
PHYSICAL REVIEW E 96, 032222 (2017)

Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity
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The existence and stability of quiescent Bragg grating solitons are systematically investigated in a dual-core
fiber, where one of the cores is uniform and has Kerr nonlinearity while the other one is linear and incorporates a
Bragg grating with dispersive reflectivity. Three spectral gaps are identified in the system, in which both lower and
upper band gaps overlap with one branch of the continuous spectrum; therefore, these are not genuine band gaps.
However, the central band gap is a genuine band gap. Soliton solutions are found in the lower and upper gaps only.
It is found that in certain parameter ranges, the solitons develop side lobes. To analyze the side lobes, we have
derived exact analytical expressions for the tails of solitons that are in excellent agreement with the numerical
solutions. We have analyzed the stability of solitons in the system by means of systematic numerical simulations.
We have found vast stable regions in the upper and lower gaps. The effect and interplay of dispersive reflectivity,
the group velocity difference, and the grating-induced coupling on the stability of solitons are investigated. A key
finding is that a stronger grating-induced coupling coefficient counteracts the stabilization effect of dispersive
reflectivity.
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I. INTRODUCTION

Fiber Bragg gratings (FBGs) are produced as a result of
the variation of the refractive index of the fiber core. In the
past few decades, FBGs have received a great deal of attention
due to their potential applications in sensing, dispersion com-
pensation, switching, filtering, and pulse compression [1–8].
One of the main features of FBGs is that the cross-coupling
between the forward- and backward-propagating waves opens
a band gap in their spectrum within which linear waves cannot
propagate. This also gives rise to a strong effective dispersion
that can be up to six orders of magnitude greater than that of
silica [9,10].

The existence of solitons in periodic structures was orig-
inally predicted in the context of superlattices [11]. In the
case of FBGs, at sufficiently high intensities, Kerr nonlinearity
can be counterbalanced by FBG-induced dispersion, resulting
in the formation of Bragg grating (BG) solitons [10,12,13].
Theoretical studies have shown that in a uniform FBG, the
BG solitons form a two-parameter family of solutions that
fill the entire band gap [10,12,13]. One of the parameters
is the soliton’s velocity, which can range from zero to the
speed of light in the medium. The other parameter is related
to the detuning frequency, the width of the soliton, and the
peak power. As for the stability of BG solitons, it has been
demonstrated that approximately half of the soliton family is
stable [14–16]. Extensive experimental effort has been devoted
to observe slow BG solitons due to their potential applications
[17–21]. Thus far, BG solitons with a velocity of 23% of
the speed of light in the medium have been observed exper-
imentally [22]. BG and gap solitons have been theoretically
predicted and studied in other structures, such as photonic
crystals [23–26], dual-core fibers [27–31], waveguide arrays
[32–34], and microcavities with a periodic potential [35]. They
have also been investigated in a variety of nonlinear media,
including quadratic nonlinearity [36–38], sign-changing Kerr
nonlinearity [39], and cubic-quintic nonlinearity [40–43].

Nonlinear couplers have received much attention during
the past three decades due to their potential applications in

signal processing and optical switching [44–49]. It has been
shown that asymmetric nonlinear couplers (e.g., a coupler in
which one core is linear and the other is nonlinear) exhibit
interesting dynamics and characteristics [50–55]. It is therefore
expected that grating-assisted nonlinear couplers may offer
new possibilities for novel applications. For example, it has
been shown that a semilinear dual-core fiber where one core is
linear and the other has a Bragg grating and Kerr nonlinearity
can support quiescent and moving solitons [27,56]. With
regard to the fabrication of such gratings, they can be produced
by writing the grating on one or both cores in the coupling
region [57]. Such gratings can be used as add-drop elements
in wavelength-division multiplexed (WDM) networks [58].

Nonstandard Bragg gratings such as Bragg superstructures
[59,60], gratings written on photonic wires [61], and nonuni-
form gratings may possess broad and inhomogeneous band
gaps. As a result, their analysis requires that the standard model
be modified. In Ref. [62], it was shown that one way to deal
with the effect of nonuniformity in FBGs is to modify the
standard model so that the contribution of spatial dispersion of
Bragg reflectivity is taken into account. A key finding was that
the presence of dispersive reflectivity results in the expansion
of the stability region for both quiescent and moving solitons
[62,63].

In the vast majority of dual-core systems with gratings
considered thus far, the Bragg grating and nonlinearity occur
in the same core. In Ref. [28], a semilinear dual-core model
was presented and analyzed. In that model, the linear core had
a Bragg grating and the nonlinear core was uniform. In this
case, the model’s linear spectrum differs greatly from that of
earlier models, and it was demonstrated that quiescent and
moving solitons existed in such a system.

In this paper, we will generalize the model of Ref. [28]
by incorporating dispersive reflectivity into the system, and
we will systematically investigate the stability of quiescent
solitons in the generalized model. The rest of the paper is as
follows. In Sec. II, the model is introduced and its linear spec-
trum is analyzed. The characteristics of the soliton solutions
and the analytical solutions for the solitons’ side lobes are
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presented in Sec. III. The stability of the solitons is discussed
in Sec. IV. A summary of the results is presented in Sec. V.

II. THE MODEL

In Ref. [28], a model was presented for the propagation of
light in a dual-core system comprised of a linear core equipped
with uniform Bragg grating and a uniform nonlinear core with
Kerr nonlinearity. The starting point for the derivation of the
model of Ref. [28] is Maxwell’s equations. One can then
follow the steps for deriving the generalized massive Thirring
model (GMTM) [10] and nonlinear coupled mode equations
(see, e.g., Chap. 3 of Ref. [64]) to arrive at the model of
Ref. [28]. One can also use a combination of multiple-scales
analysis [65] and coupled-mode theory to derive the model. It
should be noted that in the derivation of our model, the effects
of birefringence (see, for example, [66]) are assumed to be
negligible. Also, the effects of electrostrictive and acoustic
waves [67] are ignored due to the fact that the length scales
over which they occur are far greater than the length of a
typical FBG. Following the procedure outlined in Ref. [62],
the model of Ref. [28] can be generalized to include the effect
of dispersive reflectivity in the linear core. This results in the
following system of partial differential equations:

iut + iux + [|v|2 + 1
2 |u|2]u + φ = 0,

ivt − ivx + [|u|2 + 1
2 |v|2]v + ψ = 0,

iφt + icφx + u + λψ + mψxx = 0,

iψt − icψx + v + λφ + mφxx = 0, (1)

where u and v denote the forward- and backward-propagating
waves in the nonlinear core, and φ and ψ are their counterparts

in the linear core, which contains a Bragg grating. The
coefficient of linear coupling between the cores is normalized
to be 1. λ is the Bragg-grating-induced linear coupling
coefficient between the left- and right-propagating waves; λ

is real and λ > 0. The group velocity in the nonlinear core is
set equal to 1, and c represents the relative group velocity
in the linear core. The parameter m > 0 is the dispersive
reflectivity strength. Without loss of generality, the analysis is
confined to 0 � m � 0.5 since there is no practical importance
for m > 0.5 [62].

As was mentioned earlier, dual-core systems with grating in
one or both cores can be fabricated with the current technology.
With regard to the realization of the model, the coupling length
Lc and the Bragg reflection length LB need to be of the same
order of magnitude. Typically, LB is of the order of 1 mm.
Couplers with Lc ∼ 1 mm can also readily be manufactured.
In real units, �t = 1 and �x = 1 correspond to approximately
10 ps and 1 mm. Given that silica’s nonlinear coefficient is
∼2 (km W)−1, the estimated peak power for soliton formation
is estimated to be ∼1 MW. This is actually an upper bound.
The experimental results show that the actual power needed to
observe solitons is much less than this estimate [17–20]. Using
these parameter values, the length of the dual-core system is
estimated to be ≈10 cm.

The system’s linear spectrum provides the essential in-
formation regarding the spectral gaps within which solitons
may exist. Substituting u,v,φ,ψ ∼ exp (ikx − iωt) into the
linearized form of Eqs. (1) results in the following dispersion
relation:

ω4 − [2 + (λ − mk2)2 + (1 + c2)k2]ω2

+ (λk − mk3)2 + (ck2 − 1)2 = 0. (2)

Equation (2) results in the following expression for the
branches of the spectrum:

ω2 = 1 + m2k4 + (c2 − 2λm + 1)k2 + λ2

2
±

√
{2 + (λ − mk2)2 + (1 + c2)k2}2 − 4{(λ − mk2)2k2 + (ck2 − 1)2}

2
. (3)

Further analysis of Eq. (3) shows that generally the spectrum
consists of three disjoint band gaps: a central band gap
surrounded by two other gaps—one in the upper half and
the other in the lower half of the spectrum. The central gap is
a genuine band gap. On the other hand, the upper and lower
gaps overlap with one branch of the continuous spectrum, and
therefore they are not genuine gaps. Examples of dispersion
diagrams are shown in Fig. 1. In the special case of m = 0 and
c = 0, Eq. (3) leads to the band gaps derived in Ref. [28], i.e.,
for λ > 1√

2
the band gaps are given by

λ < ω <
λ

2
+

√
λ2 + 4

2
, (4)

λ

2
−

√
λ2 + 4

2
< ω < −λ

2
+

√
λ2 + 4

2
, (5)

−λ

2
−

√
λ2 + 4

2
< ω < −λ, (6)

and for λ < 1√
2

the band gaps are

− λ

2
+

√
λ2 + 4

2
< ω <

λ

2
+

√
λ2 + 4

2
, (7)

− λ < ω < λ, (8)

− λ

2
−

√
λ2 + 4

2
< ω <

λ

2
−

√
λ2 + 4

2
. (9)

When λ = 1√
2
, the three gaps merge into a single gap, i.e.,

−√
2 < ω <

√
2.

The presence of dispersive reflectivity significantly alters
the characteristics of the band gaps. First, the widths of the
upper and lower band gaps remain independent of m (for 0 <

m � 0.5) and occur at k = 0 if λ � 0.55. In this case, the upper
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FIG. 1. Dispersion diagrams for different parameter values.
(a) c = 0.0, λ = 1.0; (b) c = 1.0, λ = 1.0.

and lower band gaps are given by

− λ

2
+

√
λ2 + 4

2
� ω � λ

2
+

√
λ2 + 4

2
,

−λ

2
−

√
λ2 + 4

2
� ω � λ

2
−

√
λ2 + 4

2
. (10)

It is noteworthy that the width of the band gaps is equal to
λ. For λ � 0.55, these band gaps decrease with increasing m

at c = 0. However, increasing c prevents the narrowing of the
band gaps. Also, as λ increases, larger values of c are required
to maintain the band gap at a fixed value.

As for the central gap, its boundaries do not occur at k = 0
and its width must be determined numerically. The width of
the central gap varies (i.e., increases or decreases even to zero)
with increasing values of m for fixed values of c and λ. It
should also be noted that the central band gap closes for all
c �= 0 when m = cλ.

As is shown in Fig. 1, Eq. (3) gives rise to four
branches that are symmetric with respect to ω = 0. In the
absence of dispersive reflectivity (i.e., m = 0) at |k| → ∞
the upper (lower) branch in the upper half plane of
the dispersion diagram asymptotically approaches ω2 ≈
max {c2,1}k2(ω2 ≈ min {c2,1}k2) for any values of c �
0 (c > 0). In the special case of c = 0, the lower branch
asymptotically approaches ω2 ≈ λ2. In the presence of dis-
persive reflectivity (i.e., m �= 0), the asymptotic form of these
branches is independent of c. At |k| = ∞, the upper and lower
dispersion branches in the case of m �= 0 approach ω2 ≈ m2k4

and ω2 ≈ k2, respectively, for any values of c �= 0.

III. SOLITON SOLUTIONS

In the absence of dispersive reflectivity (i.e., m = 0), it
has been shown that the model of Eqs. (1) admits exact
analytical soliton solutions for c = 0. However, when c �= 0
and/or m �= 0 the solutions must be obtained numerically.
We assume that the stationary solutions of the system
are of the form {u(x,t),v(x,t)} = {U (x),V (x)} exp (−iωt)
and {φ(x,t),ψ(x,t)} = {�(x),�(x)} exp (−iωt). Substituting
these expressions into Eqs. (1) and applying the symmetry
condition {V (x), �(x)} = {−U ∗(x), − �∗(x)}, we arrive at
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FIG. 2. Examples of soliton solutions at λ = 1.0, c = 0.3, and
ω = 1.61: (a) soliton without side lobes for m = 0.1 and (b) soliton
with side lobes for m = 0.5.

the following system of ordinary differential equations:

ωU + iUx + 3
2 |U |2U + � = 0,

ω� + ic�x + U − λ�∗ − m�∗
xx = 0. (11)

To determine the quiescent soliton solutions, Eqs. (11) are
solved by means of the relaxation algorithm. Stationary soliton
solutions are found throughout the upper and lower gaps.
However, no stationary soliton solutions exist in the central
gap. It is also found that, up to available numerical accuracy,
the soliton solutions in the upper and lower gaps form a
continuous family of solutions. Similar to other systems with
dispersive reflectivity (e.g., Refs. [62] and [68]), in certain
parameter ranges, side lobes appear in the solitons’ profiles.
Typical examples of soliton solutions with and without side
lobes are shown in Fig. 2.

Generally, the amplitudes of the side lobes are much smaller
than that of the soliton. As a result, the effect of nonlinearity
on the formation of side lobes is negligible. Therefore, to
characterize the tails of the solitons, we linearize Eq. (11) to
arrive at the following set of equations:

ωU + i
dU

dx
+ � = 0,

ω� + ic
d�

dx
+ U − λ�∗ − m

d2�∗

dx2
= 0. (12)

Equations (11) can further be simplified by noting that � =
−ωU − idU/dx [see the first equation in Eqs. (12)], resulting
in the following equation:

im
d3U ∗

dx3
− mω

d2U ∗

dx2
− c

d2U

dx2
+ iλ

dU ∗

dx

+ iω(1 + c)
dU

dx
− λωU ∗ + (ω2 − 1)U = 0. (13)

Substituting U (x) = Ur (x) + iUi(x) into Eq. (13) leads to the
following system of ordinary differential equations:

m
d3Ur

dx3
− (c − mω)

d2Ui

dx2
+ [ω(1 + c) + λ]

dUr

dx

+ [λω + (ω2 − 1)]Ui = 0,

m
d3Ui

dx3
− (c + mω)

d2Ur

dx2
− [ω(1 + c) − λ]

dUi

dx

− [λω − (ω2 − 1)]Ur = 0. (14)
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FIG. 3. Comparison between numerically obtained soliton solutions and analytical expressions for the tails of solitons [i.e., Eqs. (19) and
the corresponding �r and �i are obtained from � = −ωU − idU/dx] for λ = 0.8, ω = 1.47, c = 0.1, m = 0.5, α = 0.291, and β = 0.278.
The parameters in Eqs. (19) are determined from the numerical soliton solution and are found to be A1 = 0.260, A2 = 0.108, θ1 = −0.997,
and θ2 = −1.748. The parameters α and β are calculated using Eqs. (16).

The characteristic equation of Eqs. (14) has the following form:

as6 + bs4 + ps2 + q = 0, (15)

where a, b, p, and q are real-valued quantities and
are given by a = m2, b = m(mω2 + 2λ) − c2, p = λ2 −
(1 − 2λm + c2)ω2 − 2c, and q = λ2ω2 − (ω2 − 1)

2
. The

roots of Eq. (15) are given by

s1,2 = ±
√

A − b

3a
− B

A
,

s3,4 = ±
√

B

2A
− b

3a
− A

2
−

√
3

2

(
B

A
+ A

)
i,

s5,6 = ±
√

B

2A
− b

3a
− A

2
+

√
3

2

(
B

A
+ A

)
i, (16)

where A = 3
√√

C2 + B3 − C, B = −b2

9a2 + p

3a
, and C = q

2a
+

b3

27a3 − bp

6a2 .
Equations (14) admit the following general solutions:

Ur (x) = C1e
−s1x + C2e

s1x + C3e
−s3x + C4e

s3x

+C5e
−s5x + C6e

s5x,

Ui(x) = D1e
−s1x + D2e

s1x + D3e
−s3x + D4e

s3x

+D5e
−s5x + D6e

s5x, (17)

where Cn and Dn (n = 1,2, . . . ,6) are general arbitrary
complex coefficients that need to be determined by the
appropriate boundary conditions. The complex constants
{C1,C3,C5} ({C2,C4,C6}) and {D1,D3,D5} ({D2,D4,D6}) cor-

respond to the right (left) tail of Ur (x) and Ui(x), i.e.,
x > 0 (x < 0). Therefore, for the right tail (i.e., x > 0),
the constants C2, C4, C6, D2, D4, and D6 must be zero.
Similarly, the constants C1, C3, C5, D1, D3, and D5 must
be zero for x < 0. Due to the symmetry of the soliton,
C1 = C2, C3 = C4, D1 = D2, and D3 = D4. Additionally,
since Ur (x) and Ui(x) are real-valued, C3 = C∗

1 and D3 =
D∗

1 . Our analysis shows that, in the range 0 < m � 0.5, s5

and s6 are purely imaginary, and C5, C6, D5, and D6 are
negligibly small. Therefore, Eqs. (17) can be simplified as
follows:

Ur (x) = C1e
−s1x + C1e

s1x + C∗
1e−s3x + C∗

1es3x,

Ui(x) = D1e
−s1x + D1e

s1x + D∗
1e

−s3x + D∗
1e

s3x. (18)
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FIG. 4. The regions on the (m,ω) plane where solitons develop
side lobes for (a) λ = 0.6 and (b) c = 0. The side lobes appear in the
regions to the right of each curve.
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FIG. 5. Examples of the propagation of solitons for λ = 0.2, c = 0.5 with (a) an unstable soliton resulting in the soliton decay with
ω = 0.98 and m = 0.3; (b) an unstable soliton evolving to a moving soliton with ω = 0.98 and m = 0.1; and (c) a stable soliton with ω = 1.01
and m = 0.1. Only the |u| component is shown.

When the exponents in Eqs. (18) are real, the tails of the
soliton decay exponentially. On the other hand, side lobes
are formed when the exponents in Eqs. (18) are complex.
Substituting s1 = α − jβ and s3 = α + jβ in Eqs. (18) results
in the following expressions for Ur (x) and Ui(x):

Ur (x) = A1{e−αx cos (βx + θ1) + eαx cos (−βx + θ1)},
Ui(x) = A2{e−αx cos (βx + θ2) − eαx cos (−βx + θ2)}.

(19)

The free real parameters A1, A2, θ1, and θ2 in Eqs. (19)
are determined from the numerical soliton solutions and
are related to C1 and D1 through A1 = 2|C1|, A2 = 2|D1|,
θ1 = arg(C1), and θ2 = arg(D1). It should be noted that the
first term in Eqs. (19) represents the right tail (i.e., x > 0), and
the second term corresponds to the left tail (i.e., x < 0). The
equations for �r and �i can readily be obtained by substituting
U (x) = Ur (x) + iUi(x) into � = −ωU − idU/dx [see the
first equation in Eqs. (12)]. As is shown in Fig. 3, the
numerically obtained soliton solutions and the analytical
expressions for Ur , Ui , �r , and �i are in excellent agreement
except in the vicinity of the soliton’s peak, where the linear
approximation does not hold.

We have also investigated the effects of c and λ on the
formation of side lobes. Figure 4 depicts the typical regions
where side lobes occur for different values of c and λ. A
noteworthy feature shown in Fig. 4 is that, for a fixed λ(c),
the region where side lobes occur shrinks as c(λ) increases
(decreases).

IV. STABILITY ANALYSIS

To analyze the stability of solitons, we have performed
a systematic numerical stability analysis by solving Eqs. (1)
using the symmetrized split-step scheme for various values
of m, c, and λ. In all simulations, the numerically obtained
soliton solutions were propagated up to t = 2000. The inherent
numerical noise was found to be sufficient to seed the onset of
instability. Examples of stable and unstable solitons are shown
in Fig. 5.

With regard to the dynamics of unstable solitons, unstable
solitons that are deep in the unstable region strongly radiate
and are deformed during propagation and subsequently decay
into radiation [see, for example, Fig. 5(a)]. On the other hand,
unstable solitons close to the stable region radiate some energy
and subsequently rearrange themselves into another stable
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FIG. 6. Stability regions for c = 0 on the (m,ω) plane. (a) λ = 0.05, (b) λ = 0.1, and (c) λ = 0.5.
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FIG. 7. Stability diagrams in the upper gap for different values of c and λ on the (m,ω) plane.

quiescent soliton or evolve into a stable moving soliton [see,
for example, Fig. 5(b)]. These simulation results confirm that
stable moving solitons exist in the model.

The results of simulations for various values of λ and
c = 0 are presented in Fig. 6. A noteworthy trend shown
in Fig. 6 is that as λ increases, the ratio of the size of
the stable region relative to the size of the band gap (i.e.,
area of the stable region/area of the band gap) in both the up-
per and lower gaps decreases. In other words, the stabilization
of solitons due to dispersive reflectivity is mitigated by
increasing λ.

In the case of c �= 0, we have systematically investigated
the stability of solitons for various values of c and λ. The
results of the stability analysis for the upper and lower band
gaps are summarized, respectively, in Figs. 7 and 8. A general
trend shown in Figs. 7 and 8 is that, for a fixed c, as λ increases
the ratio of the size of the stable region to the size of the band
gap is reduced. This is consistent with the results of Fig. 6.

As for the effect of c, in the upper gap for moderate values
of λ (i.e., λ = 0.4 and 0.6), as c is increased from 0.2 to 1 the
stable region enlarges. However, for λ = 0.2, increasing c from
0.2 to 0.5 leads to the enlargement of the stable region, but a
further increase to c = 1 results in the shrinkage of the stable
region. In the lower gap, the opposite behavior is observed,
i.e., for λ = 0.2, increasing c gives rise to the expansion of the
stable region. But for λ = 0.4 and 0.6, increasing c from 0.2
to 0.5 enlarges the stable region, and with a further increase of
c the stable region shrinks.

In some of the stability diagrams in the upper gap, a cusp
is formed (e.g., the diagram corresponding to λ = 0.2 and c =
0.5 in Fig. 7). Our analysis shows that the cusp corresponds to
m = cλ.

V. CONCLUSION

We have investigated the existence and stability of quiescent
solitons in a dual-core system where one core is uniform and
has Kerr nonlinearity and the other is linear and equipped
with a Bragg grating with dispersive reflectivity. The linear
spectrum of the model has three band gaps for all values of c,
namely an upper band gap, a lower band gap, and a central one.
Since the upper and lower band gaps overlap with a branch of
the continuous spectrum, they are not genuine band gaps. The
central band gap, however, is a genuine band gap.

Soliton solutions are not found in the central band gap, but
they exist as a continuous family throughout the upper and
lower band gaps. It is found that, depending on the value of c

and λ, above a certain value of m solitons develop side lobes in
their profiles. We have derived exact analytical expressions for
the tails of the solitons. The analytical expressions and numer-
ical solutions are found to be in excellent agreement. We have
analyzed the effect of c and λ on the side-lobe formation. It has
been shown that for a given λ(c), the region in the (m,ω) plane
where side lobes occur shrinks as c(λ) increases (decreases).

We have investigated the stability of the solitons systemat-
ically for different values of m, c, and λ. We have identified

032222-6



BRAGG SOLITONS IN SYSTEMS WITH SEPARATED . . . PHYSICAL REVIEW E 96, 032222 (2017)

0 0.1 0.2 0.3 0.4 0.5
-1.105

-1

-0.905

0 0.1 0.2 0.3 0.4 0.5
-1.105

-1

-0.905

0 0.1 0.2 0.3 0.4 0.5
-1.105

-1

-0.905

0 0.1 0.2 0.3 0.4 0.5
-1.22

-1

-0.82

0 0.1 0.2 0.3 0.4 0.5
-1.22

-1

-0.82

0 0.1 0.2 0.3 0.4 0.5
-1.22

-1

-0.82

0 0.1 0.2 0.3 0.4 0.5
m

-1.344

-1.05

-0.744

0 0.1 0.2 0.3 0.4 0.5
m

-1.344

-1.05

-0.744

0 0.1 0.2 0.3 0.4 0.5
m

-1.344

-1.05

-0.744

c = 0.2 c = 0.5 c = 1.0

λ 
= 

0.
2

λ 
= 

0.
4

λ 
= 

0.
6

ω
ω

ω
Unstable Unstable

Unstable

UnstableUnstableUnstable

Unstable Unstable Unstable

Stable Stable Stable

Stable Stable Stable

Stable Stable
Stable

FIG. 8. Stability diagrams in the lower gap for different values of c and λ on the (m,ω) plane.

nontrivial stability borders in the plane of (m,ω), and we
investigated the effect of the system parameters on the stability
of solitons. A general finding is that, in both upper and lower

gaps, higher values of λ for both c = 0 and c �= 0 lead to a
reduction in the size of the stable region relative to the size of
the gap.
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