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Fluctuations in an established transmission in the presence of a complex environment
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In various situations where wave transport is preeminent, like in wireless communication, a strong established
transmission is present in a complex scattering environment. We develop a nonperturbative approach to describe
emerging fluctuations which combines a transmitting channel and a chaotic background in a unified effective
Hamiltonian. Modeling such a background by random matrix theory, we derive exact results for both transmission
and reflection distributions at arbitrary absorption that is typically present in real systems. Remarkably, in such
a complex scattering situation, the transport is governed by only two parameters: an absorption rate and the
ratio of the so-called spreading width to the natural width of the transmission line. In particular, we find that the
established transmission disappears sharply when this ratio exceeds unity. The approach exemplifies the role of
the chaotic background in dephasing the deterministic scattering.
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I. INTRODUCTION

In many applications ranging from electronic mesoscopic
or quantum devices [1–3] to telecommunication or wireless
communication [4,5], transmission and transport are the main
focus of studies. Here, either the system or its excitation is
designed to give a high transmission at the working energy
(or frequency) ε0. To guarantee the functionality of such
devices, fluctuations in transmission induced by a complex
environment are of crucial interest. Such variations might
be introduced by uncertainties of the production process
of electronic devices or by real-life changing environment
like in wireless communication. In the latter case, e.g.,
one is interested in a stable communication that has strong
transmission, guaranteeing large signal-to-noise ratios as well
as high data transfer rates [6,7]. This is often implemented
via multiple-input, multiple-output (MIMO) systems [8–10],
which control the excitations, thus giving rise to a special
basis, where an established transmission is induced at ε0.
In electronic devices like quantum dots or wells, similar
established transmission is put forward in the design of the
system and placement of the leads [11].

The analysis of complex quantum or wave systems often
relies on predictions obtained for fully chaotic dynamics
[3,12]. Random matrix theory (RMT) has proved to be
extremely successful in describing universal wave phenom-
ena in such systems [13,14]. The canonical examples are
spectral and wave function statistics, including their many
experimental verifications [15]. When combined with the
resonance scattering formalism [16], RMT offers a powerful
approach [17–19] to describe universal statistical fluctuations
in scattering (see [20,21] for recent reviews). The approach
is also flexible in incorporating real world effects, like finite
absorption, providing the nonperturbative theory [22,23] to ac-
count for statistical properties of complex impedances [24,25]
as well as transmission and reflection coefficients [26,27]
observed in various microwave cavity experiments [28–30].
From the theoretical side, nonuniversal aspects related to a
deterministic part in scattering are usually removed from the
very beginning by means of a certain procedure [31], yielding
a new scattering matrix which becomes diagonal on average

[17]. This, however, cannot be applied in the present case
where fluctuations in a transmitting channel, characterized by
the essentially nondiagonal deterministic S matrix, are the
main point of interest.

In this work, we propose a nonperturbative approach to
quantify fluctuations in the established transmission mediated
by a single energy level that is coupled to a complex environ-
ment modeled by RMT. The model in its original formulation
goes back to nuclear physics [32], giving rise to the well-known
formalism of the strength function that has a rich history
of various applications [33–38]. Nevertheless, a complete
characterization of fluctuations in the transmission for such
a model in terms of its distribution function has not been
reported in the literature so far and will be presented below.

In Sec. II, we introduce the model in detail (see Fig. 1 for
an illustration). Section III provides the derivation of the exact
RMT expressions for the transmission distribution, which is
the main goal of this paper, first for the ideal case of zero
absorption and then in the general case of arbitrary absorption.
To complete the description of scattering, we address the
distribution of reflections in Sec. IV and then summarize
with the conclusion and outlook. Further details on numerical
implementations as well as an extension to incorporate losses
on the single level, responsible for the established transport,
are given in two appendixes. In all cases, good agreement
between the exact analytical results and numerical simulations
with random matrices is found.

FIG. 1. Schematic drawing of the model Hamiltonian. The single
level ε0 is coupled to scattering channels and a chaotic background
Hbg, leading to decay rates �0 and �↓, respectively. Note that although
the background states are not connected to the channels directly,
they may have uniform broadening �abs to account for homogeneous
dissipation.
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II. SCATTERING FORMALISM

The scattering problem in question is schematically rep-
resented by Fig. 1. We consider a two-port setup, which is
typical for many experimental realizations, and assume that an
established transmission between two channels occurs through
a single resonance characterized by energy ε0 and width �0.
This resonance state, which is often referred to as a doorway
state [34,39], is coupled to a background Hamiltonian that
represents influences of a complex environment. Due to a
coupling to surrounding complicated states, the transmission
channel spreads over the background with a rate given by the
so-called spreading width �↓. The competition between the
two decay mechanisms is naturally controlled by the ratio

η = �↓/�0 (1)

between the spreading and escape widths.
We restrict our consideration to systems invariant under

time reversal, which is the case most relevant experimentally.
Following [13,15], we can then model the chaotic background
by a random matrix drawn from the Gaussian orthogonal
ensemble (GOE). Additionally, we assume that the background
states may have uniform broadening to account for possible
homogeneous absorption in the environment. The exact RMT
results for the distribution functions derived below are nonper-
turbative and valid at any η and arbitrary absorption.

A. Effective Hamiltonian approach

The scattering approach based on the effective non-
Hermitian Hamiltonian [16,18,21] is well adapted to treat
both transport and spectral characteristics on equal footing.
Neglecting global phases due to potential scattering, the
scattering matrix S can be written as follows:

S(E) = 1 − iAT 1

E − Heff
A , (2)

where A is the energy-independent matrix of the coupling
amplitudes between the channel and internal states and

Heff = H − i

2
AAT (3)

defines the effective Hamiltonian of the open system. The
Hermitian part H corresponds to the Hamiltonian of the
closed system, whereas the anti-Hermitian part accounts
for finite lifetimes of resonances (eigenvalues of Heff). The
factorized structure of the latter ensures the unitarity of S

(at real scattering energy E). For systems invariant under time
reversal, H and A can be chosen as real; thus, S is a symmetric
matrix.

We begin with quantifying a stable transmission between
two channels in a “clean” system and consider a single level
without any chaotic background. This amounts to setting above
H = ε0 and A = (a b), with two real parameters a and b

determining the strength of coupling to the channels. The S

matrix elements are then given by a multichannel Breit-Wigner
formula [16],

S(E) = 1 − i

E − ε0 + (i/2)�0

(
a2 ab

ab b2

)
, (4)

where the width �0 is given by the sum

�0 = a2 + b2 (5)

of the partial decay widths. The peak transmission is achieved
at the scattering energy E = ε0. The S matrix evaluated at this
point can be parameterized as follows:

S0 =
(−r0 t0

t0 r0

)
, (6)

with the reflection and transmission amplitudes being

r0 = a2 − b2

�0
, t0 = −2ab

�0
. (7)

In view of Eq. (5), they satisfy the flux conservation r2
0 + t2

0 =
1. Thus, we can express the scattering observables in terms
of the experimentally measurable quantities: ε0, �0, and the
transmission coefficient of the simple mode,

T0 ≡ t2
0 = 1 − r2

0 . (8)

In order to incorporate a complex environment acting on
the transmission state, we follow the spreading width model
[32,34] and represent the Hamiltonian as follows:

H =
(

ε0 �V T

�V H
(goe)
bg

)
. (9)

Here, H
(goe)
bg stands for the background Hamiltonian modeled

by a random GOE matrix of size N , whereas vector �V T =
(V1, . . . ,VN ) is responsible for coupling to the background.
The elements of �V can be chosen as real fixed or random
mutually independent Gaussian variables with zero mean and
a given second moment 〈V 2〉. By virtue of the invariance
of the GOE with respect to basis rotations, the two choices
become equivalent in the RMT limit of N � 1, with the
obvious correspondence V 2 = 1

N
‖ �V ‖2 = 〈V 2〉. For the sake

of simplicity, we will assume �V is fixed in the following.
Neglecting direct coupling of the GOE states to the

channels, the coupling matrix A takes the special form

AT =
(

a 0 · · · 0
b 0 · · · 0

)
. (10)

As a result, one can easily find, using Schur’s complement, that
the S matrix retains the same structure as in Eq. (4), where the
following substitution is to be made:

1

E − ε0 + (i/2)�0
→ 1

E − ε0 + (i/2)�0 − g(E)
, (11)

and the scalar function g(E) is defined by

g(E) = �V T 1

E − H
(goe)
bg

�V . (12)

This is the so-called strength function [32]. By construction,
it has the meaning of the local Green’s function of the com-
plex background [40], characterizing its spectral properties.
When averaged over this fine energy structure, the scattering
amplitudes acquire an extra damping,

�↓ = 2πV 2/�, (13)
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in addition to �0. The spreading width (13) is simply Fermi’s
golden rule expressing the rate of decay into the “sea” of
background states, the density of which is determined by the
mean level spacing � [32,34].

B. S matrix fluctuations

We are interested in fluctuations in scattering at the
resonance energy ε0. The S matrix at this point can be
represented in the following convenient form:

S ≡ S(ε0) = 1 − 1

1 + iηK
(1 − S0), (14)

where η is given by Eq. (1) and we have introduced

K ≡ 2

�↓
g(ε0) = �

πV 2
�V T 1

ε0 − H
(goe)
bg

�V . (15)

This quantity plays the role of the Wigner reaction matrix
associated with scattering on the background [see Eq. (18)
below]. Without loss of generality, we may let ε0 be the center
of the semicircle law determining the mean density of the back-
ground states. With the definition �−1 = −(1/π )Im〈tr(ε0 +
i0 − H

(goe)
bg )−1〉, one readily finds the average value 〈K〉 = −i,

resulting in

〈S〉 = η

1 + η
+ 1

1 + η
S0 (16)

for the average S matrix. This expression shows that η controls
the weight between the equilibrated and deterministic parts in
scattering, which are given by the first and second terms in
Eq. (16), respectively.

The average S matrix is clearly nondiagonal because of
channel mixing induced by S0. Usually, the starting point of
RMT applications to scattering [17,21] consists of eliminat-
ing such direct processes by means of a special similarity
transform [31,41]. In the present case, however, this would
remove the effect we are after. For similar reasons, one
cannot use recent exact results [23,42] for the distribution of
off-diagonal S matrix elements (derived assuming a diagonal
〈S〉). In contrast, the obtained representation (14) enables
us to solve the problem in its full generality by applying
the nonperturbative theory for the local Green’s function K ,
developed by Fyodorov, Sommers, and one of the present
authors in [22,40,43].

C. Background as a source of dephasing

It is instructive to give a physical interpretation of the above
results in terms of the interference between the two scattering
phases, the constant one due to the direct transmission and the
random one induced by the chaotic background.

The deterministic part of the scattering matrix S0 can be
brought to the diagonal form OT

ϕ S0Oϕ = diag(−1,1) by an
orthogonal matrix Oϕ that corresponds to a rotation by the
angle ϕ = arctan t0

1+r0
. This angle expresses the degree of

channel nonorthogonality due to the nondiagonal AT A. By
construction, the same transformation diagonalizes the full S

matrix (14), yielding

S = Oϕdiag(−Sbg,1)OT
ϕ , (17)

where Sbg stands for the background contribution

Sbg = 1 − iηK

1 + iηK
(18)

to the full scattering process. Expression (18) is the usual
form for the elastic (single-channel) scattering in open chaotic
systems [17,18], with η now playing the role of a degree of
system openness. The resulting scattering pattern is therefore
due to the interference between the deterministic phase ϕ and
the random phase θ = arg(Sbg), the distribution of which is
well known [44,45].

The model exemplifies the chaotic background as a natural
source of dephasing in scattering processes (see also the
relevant discussion in [37]). In contrast to two other dephasing
models [46,47], our formulation is very flexible in accommo-
dating physically relevant properties of complex environments.
In particular, homogeneous losses can be easily taken into
account by uniform broadening �abs of the background states.
Operationally, such a damping is equivalent to the purely
imaginary shift ε0 + (i/2)�abs in the Green’s function (15)
[36]. As a result, the latter becomes complex,

K = u − iv, (19)

with the negative imaginary part v > 0 (the local density of
states) [40]. The universal statistical properties of mutually
correlated random variables u and v are solely determined by
the (dimensionless) absorption rate

γ = 2π�abs/�. (20)

Their joint distribution function is known exactly [22,43] and
will be applied below to study fluctuations of S.

III. TRANSMISSION DISTRIBUTION

It is convenient to define the rescaled transmission coeffi-
cient T = |S12|2/T0, expressed in units of the peak transmis-
sion in the “clean” system. We now derive the exact results for
the transmission distribution function

Pγ (T ) = 〈δ(T − |S12|2/T0)〉, (21)

first for the ideal case of the stable background (γ = 0) and
then for the general case of finite absorption.

A. Stable chaotic background

In the case of zero absorption, K = u is real, so the
transmission coefficient is found from Eq. (14) as follows:

T = 1

1 + η2u2
. (22)

The random variable u is known [40,48] to have the standard
Cauchy distribution. This stems from the fact that the scattering
phase θ [see Eq. (18)] is distributed uniformly at special cou-
pling η = 1 [49]. The transmission distribution (21) follows
then by a straightforward integration:

P0(T ) =
∫ ∞

−∞

du

π

1

1 + u2
δ

(
T − 1

1 + η2u2

)

= 1

π
√

T (1 − T )

η

1 + (η2 − 1)T
(23)
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FIG. 2. Transmission distribution for a stable chaotic back-
ground. The probability density (top) and cumulative distribution
function (bottom) are shown at several values of the coupling pa-
rameter η = 0.2,0.5,1,2,5. The curves stand for the analytical results
(23) and (24). The histograms correspond to numerical simulations
with 5×104 realizations of random 200×200 GOE matrices. These
simulations are shown only for η = 0.2 and 5; the agreement for the
other values is similar. The numerics for the cumulative distribution
(bottom, dashed black lines) is indistinguishable from the theory
within the linewidth.

for 0 � T � 1. The corresponding cumulative distribution
function is given by

N0(T ) = 1 − 2

π
arctan

(
1

η

√
1 − T

T

)
. (24)

Both functions are represented in Fig. 2.
The distribution (23) has a bimodal shape with a square-root

singularity at both edges, which is typical for transmission
problems [1]. The mean value is readily found to be 〈T 〉 =
(1 + η)−1, in agreement with the general result (16), and the
transmission variance reads

〈T 2〉 − 〈T 〉2 = η

2(1 + η)2
. (25)

The background coupling η controls the weight of the
distribution that is concentrated near T ∼ 1 or T ∼ 0 at small
or large η, respectively. It becomes symmetric at η = 1, with
the variance attaining its maximum value. A further increase
of η leads to a sharp redistribution towards low transmission.

For applications, this sets the limit η = 1 on coupling for a
reliable signal transmission.

Figure 2 illustrates the above discussion and results. In
order to check the validity of the predictions we present them
together with numerical data from RMT simulations based
on 5×104 realizations of H

(goe)
bg blocks of size 200×200. The

parameters a,b,V [see Eqs. (7)–(9)] are chosen to give T0 =
0.8 and the various η values. (For simplicity, we took all the
elements of the constant vector �V to be equal.) The overall
agreement is flawless.

B. Background with absorption

When the absorption rate γ > 0, the complex K is given
by Eq. (19), yielding the transmission coefficient

T = 1

(1 + ηv)2 + η2u2
. (26)

The random variables u and v > 0 are mutually correlated and
have the following joint distribution [40]:

P (u,v) = 1

2πv2
P0

(
u2 + v2 + 1

2v

)
. (27)

The function P0(x), x = (u2 + v2 + 1)/2v > 1, is known
exactly at any γ [22,43] and has the meaning of the distribution
of reflection originating from the chaotic background. The
parameter x represents the background reflection coefficient
|Sbg|2 = x−1

x+1 < 1. Note that Sbg is subunitary at finite absorp-
tion, resulting in subunitary S as well.

The derivation of the transmission distribution in this case
proceeds as follows. In order to perform the integration over
(27), it is convenient to first choose the new integration variable
y = η2u2. With the definitions (21) and (26), this results in

Pγ (T ) = 1

2πηT 2

∫ ∞

0

dv

v2

∫ ∞

0

dy√
y
P0

(
u2 + v2 + 1

2v

)

× δ[y + (1 + ηv)2 − T −1]. (28)

The y integration is removed by the δ function, which restricts
the remaining integration over v to the domain T −1 − (1 +
ηv)2 = η2(v− − v)(v+ + v) > 0, with

v± = 1

η

1 ± √
T√

T
. (29)

As a result, we arrive at the following expression:

Pγ (T ) = 1

2πη2T 2

∫ v−

0

dv

v2

P0
( 1+ξ 2

2v
− 1

η

)
√

(v− − v)(v+ + v)
, (30)

where the shorthand ξ 2 ≡ v+v− = 1
η2

1−T
T

has been introduced.
It is now useful to choose p = v−/v − 1 as a new integration
variable, yielding

Pγ (T ) = 1

2πη2T 2v−ξ

∫ ∞

0

dp (1 + p)√
p[p + 2/(1+√

T )]

× P0

(
1 + v2

− + p(1 + ξ 2)

2v−

)
. (31)
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With an explicit formula for P0 found in Ref. [43], repre-
sentation (31) solves the problem exactly at arbitrary γ and
constitutes one of the main results of the paper.

Further analytical progress is possible in the phys-
ically interesting cases of weak and strong absorption
since the function P0 simplifies to the following limiting
forms [40]:

P0(x) ≈
⎧⎨
⎩

2√
π

(
γ

4

) 3
2
√

x + 1 e− γ

4 (x+1), γ � 1,

γ

4 e− γ

4 (x−1), γ � 1.

(32)

For weak absorption, γ � 1, a close inspection of Eq. (31)
shows that the dominant contribution to the integral comes
from large p ∼ 1/γ � 1. In the leading order, one can
neglect p-independent terms in the integration measure that
thereby becomes “flat.” The integration can then be performed
by making use of the limiting expression for P0 at the
small γ stated above. This results in the leading-order
correction

Pγ�1(T ) ≈ P0(T ) exp

[
−γ (1 + (η − 1)

√
T )2

8η
√

T (1 − √
T )

]
(33)

to the zero-absorption distribution (23), P0(T ). Therefore,
finite absorption modifies the typical bimodal shape of the
transmission distribution by inducing exponential cutoffs at
both edges T → 0 and T → 1.

In the opposite case of strong absorption, γ � 1, the
integral (31) is dominated by small p ∼ 1/γ � 1. Performing
an analysis similar to that above but with the large-γ form of
P0 leads to the following approximation:

Pγ�1(T ) ≈
√

γ η(1 + √
T )

4
√

π (1 − T )T 3/4
√

1 + (η2 − 1)T

× exp

[
−γ (1 − (η + 1)

√
T )2

8η
√

T (1 − √
T )

]
. (34)

This expression features the same exponential cutoffs at the
edges, but the bulk of the distribution gets more distorted
compared to that of the weak absorption limit [50].

Particularly interesting is the case of the “critical” coupling
η = 1, when the transmission distribution (23) at zero absorp-
tion is symmetric with respect to T → (1 − T ). By comparing
expressions (33) and (34), we see that such a symmetry is
largely retained at weak absorption and severely violated at
strong absorption, when high transmission becomes heavily
suppressed.

At arbitrary values of γ , the function P0 is given by a fairly
complicated expression, and the transmission distribution (31)
needs to be studied numerically (see Appendix A for further
discussion). The corresponding results are represented in Fig. 3
for three different values of the absorption rate, γ = 0.1,1,

and 5. The aforementioned bimodal form of distribution P0

vanishes with increasing absorption. For the weakly coupled
background, η � 1, one observes first the diminishing of
the high transmission peak at T ∼ 1 and then the eventual
depletion of the peak at T ∼ 0. The situation changes at
moderately strong coupling η � 1, when large transmissions
become fully suppressed. Figure 3 illustrates such behavior,

FIG. 3. Transmission distribution for a chaotic background at
finite absorption. The curves in color correspond to Eq. (31) and
are shown at the absorption rate γ = 0.1 (solid yellow curve), γ = 1
(dotted blue curve), and γ = 5 (dashed green curve). The coupling
to the chaotic background is chosen to be η = 0.2, 1, and 5 from top
to bottom. Histograms stand for numerical simulations, as detailed
in Fig. 2. Notice the disappearance of the bimodal shape of the
distribution at moderate absorption.

showing also the results of numerical simulations which match
the analytical prediction (31) perfectly.

Note that the absorption in the numerical RMT calculations
is realized by adding a constant imaginary part to the energy
levels of the background. We have also checked the agreement
by modeling absorption using fictitious channels as discussed
in [36,47]. In this case, one has to rescale the parameters
a and b in order to avoid introducing losses on the estab-
lished channel. The corresponding rescaling is presented in
Appendix B.
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IV. REFLECTION DISTRIBUTIONS

The fluctuations in reflection can be studied in a way similar
to that for the transmission. In the case of vanishing absorption,
γ = 0, the reflection distribution can actually be related to
Eq. (23). Due to the unitarity of S in this case, we have |S11|2 =
1 − |S12|2 = |S22|2. Therefore, the distribution of the reflection
coefficient Rc = |Scc|2 (c = 1,2) is determined by Eq. (23)
according to

P (refl)
0 (Rc) = 1

T0
P0

(
1 − Rc

T0

)
(35)

in the region 1 − T0 � Rc � 1 and is zero otherwise.
In the case of finite absorption, transmission and reflection

coefficients are no longer related by flux conservation. The
reflection coefficients are readily found from Eqs. (14) and (19)
in the explicit form

R1,2 = (ηv ∓ r0)2 + η2u2

(ηv + 1)2 + η2u2
, (36)

where the upper (lower) sign stands for R1 (R2). One sees that
the reflection coefficients are generally different at nonzero
r0. This is a manifestation of the interference between the
equilibrated and direct reflection induced by S0 (see the
discussion in Sec. II C).

Following steps similar to those leading to Eq. (31), we
arrive at the following representation for the distribution of the
reflection coefficient R1 at γ > 0:

P (refl)
γ (R1) = (1 + r0)

2πη2(1 − R1)2

∫ ∞

0

dp [1 − r0 + 2ηw(p)]√
p (ŵ+ + pw−)2

× (w+ + w−)√
y(p)

P0

(
1 + w(p)2 + py(p)

2w(p)

)
. (37)

Here, we have introduced the following shorthand notations:
ŵ± = 1

η

r0±
√

R1

1∓√
R1

, w± = max{0,ŵ±}, w(p) = (ŵ+ + pw−)/
(p+1), and y(p)= (ŵ+−w−)[(ŵ+−ŵ−) − p(ŵ− − w−)]/
(p + 1)2. The distribution of R2 is given by formula (37) with
the replacement r0 → −r0 everywhere.

Due to the r0 dependence of expression (37), it follows
that there is a particular difference in the distributions of the

FIG. 4. Distribution of reflection coefficients R1 (left) and R2 (right), where Rc = |Scc|2. The curves in color correspond to Eq. (37) and
are shown at the different absorption rates γ = 0.1,1, and 5 (solid yellow, dotted blue, and dashed green lines, respectively) and background
coupling η = 0.2, 1, and 5 (from top to bottom). The numerical results of RMT simulations are shown as histograms (the same statistics as in
Fig. 3 was used). The chosen deterministic transmission T0 = 0.8.
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two reflection coefficients. Without loss of generality, one can
choose r0 < 0 corresponding to the unequal channel couplings,
|b| > |a| [see Eq. (7)]. Then we have

w+ + w− =
{

0, R1 < r2
0 ,

ŵ+, R1 � r2
0 ,

(38)

for the reflection coefficient R1 and

w+ + w− =
{
ŵ+, R2 < r2

0 ,

ŵ+ + ŵ−, R2 � r2
0 ,

(39)

for R2. This implies that P (refl)
γ (R1) = 0 identically at R1 �

r2
0 = 1 − T0, leading to the same gap for small reflections

as seen in the case without absorption. The distribution of the
other reflection coefficient R2 (i.e., in the channel with stronger
coupling) does not have such a gap since expression (39) is
nonzero for all R2.

In Fig. 4 we present a comparison of the analytical result
(37) with numerical data, using the same choice of the
parameters as for the transmission distribution before. In the
general case of finite backscattering, r0 �= 0, the reflection
distributions in two channels show distinctly different behav-
ior, as discussed above. We have chosen the value of r0 =
−√

0.2, corresponding to the established transmission T0 =
0.8. Therefore, the behavior of the reflection coefficient R2

changes below 1 − T0 = 0.2, where the gap in the distribution
vanishes. The overall agreement of the theory with numerics
is flawless.

V. CONCLUSIONS AND OUTLOOK

In this work, we have formulated an approach to char-
acterize fluctuations in an established transmission that are
induced by a chaotic background. Our method is based on
the strength function formalism, adopted from and developed
in nuclear physics, providing insights for the applications of
the latter in a broader context of wave chaotic systems. The
strength of coupling to the background is controlled by the
single parameter (1), the ratio of the spreading to escape width.
Using RMT to model the chaotic background, we have derived
the transmission distribution in an exact form valid at arbitrary
uniform absorption in the background. The analytical results
are supported by extensive numerics performed by Monte
Carlo simulations with random matrices.

The distribution has a bimodal shape, with two peaks at
low and high transmission that are exponentially suppressed
at finite absorption. It takes simple limiting forms in the
physically interesting cases of weak and strong absorption,
which we have discussed in detail as well. Fluctuations in
high transmission are found to be affected more strongly by
finite absorption, when the background coupling exceeds a
certain limiting value. These results may be relevant in the
reliability context of wireless communication devices [5].

The method developed is very flexible in incorporating
physical properties of the system. In particular, we have
neglected absorption of the transmission line itself; however,
the latter can be important for experimental realizations,
e.g., including ongoing research with chaotic reverberation
chambers. Such an extra damping can be naturally accom-
modated in the theory with a simple rescaling procedure as
outlined in Appendix B. Within the framework of wireless

communication, the relevant parameters can be potentially
extracted by different calibration experiments [51]. Following
[52,53], one can also include effects due to nonuniform
absorption in the environment. The method can be generalized
to other types of the chaotic background (e.g., without time
reversal) as well as to multichannel transmission, where
the complete characterization of both reflection and total
transmission in terms of their joint distribution is actually
possible and will be reported elsewhere [54]. Therefore, we
expect our results to find further applications in studying wave
propagation with complex environments.
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APPENDIX A: ACCURACY OF THE
INTERPOLATION FORMULA

In order to ease both implementation and analytical treat-
ment of the exact expressions, one can use a much simpler
interpolating formula for function P0, which was suggested
in [40]:

P (int)
0 (x) = C−1

γ [Aγ

√
γ (x + 1) + Bγ ]e− γ

4 (x+1). (A1)

Here, Aγ = (eγ/2 − 1)/2, Bγ = 1 + γ

2 − eγ/2, and the nor-
malization constant Cγ = 4

γ
[2�( 3

2 ,
γ

2 )Aγ + e−γ /2Bγ ], with
�(ν,α) being the upper incomplete gamma function. This
formula was previously found to work surprisingly well when
compared to the exact result [43]. Here, we show that the level
of agreement with the full implementation of the exact P0

yields equally good results.
Figure 5 shows two types of the three analytical curves

derived from Eqs. (31) and (37): one time calculated using P0

FIG. 5. Accuracy of the interpolation formula. The exact distri-
butions of T , R1, and R2 are shown as solid blue, yellow, and green
lines, respectively. Dashed black lines show the same functions from
Eqs. (31) and (37) but using the interpolation formula P(int)

0 from
Eq. (A1). All curves are for η = 1, γ = 1, and T0 = 0.8. For other
parameter values the correspondence is equally good.
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and one time calculated by P(int)
0 . The biggest deviations can

be found towards 0 and 1 or around r2
0 in the reflection dis-

tributions. However, the overall accuracy of the interpolation
formula is very good.

APPENDIX B: ABSORPTION OF THE
TRANSMISSION LINE

As mentioned in the main text, the derived distributions
of transmission and reflection do not include a possible
absorption of the single level ε0. The latter can be easily
incorporated by shifting ε0 → ε0 − (i/2)�(0)

abs in Eqs. (9) and
(11), where the absorption width �

(0)
abs of the transmission line is

generally different from that of the background. This amounts
to replacing �0 → �0 + �

(0)
abs and thereby the channel coupling

constants a and b by

a′ = a

√
1 + �

(0)
abs

/
�0, b′ = b

√
1 + �

(0)
abs

/
�0. (B1)

This results in the following rescaling of the parameters:

T0 → T ′
0 = T0

(
1 + �

(0)
abs

/
�0

)−2
, (B2)

η → η′ = η
(
1 + �

(0)
abs

/
�0

)−1
(B3)

in expressions (31) and (37). Using these variables allows us
to predict the corresponding distributions also in the case of
finite absorption of the transmission line.
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