describes weakly nonlinear long internal waves in fluids of
great depth [18]. By analogy with the KP equation, the cases
λ = −1 and λ = 1 are referred to as the 2DBOI equation and
2DBOII equation, respectively.

Similar to what happens for the two variants of the KP
equation (e.g., see [12,22]), the 2DBOII equation (like the
KPI equation and the second case of the two-dimensional
intermediate-long wave equation, or 2DLWII) arises when
surface tension is negligible [18], whereas the 2DBOI equation
(and the 2DILWI) arises when surface tension effects are
dominant [23,24].

The small dispersion limit of the 1DBO equation [i.e.,
Eq. (2)] has been studied extensively [25–30]. However, no
general results are available for the 2DBO equation [i.e.,
Eq. (1)] to the best of our knowledge. A one-dimensional
(1D) reduction of the 2DBO equation and its associated DSW
behavior was studied recently in [14], in which a similarity
variable η = x + P (y,t) was used to reduce Eq. (1) to the
cylindrical Benjamin-Ono (cBO) equation,

ut + uuη + λc

1 + 2λct
u + εH[uηη] = 0, (3)

as well as to the write the resulting equations in terms of
Riemann variables and study the DSW behavior with step-like
initial data along parabolic fronts. The study of more general
initial conditions that do not admit a 1D reduction is still an
open problem.

In this work we derive the 2D Whitham system for the
2DBO equation using the method of multiple scales (e.g.,
as in [31]), and we simplify the resulting system of partial
differential equations (PDEs) by suitably rewriting it in terms
of Riemann-type variables. We then discuss various properties
of the resulting system of equations, including exact reductions
and the formulation of a 2D generalization of the Riemann
problem for the 1D Whitham system. Finally, we use the
system to investigate the stability of the traveling wave
solutions of the 2DBO equation. Note that unlike the KP
equation, Eq. (1) is not known to be an integrable system.
The methods presented here do not rely on integrability.

II. DERIVATION OF THE 2DBO-WHITHAM SYSTEM

The derivation of the modulation equations for the 2DBO
equation is similar to that for the KP equation, and we refer
the reader to [15] for further details.
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A. Multiple-scale expansion

We begin by rewriting the 2DBO equation as the system

ut + uux + εH[uxx] + λvy = 0, (4a)

vx = uy. (4b)

We look for solutions of Eq. (4a) as u(θ,x,y,t), with the
rapidly varying variable θ (x,y,t) defined by

θx = k(x,y,t)/ε, θy = l(x,y,t)/ε, θt = −ω(x,y,t)/ε,
(5)

where k, l, and ω are the local wave numbers and frequency,
respectively, which are assumed to be slowly varying functions
of x, y, and t . Enforcing the equality of the mixed second
derivatives of θ then yields three compatibility conditions:

kt + ωx = 0, lt + ωy = 0, (6a)

ky − lx = 0. (6b)

Equations (6a) are referred to as the equations of conservation
of waves and provide the first and second modulation equa-
tions. Note that Eq. (6a) automatically implies that Eq. (6b) is
satisfied for all t > 0 if it is satisfied at t = 0.

In terms of the fast variable θ and the slow variables x,y,t ,
Eqs. (4) become

(−ωuθ + kuuθ + k2H[uθθ ] + λlvθ )/ε + ut + uux

+H[kxuθ + 2kuθx] + λvy + εH[uxx] = 0, (7a)

(kvθ − luθ )/ε + (vx − uy) = 0. (7b)

We then look for a perturbative solution for u = (u,v)T as

u = u(0)(θ,x,y,t) + εu(1)(θ,x,y,t) + O(ε2). (8)

Substituting Eq. (8) into Eqs. (7) and collecting terms in the
same power of ε, one obtains a sequence of equations. The
leading-order terms, at O(1/ε), yield

− ωu
(0)
θ + ku(0)u

(0)
θ + k2H

[
u

(0)
θθ

] + λlv
(0)
θ = 0, (9a)

kv
(0)
θ − lu

(0)
θ = 0. (9b)

Equations (9) can be written in vector form as M0u(0) = 0,
where M0 = M ∂θ , with

M =
( L λqk

λqk −λk

)
, (10)

L = −ω + ku(0) + k2H[∂θ ], and where we defined

q(x,y,t) = l/k, (11)

which will play an important role in the following. Integrating
Eq. (9b) with respect to θ , we obtain

v(0) = qu(0) + p, (12)

where p(x,y,t) is to be determined at higher order in the
expansion. Next we look at O(1) terms, which yield M1u(1) =
G[u(0)], where G[u] = (g1,g2)T and M1 = ∂θM, and with

g1[u]0 = −ut − uux − H[kxuθ + 2kuθx] − λvy, (13a)

g2[u] = λ(vx − uy). (13b)

Note that M1 is a total derivative in θ , and the solution of Eq. (9)
is periodic, with period P computed explicitly below. To
avoid secular terms, one needs the following two-component
periodicity condition:

∫ P

0
G[u(0)]dθ = 0, (14)

which provides two further modulation equations. Finally,
the Fredholm solvability condition for the inhomogeneous
problem at O(1) yields the last modulation equation:

∫ P

0
u(0) · G[u(0)]dθ = 0. (15)

Equations (6a), (14), and (15) comprise the system of five
modulation equations.

B. Leading-order solution and modulation equations

We now write PDEs for the evolution of the characteristic
parameters of the traveling wave solutions of the 2DBO
equation. We return to the equations at leading order and use
Eq. (9b) to rewrite Eq. (9a) as

kH
[
u

(0)
θθ

] + u(0)u
(0)
θ − V u

(0)
θ = 0, (16)

where

V + λq2 = ω/k = 	. (17)

The solution of Eq. (16) is [20]

u(0)(θ,x,y,t) = 4k2

√
A2 + 4k2 − A cos(θ − θ0)

+ β, (18)

where θ0 is a constant and the phase velocity V is given by

V = (1/2)
√

A2 + 4k2 + β. (19)

Unlike the periodic solutions of the KP equation, the solution
(16) involves trigonometric (as opposed to elliptic) functions;
its period as a function of θ is simply P = 2π . When k,V,β

and q are constants, Eq. (18) is a 2D extension of the
periodic solution of the 1DBO equation [20]. When these
quantities are slowly varying functions of x, y, and t , Eq. (18)
describes a slowly modulated periodic wave, whose evolution
is determined by the five modulation equations above.

Substituting Eqs. (13) into Eqs. (14) and (15) we have

∂G1

∂t
+ 1

2

∂G2

∂x
+ λ

∂

∂y
(q G1 + 2πp) = 0, (20a)

∂G2

∂t
+ 2

3

∂G3

∂x
+ 2G4

+ λ

[
2G2

Dq

Dy
+ 2q

∂G2

∂y
− q2 ∂G2

∂x
+ 2G1

Dp

Dy

]
= 0,

(20b)

∂p

∂x
+ 1

2π
G1

∂q

∂x
− 1

2π

DG1

Dy
= 0, (20c)
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where

Gj =
∫ 2π

0
(u(0))j dθ, j = 1,2,3,

G4 =
∫ 2π

0
u(0)H

[
kxu

(0)
θ + 2ku

(0)
θx

]
dθ,

and where we introduced the “convective” derivative

D

Dy
= ∂

∂y
− q

∂

∂x
. (21)

Specifically, Eq. (20b) follows from the Fredholm solvability
condition (15), Eq. (20a) from the first component of the
periodicity condition (14), and Eq. (20c) from the second
component of Eq. (14), which is simply

∫ 2π

0

(
v(0)

x − u(0)
y

)
dθ = 0. (22)

Explicitly, using Eq. (18), we have

G1 = 2π (β + 2k), (23a)

G2 = 2π (β2 + 4V k), (23b)

G3 = 2π (β3 − 6β2k + 12kβV + 3kA2 + 8k3), (23c)

G4 = −π (kA2)x. (23d)

Thus, Eqs. (6a), (20a)–(20c) become

kt + (	k)x = 0, (24a)

(kq)t + (	k)y = 0, (24b)

(β + 2k)t + 1

2
(β2 + 4V k)x + λ[q(β + 2k) + p]y = 0,

(24c)

(β2 + 4V k)t + 2

3
(β3 + 6kV 2 + 2k3)x + λ

{
2
Dp

Dy
(β + 2k)

+
[

2
Dq

Dy
+ 2q∂y − q2∂x

]
(β2 + 4V k)

}
= 0, (24d)

[q(β + 2k) + p]x − (β + 2k)y = 0. (24e)

Equations (24) comprise four evolution PDEs and one
nonevolutionary constraint [Eq. (24e)] for the five dependent
variables V, β, k, p, and q. When p is a constant, q vanishes
identically, and the other dependent variables are independent
of y, Eqs. (24) reduce to the modulation equations for the
1DBO equation [26].

C. Transformation to Riemann-type variables

Next we introduce Riemann-type variables to simplify the
system (24). Namely, we define the variables r1, r2, and r3 as
in the Riemann invariants for the 1DBO equation by letting
[14,26,27]

V = r2 + r3, k = r3 − r2, β = 2r1. (25)

(This transformation is similar to the one for the Korteweg–de
Vries equation [32], and r1,r2,r3 are obtained from V , k, and
β by inverting Eqs. (25).) In terms of r1, r2, r3, and q, the

leading-order solution of the 2DBO equation is

u(0)(x,y,t)

= 2r1 + 2(r3 − r2)2

(r3 + r2 − 2r1) − 2
√

(r2 − r1)(r3 − r1) cos θ
,

(26)

with θ determined (up to an integration constant) by Eqs. (5).
When r2 → r1, Eq. (26) reduces to a constant. When r2 → r3,
Eq. (26) yields the line-soliton solutions of Eq. (1):

u(x,y,t) = 2r1 + 8(r3 − r1)

4(r3 − r1)2[x + qy − (2r3 + λq2)t]2 + 1
.

(27)

(Note, however, that the solution in Eq. (27) decays alge-
braically as x → ±∞, unlike the line solitons of the KP equa-
tion.) Rewriting system (24) in terms of r = (r1,r2,r3,q,p)T ,
one obtains the hydrodynamic system Rrt + Srx + T ry = 0,
where R, S, and T are 5 × 5 real-valued matrices. In particular,
R has block structure R = diag(R4,0), where R4 denotes a
4 × 4 matrix. Even though R is not invertible, we can multiply
the vector equations from the left by the “pseudoinverse”
R̃−1 = diag(R−1

4 ,0), obtaining

Irt + Arx + Bry = 0, (28)

where I = diag(1,1,1,1,0), A = R−1S, and B = R−1T .
While the Whitham system for the 1DBO equation is diag-
onalized by the above transformation to Riemann variables,
one cannot find a change of dependent variables to diagonalize
the corresponding system (28) for the 2DBO equation, since
AB �= BA.

System (28) becomes singular as r2 → r1 and as r2 → r3.
That is, some entries of both A and B become infinite in
these limits. (These singularities do not arise in the Whitham
systems for the 1DBO and cBO equations, and occur even
though the determinants and eigenvalues of A and B remain
finite.) However, one can obtain an equivalent but simplified
system that is free of singularities, as we show next.

Using the definition (25) and q = l/k, the third compati-
bility condition, Eq. (6b), can be written as

Dr3

Dy
− Dr2

Dy
− (r3 − r2)

∂q

∂x
= 0. (29)

Equation (29) is identically satisfied when q is zero and r1,r2,r3

are independent of y. Subtracting a suitable multiple of the
constraint (29) from each equation, and a suitable multiple
of Eq. (24e) from the other equations, the five modulation
equations take on the particularly simple form, which is also
completely free of singularities:

∂rj

∂t
+ (Vj + λq2)

∂rj

∂x
+ 2λq

Drj

Dy

+ λνj

Dq

Dy
+ λ

2

Dp

Dy
= 0, j = 1,2,3, (30a)

∂q

∂t
+ (V2 + λq2)

∂q

∂x
+ 2λq

Dq

Dy
+ 2

Dr3

Dy
= 0, (30b)

∂p

∂x
− 2

Dr1

Dy
+ 2r1

∂q

∂x
= 0, (30c)
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where

Vj = 2rj , j = 1,2,3, (31a)

ν1 = r3 − r2 + r1, ν2 = ν3 = r3 + r2 − r1. (31b)

That is, all coefficients in Eqs. (30) have a finite limit as
r2 → r1 and as r2 → r3. Note that V1, . . . ,V3 are exactly
the characteristic speeds of the 1DBO-Whitham system. Also,
ν1, . . . ,ν3 are exactly the same as the coefficients appearing in
the inhomogeneous terms for the cBO-Whitham system [14].
Hereafter we refer to Eqs. (30) as the 2DBO-Whitham system.

D. General nature of the last two modulation equations

One of the novelties of system (30) compared to the 1D case
is the presence of Eqs. (30b) and (30c), which determine the
new dependent variables q and p. An alternative but equivalent
version of these two equations can be obtained by noting
that they can be derived separately from the equations for
the Riemann-type variables r1,r2,r3 in a straightforward way.

Indeed, using the first part of Eqs. (6) along with Eqs. (11)
and (17), the second part of Eq. (6) yields

∂q

∂t
+ 	

∂q

∂x
+ D	

Dy
= 0, (32)

where 	 = ω/k = V + λq2 as before. Importantly, Eq. (32)
arises whenever one seeks multiple-scale solutions of a mul-
tidimensional system, leading to the compatibility conditions
(6). Thus, the only difference between the 2DBO Eq. (1) and
other evolution equations is just how 	 is given in terms of the
other dependent variables. For example, for the KP equation
one also has 	 = V + λq2, but V = 2(r1 + r2 + r3) in that
case, whereas for the 2DBO equation we have V = r2 + r3.

Similarly, the constraint for p, namely, Eq. (20c), also takes
essentially the same form as for the KP equation. The only
difference is how G1 depends on the Riemann-type variables.
For the 2DBO equation we have G1 = 4π (r1 + r3 − r2),
whereas the expression for the KP equation is slightly more
complicated.

Substituting 	 and G1 in Eqs. (32) and (20c) yields,
respectively,

∂q

∂t
+ (r2 + r3 + λq2)

∂q

∂x
+ D

Dy
(r2 + r3 + λq2) = 0, (33a)

∂p

∂x
+ 2(r1 + r3 − r2)

∂q

∂x
− 2

D

Dy
(r1 + r3 − r2) = 0. (33b)

These equations can be transformed to Eqs. (30b) and (30c)
using the compatibility condition (6b). Also, the equations for
r1,r2,r3 can be obtained by “diagonalizing” Eqs. (24a), (24c),
and (24d), which are the analogs of the modulation equations
for the 1DBO. For brevity we omit the details, and we will
report on these issues in a future publication.

III. REDUCTIONS AND RIEMANN PROBLEMS

We now discuss reductions of the 2DBO-Whitham system
as well as the choice of initial conditions (ICs) and boundary
conditions (BCs) to obtain well-posed initial value problems
(IVPs) for it, including generalizations of the Riemann
problem for the 1DBO-Whitham system [27].

A. Exact reductions of the 2DBO-Whitham system

One-dimensional reductions. Suppose that r1,r2,r3 depend
on x and y only through the similarity variable η = x + P (y,t)
and q = Py(y,t), with p(x,y,t) a constant. Then it is straight-
forward to see that Drj/Dy = 0. Since q is independent of x,
and p is a constant, Eqs. (30) become

∂rj

∂t
+ Pt

∂rj

∂η
+ (

Vj + λP 2
y

) ∂rj

∂η
+ λνjPyy = 0,

j = 1,2,3, (34a)

∂q

∂t
+ 2λq

∂q

∂y
= 0. (34b)

(The fifth modulation equation is identically satisfied in this
case.) In terms of Py , Eq. (34b) is Pty + 2λPyPyy = 0, which
after integration yields Pt + λP 2

y = 0. In turn, the system of
Eq. (34a) becomes

∂rj

∂t
+ Vj

∂rj

∂η
+ λνjPyy = 0, j = 1,2,3. (35)

For this setting to be self-consistent, however, the last term
in the left-hand side of Eq. (35) must be independent of y.
Therefore, only three possibilities arise:

(i) Py = 0, in which case one simply has q(x,y,t) = 0
(implying that the resulting behavior is one dimensional) and
P (y,t) = 0, as well as η = x. In this case, the system (35)
reduces to the Whitham system for the 1DBO equation [26].

(ii) Py = a is a nonzero constant, in which case one has
q(x,y,t) = a and P (y,t) = ay, implying η = x + ay. Then
system (35) reduces to the 1D Whitham system with x replaced
by η.

(iii) Pyy = f (t) is a function of t , in which case q = Py =
f (t)y, and Eq. (34b) now yields ft + 2λf 2 = 0. This ordinary
differential equation is easily solved. In particular, for a
constant IC f (0) = c = const, we have f (t) = c/(1 + 2cλt),
and hence q(y,t) = cy/(1 + 2cλt), which reduces system (35)
to the Whitham system for the cBO equation [14].

Genus-zero reductions. Two further exact reductions of sys-
tem (30) are obtained when r1 = r2 and r2 = r3, respectively.
In the first case, the leading-order periodic solution degenerates
to a constant with respect to the fast variable, while the second
one yields the solitonic limit.

When r1 = r2, the PDEs for r1 and r2 coincide. As a result,
system (30) reduces to the following 4 × 4 system:

∂ r1

∂t
+ (2r1 + λq2)

∂ r1

∂x
+ 2λq

Dr1

Dy
+ λr3

Dq

Dy
+ λ

2

Dp

Dy
= 0,

(36a)

∂ r3

∂t
+ (2r3 + λq2)

∂ r3

∂x
+ 2λq

Dr3

Dy
+ λr3

Dq

Dy
+ λ

2

Dp

Dy
= 0,

(36b)

∂q

∂t
+ (2r1 + λq2)

∂q

∂x
+ 2λq

Dq

Dy
+ 2

Dr3

Dy
= 0, (36c)

∂p

∂x
− 2

Dr1

Dy
+ 2r1

∂q

∂x
= 0. (36d)
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Similarly, when r2 = r3, the PDEs for r2 and r3 coincide,
and system (30) reduces to

∂ r1

∂t
+ (2r1 + λq2)

∂ r1

∂x
+ 2λq

Dr1

Dy
+ λr1

Dq

Dy

+λ

2

Dp

Dy
= 0, (37a)

∂ r3

∂t
+ (2r3 + λq2)

∂ r3

∂x
+ 2λq

Dr3

Dy

+λ(2r3 − r1)
Dq

Dy
+ λ

2

Dp

Dy
= 0, (37b)

∂q

∂t
+ (2r3 + λq2)

∂q

∂x
+ 2λq

Dq

Dy
+ 2

Dr3

Dy
= 0, (37c)

∂p

∂x
− 2

Dr1

Dy
+ 2r1

∂q

∂x
= 0. (37d)

B. Initial-value problems for the 2DBO-Whitham system

ICs. The problem of mapping an IC for u to ICs for the
variables r1,r2,r3 is the same as in the 1DBO case. Once this
step is done, one can determine the IC for q using the constraint
(6b) at t = 0, obtaining ky(x,y,0) = [k(x,y,0)q(x,y,0)]x .
Note that k(x,y,0) is easily found using Eqs. (25). Integrating
this equation, we then have

q(x,y,0) = 1

k(x,y,0)

(
C0 +

∫ x

x0

ky(ξ,y,0)dξ

)
, (38)

where C0 = q(x0,y,0)k(x0,y,0) and k(x,y,0) is assumed to be
nonzero. Also, integrating Eq. (30c) determines p for all t � 0
up to an arbitrary function of y and t , that is,

p(x,y,t) = p−(y,t) + ∂−1
x

[
2
Dr1

Dy
− 2r1

∂q

∂x

]
, (39)

where

∂−1
x [f ] =

∫ x

−∞
f (ξ,y,t) dξ. (40)

Hence, the problem is reduced to the choice of suitable BCs.
BCs. In the Riemann problem for the 1DBO [27], the

asymptotic values of r1,r2,r3 as x → ±∞ are constants.
Already in the Riemann problem for the cBO equation,
however, this is not true anymore, and the BCs for rj can
be obtained from solving a reduced system of ODEs for t [14].
In the full 2DBO-Whitham system, the BCs of the Riemann
invariants may in general also depend on the independent
variable y.

To make the above discussion more precise, we first go
back to the 2DBO equation. Integrating Eq. (4b) yields

v(x,y,t) = v−(y,t) + ∂−1
x [uy], (41)

where we use the superscript “−” to indicate limiting values
as x → −∞, and ∂−1

x is defined by Eq. (40) as before.
Substituting Eq. (41) into Eq. (4a) yields

ut + uux + εH[uxx] + λ ∂−1
x [uyy] + λ ∂yv

− = 0. (42)

Taking the limit of Eq. (42) as x → −∞ we see that, if one
is interested in solutions u which tend to constant values as
x → −∞ (i.e., u− independent of t), one needs ∂yv

−(y,t) = 0.

Ignoring an unnecessary function of time, we can then take
v−(y,t) = 0. And Eq. (12) then leads to

p− + u−q− = 0, (43)

which determines p−. Similar arguments carry over to the
2DBO-Whitham system. That is, taking the limit x → −∞,
system (30) becomes

∂ r−
j

∂t
+ 2λq− ∂ r−

j

∂y
+ λν−

j

∂q−

∂y
+ λ

2

∂p−

∂y
= 0,

j = 1,2,3, (44a)

∂q−

∂t
+ 2λq− ∂q−

∂y
+ 2

∂ r−
3

∂y
= 0, (44b)

which determine the time evolution of r−
1 ,r−

2 ,r−
3 , and q−, plus

∂r−
1 /∂y = 0, (44c)

which would seem to impose a limitation on the admissible
BCs. We next show, however, that when r−

1 = r−
2 or r−

2 = r−
3 ,

this condition on r1 is satisfied automatically, making Eqs. (44)
a self-consistent system.

When r−
1 = r−

2 one has u− = 2r−
3 . Hence, Eqs. (44a) with

j = 1 and Eq. (44c) yield ∂r−
1 /∂y = 0 and ∂r−

1 /∂t = 0.
Moreover, the PDEs obtained from Eq. (44a) with j = 1,2
coincide (as they should, since r−

1 = r−
2 ). Finally, Eq. (44a)

with j = 3 is identically satisfied since u− = r−
3 is a constant,

and Eq. (44b) yields a (1+1)-dimensional Hopf equation
which determines the time evolution of q−:

∂q−

∂t
+ 2λq− ∂q−

∂y
= 0. (45)

Similarly, when r−
2 = r−

3 , one has u− = 2r−
1 . Hence, Eq. (44a)

with j = 1 and Eq. (44c) yield ∂r−
1 /∂y = 0 and ∂r−

1 /∂t = 0.
Moreover, the PDEs obtained from Eq. (44a) with j = 2,3
coincide (as they should, since r−

2 = r−
3 ). Finally, Eq. (44a)

with j = 3 and Eq. (44b) yield the following system of 2
(1+1)-dimensional ODEs for r− = r−

3 and q−:

∂ r−

∂t
+ 2λq− ∂ r−

∂y
+ λ(2r− − u−)

∂q−

∂y
= 0, (46a)

∂q−

∂t
+ 2λq− ∂q−

∂y
+ 2

∂ r−

∂y
= 0, (46b)

Similar considerations also apply for the BCs as x → ∞.
That is, Eqs. (45) or (46) hold as x → ∞ when r− and q− are
replaced by r+ and q+.

Riemann problems. As a special case of the above IVP, one
obtains 2D generalizations of the Riemann problem for the
1DBO equation. More precisely, one looks for solutions of the
2DBO-Whitham system (30) with step-like ICs corresponding
to a single front:

u(x,y,0) =
{

1, x + c(y) < 0,

0, x + c(y) � 0,
(47)

with c(y) arbitrary. As in the 1D case, one can regularize the
jump by choosing the ICs for the Riemann variables to be

r1(x,y,0) = 0, r2(x,y,0) = R2(x + c(y)),

r3(x,y,0) = 1
2 , (48)
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where R2(ξ ) smooths out the jump between 0 and 1/2,
e.g., R2(ξ ) = 1

4 (1 + tanh [ξ/δ]), with δ a small parameter. To
determine the corresponding IC for q, note that Eqs. (48) imply
that the constraint (6b) is satisfied at t = 0. Also, Eqs. (25)
and (48) imply k(x,y,0) = 1

2 − r2(x,y,0), and it is easy to
check that ky(x,y,0) = c′(y)kx(x,y,0). Therefore, substituting
in Eq. (38), the IC for q reduces to q(x,y,0) = c′(y).

If c(y) is constant or linear in y the IC for q is trivial,
whereas if c(y) is a quadratic function of y one reduces to the
ICs of the Riemann problem for the cBO equation. Finally, the
IC for p is chosen as described earlier, namely, via Eq. (39) at
t = 0 and Eq. (43).

IV. STABILITY OF PERIODIC SOLUTIONS

We now use the 2DBO-Whitham system (30) to investigate
the stability of the periodic solutions of the 2DBO equation.

Stability analysis. Constant values of r1, r2, r3, q, and p

yield exact periodic solutions of the 2DBO equation. To study
their spectral stability, we can use the 2DBO-Whitham system
(30) to study the evolution of small initial perturbations of
these constant values. That is, we look for

rj = r̃j + r ′
j , j = 1,2,3, q = q ′, p = p′, (49)

where r̃1,r̃2,r̃3 are arbitrary constants satisfying r̃1 � r̃2 � r̃3,
together with |r ′

j (x,y,t)| � 1 for j = 1,2,3, |q ′(x,y,t)| � 1,
and |p′(x,y,t)| � 1. Substituting Eqs. (49) into Eqs. (30) and
dropping higher-order terms, we obtain

∂r ′
j

∂t
+ Ṽj

∂r ′
j

∂x
+ λν̃j

∂q ′

∂y
+ λ

2

∂p′

∂y
= 0, j = 1,2,3,

∂q ′

∂t
+ Ṽ2

∂q ′

∂x
+ 2

∂r ′
3

∂y
= 0,

∂p′

∂x
− 2

∂r ′
1

∂y
+ 2r̃1

∂q ′

∂x
= 0,

where Ṽ1, . . . ,Ṽ3 and ν̃1, . . . ,ν̃3 denote the unperturbed values
of all the corresponding coefficients, as defined in Eqs. (31).
Next we look for the plane wave solution of the above system
of linear PDEs in the form

r ′
j (x,y,t)=Rj ei(Kx+Ly−Wt), j = 1,2,3, (50a)

(q ′(x,y,t),p′(x,y,t))= (Q,P ) ei(Kx+Ly−Wt). (50b)

obtaining the homogeneous linear system

(W − KṼj )Rj = λLν̃jQ + λLP/2, j = 1,2,3, (51a)

(W − KṼ2)Q = 2LR3, KP = 2LR1 − 2Kr̃1Q. (51b)

Nontrivial values of (R1,R2,R3,Q,P ) exist if the determi-
nant of the corresponding coefficient matrix vanishes, which
yields the linear dispersion relation P4(K,L,W ) = 0, where
P4(K,L,W ) is a polynomial that is cubic in W and quartic
in K and L. The periodic solution of the 2DBO equation
corresponding to r̃1,r̃2,r̃3 is therefore linearly stable if W ∈ R
for all K,L ∈ R, because in this case perturbations remain
bounded. Conversely, if there exist solutions with ImW �= 0
for K,L ∈ R, some perturbations will grow exponentially, and
the periodic solution is unstable.

In particular, for K = 0 (corresponding to perturbations
independent of x), the dispersion relation simplifies to

(W/L)2 = λf (r̃1,r̃2,r̃3), (52)

where f (r1,r2,r3) = 4(r2 − r1). Since f (r1,r2,r3) is always
non-negative for r1 � r2, for the 2DBOI equation (λ = −1)
W is purely imaginary, and therefore all its periodic waves
are linearly unstable. Conversely, for the 2DBOII equation
(λ = 1), W is real, and therefore all its periodic waves are
linearly stable in the spectral sense.

In the special case r1 = 0, r2 = m, and r3 = 1/2, which is
relevant to the Riemann problem discussed earlier, we simply
have f (r1,r2,r3) = f (m) = 4m. Interestingly, the growth rate
g(m) = √

4m is a monotonically increasing function of m

between g(0) = 0 and g(1) = √
2. This indicates that the

solitonic sector for 2DBOI (m ∼ 1/2) is more unstable than the
periodic sector (0 < m < 1/2), which in turn is more unstable
than the linear sector (m ∼ 0).

Numerical validation. To check the stability results
from the 2DBO-Whitham system, we also computed the
growth rates for the 2DBOI equation numerically. Let
um(x,y,t) be a traveling wave solution of the 2DBO
equation as in Eq. (26), and let ξ = x − ct . We seek a
perturbed solution in the form u(x,y,t) = um(ξ ) + v(ξ,y,t)
with |v(ξ,y,t)| � 1. Substituting this expansion into the
2DBO equation and dropping higher-order terms, we have
[vt − cvξ + (umv)ξ + εH[vξξ ]]

ξ
+ λvyy = 0. Using Galilean

invariance, we can transform u0 to c + ũ0, obtaining (dropping
tildes)

[vt + (umv)ξ + εH[vξξ ]]ξ + λvyy = 0. (53)

Next we look for plane wave solutions of Eq. (53) in
the form v(ξ,y,t) = w(ξ )eiζy+μt , obtaining [μw + (ũ0w)ξ +
εH[wξξ ]]ξ − λζ 2w = 0, or equivalently, assuming that w has
no mean term,

−(ũ0w)ξ − εH[wξξ ] + λζ 2∂−1
ξ w = μw, (54)

where ∂−1
ξ w = F−1[(1/ik)F[w]] and F denotes the Fourier

transform. One can now treat Eq. (54) as a differential eigen-
value problem, which can be efficiently solved numerically
in the Fourier domain using Hill’s method [33] to obtain the
growth rate as the largest imaginary eigenvalue. To compare
the numerical results with those obtained from Whitham
modulation theory, note that when r1 = q = p = 0, r2 = m,
and r3 = 1/2, the periodic solution (26) becomes

um(x,t) = 2a2

1 − a − √
2m cos{a [x − (1 − a)t]} ,

with a = 1
2 − m. We then solved numerically the result-

ing eigenvalue problem with 0 < m < 1/2. The difference
between the numerically computed growth rates and those
obtained from Whitham theory, shown in Fig. 1, is less than
10−6 for most values of m, and less than 10−4 in all cases,
demonstrating excellent agreement and providing a strong
validation of the perturbation expansion presented in Sec. II
as well as the usefulness of the 2DBO-Whitham system itself.
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FIG. 1. The square f (m) = 4m of the instability growth rate as
predicted by Whitham modulation theory, given by Eq. (52), Inset:
comparison with the numerically computed growth rates.

V. CONCLUSIONS

In summary, we studied the small dispersion limit of the
2DBO equation by deriving a Whitham modulation system.
We transformed the system to Riemann-type variables and
we showed how suitable manipulations allow one to obtain
a system that is free of singularities, referred to here as
the 2DBO-Whitham system. We discussed several exact
reductions of the system as well as the formulation of well-
posed IVPs for the 2DBO-Whitham system, including the
2D generalization of the Riemann problem. We also used the
2DBO-Whitham system to study the linear spectral stability of

the traveling wave solutions of the 2DBO equation and found
that all such solutions are spectrally unstable for the 2DBOI
equation and spectrally stable for the 2DBOII equation We
compared the analytically computed growth rates with a direct
numerical approach, obtaining excellent agreement.

From a physical point of view, the above stability results
imply that periodic trains of internal waves can be expected
to be stable to transverse perturbations in stratified media in
which surface tension is not dominant (i.e., media for which
the 2DBOII variant of the 2DBO equation is the appropriate
model, as opposed to 2DBOI).

The results of this work open up several possibilities
for further development of the theory. One such possibility
is whether the methods used in this work can be applied
to even further (2+1)-dimensional equations, e.g., such as
the modified Kadomtsev-Petviashvili equation, in order to
generalize the results obtained in [34] for the modified
Korteweg–de Vries equation. On the other hand, regarding
the 2DBO equation, further work is clearly needed to more
fully understand the properties of the 2DBO-Whitham system.
Importantly, we also expect that one can use the 2DBO-
Whitham system to study, analytically and numerically, the
formation of multidimensional DSWs in the 2DBO equation.
We plan to address some of these questions in the near future.
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