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Recently, infinite-dimensional delay coordinates (InDDeCs) have been proposed for predicting high-
dimensional dynamics instead of conventional delay coordinates. Although InDDeCs can realize faster
computation and more accurate short-term prediction, it is still not well-known whether InDDeCs can be used in
other applications of nonlinear time series analysis in which reconstruction is needed for the underlying dynamics
from a scalar time series generated from a dynamical system. Here, we give theoretical support for justifying
the use of InDDeCs and provide numerical examples to show that InDDeCs can be used for various applications
for obtaining the recurrence plots, correlation dimensions, and maximal Lyapunov exponents, as well as testing
directional couplings and extracting slow-driving forces. We demonstrate performance of the InDDeCs using the
weather data. Thus, InDDeCs can eventually realize “dimensionless embedding” while we enjoy faster and more
reliable computations.

DOI: 10.1103/PhysRevE.96.032219

I. INTRODUCTION

Reconstruction of the underlying dynamics is the first step
to analyze its behavior based on the limited observations,
namely a time series. A very popular approach used over
the past 35 years has been to reconstruct states for the
underlying dynamics by using delay coordinates [1,2]. Delay
coordinates collectively represent a vector constructed by
arraying successive observations of a time series. Given a
time series generated by a continuous-time dynamical system,
we need to choose two parameters; namely, the time delay
and the embedding dimension. The common rules of thumb
for choosing the time delay and the embedding dimension
for the past 25 years have been to apply, for example, the
first minimum of mutual information [3] and the false nearest
neighbor method [4], respectively.

Two years ago, we proposed an alternative approach by
using infinite-dimensional delay coordinates [5] (InDDeCs)
for reconstructing the underlying dynamics by extending
weighted delay coordinates [6–9]. In InDDeCs, we virtually
consider an infinite-dimensional vector whose components
decay exponentially when they become older. We can access
these virtual coordinates by recycling the previous distances
to calculate the current distances. In Ref. [5], we demonstrated
that InDDeCs have three advantages compared with the
conventional delay coordinates: (i) the ability to take into
account high-dimensional dynamics; (ii) faster computation;
and (iii) more accurate short-term prediction. However, it is
not currently well-known whether InDDeCs can be used for
the other applications of nonlinear time series analysis.

Therefore, we provide herein the theoretical justifications
for why InDDeCs may be used to reconstruct the underlying
dynamics instead of the conventional delay coordinates, as
well as providing numerical examples for other applications.
We demonstrate our method using the weather data at Akita,
Japan. In other words, InDDeCs realize an “embedding”
without considering the dimensions explicitly. Our assumption
here is that we need to obtain a distance matrix for a given time
series in applications; if we only need to obtain distances for
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neighboring points, we may use another approach, such as the
k-d tree [10].

II. RESULTS

A. Theorems

To state our theoretical results more rigorously, we formally
introduce our current mathematical setup. We consider a
dynamical system f : M → M of a diffeomorphism on an
m-dimensional manifold M and its observation function g :
M → R. Then, delay coordinates can be written as Gd (x) =
(g(x),g(f −1(x)),g(f −2(x)), . . . ,g(f −d+1(x))). If d � 2m +
1, then it is a generic property [1] that x and Gd (x) are one-
to-one on M . This theorem by Takens [1] has been extended
by using the box-counting dimension [2] and for a forced
system [11]. On the other hand, InDDeCs can be written as
Hλ(x) = (g(x),λg(f −1(x)),λ2g(f −2(x)), . . .), where we need
to enforce λ ∈ (0,1) so that the following L1 metric between
Hλ(x) and Hλ(y) converges:

‖Hλ(x) − Hλ(y)‖L1 =
∞∑

c=0

λc|g(f −c(x)) − g(f −c(y))|. (1)

It is easy to see that the L1 metric ‖Hλ(f (x)) −
Hλ(f (y))‖L1 for a step ahead can be calculated by using
‖Hλ(x) − Hλ(y)‖L1 by

|Hλ(f (x)) − Hλ(f (y))|L1

=
∞∑

c=0

λc|g(f −c+1(x)) − g(f −c+1(y))|

= |g(f (x)) − g(f (y))| + λ|Hλ(x) − Hλ(y)|L1 . (2)

In reality, as shown below, we can speed up the calculations
for a distance matrix and obtain a recurrence plot [12,13] by
using Eq. (2). We may introduce a time delay for defining
Hλ(x) as the common practice, as Ref. [3] does for the
conventional delay coordinates.

Then, the following two theorems hold:
Theorem 1 (One-to-one). If x and Gd (x) are one-to-one,

then Gd (x) and Hλ(x) are one-to-one, and thus x and Hλ(x)
are one-to-one.
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FIG. 1. Recurrence plots of the Rössler model obtained by the infinite-dimensional delay coordinates (InDDeCs) and the conventional
three-dimensional delay coordinates. Panels (a), (d), and (g) show the recurrence plots obtained by InDDeCs with λ = 0.1,0.5, and 0.9,
respectively. Panels (b), (e), and (h) show the recurrence plots obtained by the conventional delay coordinates using all the distances with the
embedding dimensions of 1, 3, and 10, respectively. Panels (c), (f), and (i) show the recurrence plots obtained by the k-d tree [10] with the
embedding dimenisons of 1, 3, 10, respectively. In panels (a), (b), (d), (e), (g), and (h), exactly 1% of places have the plotted points, while in
panels (c), (f), and (i), nearly 1% point of distances was used to plot the recurrence plots.

Theorem 2 (equivalence of metrics). Let L be the infimum
for the local minimum Lyapunov exponent for the system. If
λ < eL, then the L1 metric for Hλ(x) is bounded from above
and below by the L1 metric for Gd (x). Namely, under the
condition, the L1 metric for Hλ(x) is equivalent to the L1

metric for Gd (x).
Refer to Appendix A for the proofs of these theorems. Due

to Theorems 1 and 2, it is reasonable to assume theoretically
that one can calculate the dynamical invariants for the system,
such as the correlation dimension [14] and maximal Lyapunov
exponent [15,16] by using InDDeCs.

B. Obtaining a distance matrix

To evaluate the correlation dimension and maximal Lya-
punov exponent, as well as obtaining a recurrence plot, the
calculation for a distance matrix is necessary, within which we
can find a distance between two states corresponding to any

pair of time points. Thus, we implemented the calculation as
discussed in Appendix B 1, and in the following applications,
we replace the calculation of a distance matrix using the
conventional delay coordinates by using InDDeCs.

By using InDDeCs, we can obtain a recurrence plot [12,13],
which represents a two-dimensional plot originally proposed
for visualizing time series data. Both axes correspond to the
same time axes of the time series. For every pair of time points,
we evaluate whether the corresponding states are close to each
other. If and only if they are sufficiently close, we plot a point
at the corresponding place in the two-dimensional plot.

C. Recurrence plots

We compared recurrence plots obtained from a scalar time
series generated from the Rössler model [17] using InDDeCs
and the conventional three-dimensional delay coordinates
[Compare Figs. 1(a), 1(d), and 1(f) with Figs. 1(b), 1(e),
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FIG. 2. The average accuracy of the obtained recurrence plots among 10 trials against to those for the conventional delay coordinates with
the time points between 1001 and 2000. In panel (a), we compared recurrence plots (the red solid line) obtained by the InDDeCs using λ = 0.1
with recurrence plots obtained by the decomposition of Eq. (4) of Ref. [5] using the L1 metric (the blue dashed line) and recurrence plots
obtained by the k-d tree [10] (the green dash dotted line) using the embedding dimension of 1. In panels (b) and (c), the similar figures are
shown with λ = 0.5 and 0.9 and the embedding dimensions of 3 and 10, respectively.

and 1(h)]. We found that these recurrence plots look very sim-
ilar to each other (Fig. 2): namely, if λ is small and close to 0,
then the recurrence plot obtained by the InDDeCs looks similar
to that obtained by low-dimensional delay coordinates, while if
λ is large and close to 1, then the recurrence plot obtained by the
InDDeCs looks similar to that obtained by high-dimensional
delay coordinates (Figs. 1 and 2). However, InDDeCs have
some advantages in the computational times required (Fig. 3).
For example, when λ = 0.5, InDDeCs needed 3.31 ± 0.16 s
on average to calculate the distance matrix when a given time
series is at the length 10 000, while the conventional three-
dimensional delay coordinates using the L1 metric needed
3.62 ± 0.12s on average even if we used the decomposition of
Eq. (4) shown in Ref. [5]. When we did not use such decom-
position and applied the conventional method for calculating
the L2 metric, we required 248.66 ± 1.88s on average.

For a stricter comparison, we used the k-d tree [10] to obtain
recurrence plots for the same data (see Figs. 1–3). When we
used the k-d tree, we use the first 400 time points to estimate
1% point of distances. Then, we used the estimated 1% point of
distances to obtain pairs of times where the distance is less than
the estimated 1% point. We found that the computational time
for the k-d tree were slower for shorter time series, became

comparable with the InDDeCs when the length was more than
or equal to 5000 (Fig. 3). In addition, the accuracies evaluated
were also similar. Taking into account that the InDDeCs obtain
the whole distance matrix, while the k-d tree extracts only pairs
of neighbors, the results of the InDDeCs are more informative
and useful than those of the k-d tree if we use the similar
computational resources. In addition, we note that if we also
want to obtain the distances between neighbors so that we can
plot 1% of places exactly, the method using the k-d tree needs
more time.

D. Correlation dimensions and maximal Lyapunov exponents

When we evaluated the correlation dimensions [14]
(Appendix B 2) as well as the maximal Lyapunov exponents
[15,16] (Appendix B 3), the values obtained seemed to depend
on which λ we used (Fig. 4). However, the means of the
estimated values coincided well with the values provided in
the literature [14,18,19] (see Fig. 4 and Tables I and II). To
imply deterministic chaos or strangeness, we may combine the
correlation dimension and the maximum Lyapunov exponent
with surrogate data [20,21]. As demonstrated in Figs. 5 and 6,
the correlation dimension and the maximal Lyapunov exponent
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FIG. 3. The average times required among 10 trials for the InDDeCs (the red solid line) and the conventional delay coordinates with a
normal implementation using the L2 metric (the black dotted line), as well as the decomposition of Eq. (4) of Ref. [5] using the L1 metric (the
blue dashed line) to obtain the corresponding distance matrices given a length of time series. In addition, the calculation times required by the
k-d tree were shown in the green dash-dotted line. In panel (a), we used λ = 0.1 and the embedding dimension of 1. In panel (b), we used
λ = 0.5 and the embedding dimension of 3. In panel (c), we used λ = 0.9 and the embedding dimension of 10. For these calculations, we used
a computer with 2.7 GHz 12-Core Intel Xeon E5 with 64 GB memory.

for the autoregressive linear model (x(t + 1) = −0.8x(t) +
ξ (t), where ξ (t) follows the Gaussian distribution with mean 0
and standard deviation 1) were 95% confidence intervals of the
iteratively adjusted Fourier transform surrogates [21], while
those values for the Hénon map [22] were not. Thus, it may be
worth expanding the use of InDDeCs for these applications.

E. Applications to forced systems

InDDeCs have their strongest potential when they are
applied along with Stark’s embedding theorem [11] for forced
systems. Stark’s embedding theorem can be used for detecting
directional couplings [23,24] and extracting slow-driving

forces [25,26]. Although there are some rules of thumb for
choosing the embedding parameters for Takens’ embedding
theorem [1], such as the first minimum of mutual information
[3] and the false nearest neighbor method [4], there are no
known practical rules of thumb for Stark’s theorem [11].
However, if we use InDDeCs, we do not have to worry much
if the embedding dimension is higher than twice the sum of
the dimensions for a driving force and its forced system.

First, we show some examples for detecting directional
couplings (see Fig. 7). We implemented the method using
the joint distribution of distances [24] with InDDeCs (see
Appendix B 4 for the detail). Namely, we leverage the
characteristic whereby the distances for the reconstructed

TABLE I. Estimated values using InDDeCs and values known in the literature for correlation dimensions. Each value shown with ±
represents the mean and standard deviation for the estimated values.

Estimated using InDDeCs Known in the literature

Hénon map (mean over λ ∈ [0.01,0.1]) 1.2307 ± 0.0135 1.21 ± 0.01 (Ref. [14])
Lorenz model (R = 28,σ = 10,b = 8/3) (mean over λ ∈ [0.01,0.99]) 1.8488 ± 0.2967 2.05 ± 0.01 (Ref. [14])
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FIG. 4. Correlation dimensions and maximal Lyapunov exponents estimated using InDDeCs. Panels (a) and (b) are for correlation
dimensions and Panels (c)–(f) are for maximal Lyapunov exponents. Panels (a) and (c) are for the Hénon map. Panels (b) and (d) are
for the Lorenz model with sets of parameters (R = 28, σ = 10, b = 8/3) and (R = 40, σ = 16, b = 4), respectively. Panel (e) is for the Ikeda
map and panel (f) is for the Rössler model. For each panel, the estimation using InDDeCs is shown in the blue solid line and the estimation in
the literature is shown in the red dashed line.

space for A become small when those for B are small, if A
drives B [23,24]. When we try to identify directional couplings
using toy models composed by coupled logistic maps (the
first to the third examples of Ref. [24]), the method detected
directional couplings appropriately, whose results did not
depend much on the parameter λ. Namely, when two logistic
maps were mutually coupled (Appendix B 5), directional
couplings tended to be identified correctly [Figs. 7(a) and 7(b)];
when two logistic maps were driven by another logistic map
(Appendix B 6), the directional couplings identified did not
depend much on the coupling parameters that decided the
driving strengths [Figs. 7(c) and 7(d)]; and even when there

was a driving force affecting two logistic maps which were
mutually coupled (Appendix B 7), the directional couplings
between the mutually coupled logistic maps were identified
correctly [Figs. 7(e) and 7(f)]. Thus, the method using the
joint distribution of distances seems to work well with
InDDeCs.

Second, we present some examples for extracting slow-
driving forces using the methods of Refs. [25,26] (see
Appendix B 8 for the detail). We used the Hénon map [22]
driven by the Lorenz model [27] and the Rössler model [17]
(see Appendix B 9). We found that the driving forces modelled
by the Lorenz model and the Rössler model were identified

TABLE II. Estimated values using InDDeCs and values known in the literature for maximal Lyapunov exponents. Each value shown with
± represents the mean and standard deviation for the estimated values.

Estimated using InDDeCs Known in the literature

Hénon map (bits/obs.) (mean over λ ∈ [0.01,0.1]) 0.6240 ± 0.0075 0.6223 (Ref. [19], metric entropy)
Ikeda map (bits/obs.) (mean over λ ∈ [0.01,0.1]) 0.6651 ± 0.1024 0.7450 (Ref. [19], metric entropy)
Lorenz model (nats/unit time) (R = 40,σ = 16,b = 4) 1.3846 ± 0.4472 1.37±0.08 (Ref. [18])
(mean over λ ∈ [0.01,0.99])
Rossler model (nats/unit time) (mean over λ ∈ [0.01,0.99]) 0.0608 ± 0.0116 0.073±0.004 (Ref. [18])
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FIG. 5. Surrogate tests using correlation dimensions. We used the random shuffle surrogates [20] (the black dotted lines), phase randomized
surrogates [20] (the blue dash-dotted lines), and iterative amplitude adjusted Fourier transform (IAAFT) surrogates [21] (the green dashed
lines), respectively. Each of the two lines show 95% confidence intervals obtained by 40 surrogates each. The red solid thick line shows the
lines obtained from the original data. In panel (a), we show the results for the autoregressive linear model, and in panel (b), we show the results
for the Hénon map. The length of time series generated was 2000 each. We applied the end-to-end matching [35] as a preprocessing to avoid
spurious high frequency components during the Fourier transforms.

correctly when the parameter λ was in the appropriate range,
i.e., between 0.17 and 0.88 (see Fig. 8). Therefore, by using
InDDeCs, slow-driving forces appear to have been identified
correctly.

An important problem we will encounter when we analyze
a real dataset is how many driving forces we should choose.
When we predicted 25 steps ahead by taking into account the
reconstructed slow-driving forces with the radial basis function
model [28], we found that the prediction errors decreased up
to the second driving force (Fig. 9). But when we included the
third driving force, the prediction errors did not decrease to a
great extent (Fig. 9). Thus, we can validate the reconstructed
driving forces with time series prediction.

Last, we show a real world example for detecting directional
couplings and slow-driving forces in the weather at Akita,
Japan (see Appendix B 10). The slow-driving forces recon-
structed from the temperature, the solar irradiance, the precip-
itation, and the wind speed and validated by 12 h ahead time
series prediction (Fig. 10) were shown in Figs. 11(a)–11(d).
Here, we used the method of Ref. [29] to ensure the
continuity for the reconstructed driving forces. Thus, we
saw abnormal behavior, especially for the driving force
reconstructed from the precipitation at the beginning of the

time series. Thus, we compared the reconstructed driving
forces between January 2011 and May 2015 and found that
these reconstructed driving forces showed strong correlations
between most pairs of possible combinations (Table III).
Thus, their drivers seem to reflect similar behavior. When
we identified directional couplings by means of the original
method using the joint distribution of distances with the
conventional delay coordinates, directional couplings failed
to be identified, especially if a pair of combinations contained
the precipitation or solar irradiance [see Fig. 11(e)], both of
which were intermittent and contained many continuous zeros
(Fig. 12). For example, observe that the directional coupling
from the wind speed to precipitation was not identified. But, if
we applied the method using the joint distribution of distances
with InDDeCs, we did not have many problems related to
these intermittent nonzero observations and we succeeded in
identifying directional couplings, even for the pairs related
to the precipitation and solar irradiance [see Fig. 11(f),
especially the coupling direction from the wind speed to pre-
cipitation], implying that each weather variable demonstrates
aspects of the same underlying dynamics. This detectability
could be the strongest point among the applications of
InDDeCs.

032219-6



DIMENSIONLESS EMBEDDING FOR NONLINEAR TIME . . . PHYSICAL REVIEW E 96, 032219 (2017)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

0

0.2

0.4

0.6

0.8

M
ax

im
um

 L
ya

pu
no

v 
ex

po
ne

nt

(a) 

 

 Original

Random shuffle

Phase randomized

IAAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

0

0.2

0.4

0.6

0.8

M
ax

im
um

 L
ya

pu
no

v 
ex

po
ne

nt

(b) 

 

 
Original

Random shuffle

Phase randomized

IAAFT

FIG. 6. Surrogate tests using the maximum Lyapunov exponents. See the caption of Fig. 5 to interpret the results.

We classified the topologies of temporal networks into
two types using the k-mean algorithm [30] (Fig. 13). In
the cluster 0, the solar irradiance drives the temperature, and
the temperature and the wind speed drive the precipitation. In
the cluster 1, the wind speed drives the precipitation. Note that
the topology of the cluster 1 is a subnetwork for the topology of
the cluster 0. We also found that the cluster 0 is likely to appear
in the summer while the cluster 1 is likely to appear in the
winter (Fig. 14). To validate the inferred network topology, we
attempted to predict the precipitation 1 hour ahead by taking
into account the temperature and the wind speed. We found that
by considering the temperature as well as the wind speed, we
could improve the time series prediction for the precipitation
(Fig. 15). This result is consistent with the found topology.

There is another support for the network topology of
cluster 0: The reconstructed and validated driving force for
the precipitation has large correlation coefficients with those
for the temperature and the wind speed (Table III). This finding
also agrees with the network structure shown for the cluster 0
in Fig. 13.

III. DISCUSSION

It is common to estimate the spectrum of the Lyapunov
exponents [18] for characterizing the high-dimensional dy-
namics. However, because such a method produces the
exponents whose number is equal to the dimension, one might
encounter spurious exponents [31] if we do not know the exact
number for the dimension of the underlying dynamics and use
higher embedding dimension. That would be our reason to
recommend the estimation of the maximal Lyapunov exponent
based on a distance matrix if we are not sure how large
the dimension for the underlying dynamics is. By using the
maximal Lyapunov exponent, one can tell at least whether the
underlying dynamics is chaotic or not.

If a given time series has a high sampling rate, then we may
use the time delay as Ref. [3] to control the sampling rate so
that we use a fewer time points for the analysis.

The decaying factor λ works similarly to the embedding
dimension. However, there is also a qualitative difference be-
tween them: when we use the conventional delay coordinates,

TABLE III. Correlation coefficients between the validated principal driving forces reconstructed from the temperature, the precipitation,
the solar irradiance, and the wind speed at Akita, Japan.

Temperature Solar irradiance Precipitation Wind speed

Temperature 1 0.4315 0.5095 −0.0370
Solar irradiance 0.4315 1 0.3221 −0.0316
Precipitation 0.5095 0.3221 1 0.2774
Wind speed −0.0370 −0.0316 0.2774 1
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FIG. 7. Identifying directional couplings depending on parameter
λ of InDDeCs and coupling strengths ηyx and ηxy in the examples of
coupled logistic maps. In the first and second rows, we used mutually
coupled logistic maps x and y. In the third and fourth rows, we
used logistic maps x and y driven by another logistic map z. In the
fifth and sixth rows, we used mutually coupled logistic maps x and
y driven by another logistic map z. In each row, the left, center,
and right columns correspond to the results of λ = 0.1,0.5, and 0.9,
respectively. In each panel, the logarithms for the p values were
shown. In the white regions, the p values were smaller than 0.01,
representing significance. The darker regions show greater p values,
which are not significant.

we could not retain the information for the time before
(the embedding dimension)×(the time delay), while with
InDDeCs, we could retain such information, which is
subject to the observational noise. This difference was the
most prominent in the example on identifying directional
couplings, especially the coupling direction from the wind
speed to the precipitation, which is naturally prominent
around low atmospheric pressures.

Theorem 2 means that achieving the one-to-one corre-
spondence between the conventional delay coordinates and
InDDeCs might be too demanding if the underlying dynamics
is in a very high-dimensional space, wherein if the minimum
for the local Lyapunov exponent would be negative and its
absolute value is large, the appropriate decaying parameter
could be very close to zero. In such a case, we might follow
the approach of Berry et al. [9], reducing the dimension and
giving up the estimation of the invariant measures because
the invariant measures had been somehow optimized for
characterizing low-dimensional dynamics historically. This
approach in Berry et al. [9] sounds reasonable, judging from
the fact that we could identify the directional couplings and
the slow drivers correctly in the wide ranges of the decaying
parameters (see Figs. 7 and 8). However, to justify this
approach using InDDeCs, another set of mathematical support
must be prepared, which would be an open question.

Here we assume that InDDeCs are used for some appli-
cation of nonlinear time series analysis where we need a
distance matrix, namely, each distance for every pair of time
points. Thus, implicitly we assume that we already have the
whole dataset. If we would like to apply InDDeCs to online
streaming data, we need to use the different approach that had
been discussed in Ref. [5].

In this paper, we have shown theoretically that the
infinite-dimensional delay coordinates (InDDeCs) have good
one-to-one and metric equivalence characteristics when the
parameter λ of the decaying factor is chosen appropriately.
We have also demonstrated numerically that we can more
quickly obtain a recurrence plot that looks similar to the one
obtained from the conventional delay coordinates. InDDeCs
can be also used for estimating the correlation dimensions
and the maximal Lyapunov exponents, as well as identifying
directional couplings and slow-driving forces. Thus, in
short, InDDeCs establish an “embedding” without explicitly
considering the dimensions of target systems. We hope that
this new tool helps elucidate the underlying mechanisms for
many interesting dynamical systems.
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APPENDIX A: PROOFS

1. Proof for one-to-one correspondence

Let f : M → M represent a dynamical system defined as
a diffeomorphism on an m-dimensional manifold M , and let
g : M → R represent an observation function. Then, a set
of delay coordinates can be described by Gd (x) = (g(x),
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FIG. 8. Driving forces and their reconstructions. (a) Correlation coefficients between driving forces and their reconstructions using InDDeCs
depending on the parameter λ. The blue solid line corresponds to the driving force constructed by the Lorenz model, while the red dash-dotted
line corresponds to the driving force constructed by the Rössler model. (b) The original driving force of the Lorenz model (the black solid
line) and its reconstruction (the blue dashed line) when λ = 0.62. (c) The original driving force of the Rössler model (the black solid line) and
its reconstruction (the red dashed line) when λ = 0.62. In Panels (b) and (c), we plotted the reconstructed driving forces so that the means,
standard deviations, and direction are matched with the original driving forces.

g(f −1(x)),g(f −2(x)), . . . ,g(f −d+1(x))), while a set of
infinite-dimensional delay coordinates is described by
Hλ(x) = (g(x),λg(f −1(x)),λ2g(f −2(x)), . . .), where we set
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FIG. 9. The validation for the reconstructed driving forces using
time series prediction in the example of Fig. 8. The prediction errors
are shown by box plots. When we take into account the reconstructed
slow-driving forces up to the second one, the prediction errors have
improved significantly. We used λ = 0.62 as an example.

λ ∈ (0,1). Suppose that the embedding theorem by Tak-
ens [1] is satisfied and there is one-to-one correspon-
dence between x and Gd (x) on the manifold (simi-
lar proofs can be established for those theorems by
Sauer et al. [2] and Stark [11]). To connect Gd (x) and
Hλ(x), we consider some intermediate steps Hλ,c(x) =
(g(x),λg(f −1(x)),λ2g(f −2(x)), . . . ,λc−1g(f −c+1(x))), where
c � d.

Let us start by establishing one-to-one correspondence
between Gd (x) and Hλ,d (x). Suppose Gd (x) = Gd (y). Then,
we have

(g(x),g(f −1(x)),g(f −2(x)), . . . ,g(f −d+1(x)))

= (g(y),g(f −1(y)),g(f −2(y)), . . . ,g(f −d+1(y))). (A1)

By multiplying the nth component by λn−1, we have

(g(x),λg(f −1(x)),λ2g(f −2(x)), . . . ,λd−1g(f −d+1(x)))

= (g(y),λg(f −1(y)),λ2g(f −2(y)), . . . ,λd−1g(f −d+1(y))),

(A2)

which can be rewritten by Hλ,d (x) = Hλ,d (y).
We also prove the converse. Suppose that

Hλ,d (x) = Hλ,d (y). Then, this equality means element-wise
λn−1g(f −n+1(x)) = λn−1g(f −n+1(y)). Because λ ∈ (0,1),
especially λ �= 0, we have g(f −n+1(x)) = g(f −n+1(y)) for
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FIG. 10. The validations for the reconstructed driving forces for the weather data at Akita, Japan. Panels (a), (b), (c), and (d) correspond
to the temperature, the solar irradiance, the precipitation, and the wind speed, respectively. For the temperature, the solar irradiance, and the
precipitation, the first driving force significantly reduced the prediction errors. For the wind speed, we found the third driving force reduced
the prediction errors. Thus, later we selected these driving forces to conduct the further analysis.

each n between 1 and d. Thus, we have

Gd (x) = (g(x),g(f −1(x)),g(f −2(x)), . . . ,g(f −d+1(x)))

= (g(y),g(f −1(y)),g(f −2(y)), . . . ,g(f −d+1(y)))

= Gd (y). (A3)

Thus, the converse is also true. Thus, Hλ,d (x) = Hλ,d (y) if
and only if Gd (x) = Gd (y).

Next, we prove that Hλ,m+1(x) = Hλ,m+1(y) if and only
if Hλ,m(x) = Hλ,m(y) for m � d. First, we prove the case of
m = d. Due to the above proof, Hλ,d (x) = Hλ,d (y) if and only
if Gd (x) = Gd (y). In addition, due to the initial assumption,
we have Gd (x) = Gd (y) if and only if x = y. Because f is
a diffeomorphism, we have a unique value of g(f −d (x)) =
g(f −d (x)). By multiplying by λd , we have λdg(f −d (x)) =
λdg(f −d (x)). This equality means that we have Hλ,d+1(x) =
Hλ,d+1(y). The converse is almost trivial if we start with

Hλ,d+1(x) = (g(x),λg(f −1(x)),λ2g(f −1(x)), . . . ,

λdg(f −d (x)))

= (g(y),λg(f −1(y)),λ2g(f −1(y)), . . . ,

λdg(f −d (y))) = Hλ,d+1(y) (A4)

and drop the last element to have

Hλ,d (x) = (g(x),λg(f −1(x)),λ2g(f −1(x)), . . . ,

λd−1g(f −d+1(x)))

= (g(y),λg(f −1(y)),λ2g(f −1(y)), . . . ,

λd−1g(f −d+1(y))) = Hλ,d (y). (A5)

Therefore, we proved that Hλ,d+1(x) = Hλ,d+1(y) if and
only if Hλ,d (x) = Hλ,d (y).

Similarly, we can prove Hλ,m+1(x) = Hλ,m+1(y) if and only
if Hλ,m(x) = Hλ,m(y) for m � d.

Using the first part of the proof once and the second part
of proof inductively, we reach our proposition that Hλ(x) =
Hλ(y) if and only if Gd (x) = Gd (y), and thus if and only if
x = y. Thus, we have proved the one-to-one property for the
infinitely dimensional delay coordinates.

2. Proof for equivalence between the conventional delay
coordinates and the infinite-dimensional delay coordinates

Let L and L be the supremum and the infimum, respectively,
for the local maximum and minimum Lyapunov exponents,
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FIG. 11. Reconstructed driving forces and directional couplings for the weather at Akita, Japan. Panels (a), (b), (c), and (d) are the validated
principal components for the driving forces reconstructed by using InDDeCs for the temperature, solar irradiance, precipitation, and wind
speed, respectively. Panels (e) and (f) represent the directional couplings identified using the method of joint distribution for distances using
(e) the conventional delay coordinates and (f) InDDeCs. The gray scales show the p values in the logarithm using base 10. Namely, the white
regions correspond to significant pairs of the time and coupling direction with the significance level of 0.01. The darker regions have higher p

values, which are not significant.

which are independent of the positions on the attractor. In
addition, we define

δD(t1,t2) = ‖GD(x(t1)) − GD(x(t2))‖L1 , (A6)

and
�D(t1,t2) = ‖Hλ,D(x(t1)) − Hλ,D(x(t2))‖L1 . (A7)

Then, it is reasonable to assume that

δD(t1 − nD,t2 − nD)eLnD

� δD(t1,t2) � δD(t1 − nD,t2 − nD)eLnD. (A8)
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FIG. 12. Parts of time series for the weather at Akita, Japan. Panel (a) corresponds to the temperature, panel (b) corresponds to the
precipitation, panel (c) corresponds to the solar irradiance, and panel (d) corresponds to the wind speed. Because the time series data shown
correspond to the beginning of January, which means the winter season, we could not see the clear daily cycle for the temperature in panel (a)
for the first four days, possibly due to the accumulated snow.

In addition, we have

λDδD(t1,t2) � �D(t1,t2) � δD(t1,t2), (A9)

(a)

Solar

irradiance
Temperature Precipitation

Wind speed

(b)

Precipitation

Wind speed

FIG. 13. Estimated network structures. By classifying the es-
timated network structures using the k-mean algorithm [30], we
identified two typical structures, which are denoted by cluster 0
[panel (a)] and cluster 1 [panel (b)].

and

‖Hλ(x(t1)) − Hλ(x(t2))‖L1
=

∞∑

n=0

λnD�D(t1 − nD,t2 − nD).

(A10)
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FIG. 14. The frequency of estimated network structures depend-
ing on the month within a year.
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FIG. 15. Validation for the estimated network structures. Based on the results for the cluster 0 of Fig. 13, the precipitation is driven by the
temperature and/or the wind speed. Thus, we tested whether the measurements for the temperature and the wind speed help to improve the
prediction for the precipitation. We found that by taking into account the temperature and the wind speed, the 1-h-ahead time series prediction
for the precipitation has been improved significantly. Thus, the finding in Fig. 13 seems appropriate.

Thus, ‖Hλ(x(t1)) − Hλ(x(t2))‖L1 can be upper-bounded as

‖Hλ(x(t1)) − Hλ(x(t2))‖L1

�
∞∑

n=0

λnDδD(t1 − nD,t2 − nD)

�
∞∑

n=0

(λe−L)
nD

δD(t1,t2) = δD(t1,t2)

1 − (λe−L)D
, (A11)

if λe−L < 1. Moreover, ‖Hλ(x(t1)) − Hλ(x(t2))‖L1 can be
lower-bounded as

‖Hλ(x(t1)) − Hλ(x(t2))‖L1

� λD

∞∑

n=0

λnDδD(t1 − nD,t2 − nD)

� λD

∞∑

n=0

(λe−L)
nD

δD(t1,t2) = λDδD(t1,t2)

1 − (λe−L)
D

, (A12)

if λe−L < 1.
Therefore, when λ < min{eL,eL} = eL, we have

λDδD(t1t2)

1 − (λe−L)
D

� ‖Hλ(x(t1)) − Hλ(x(t2))‖L1 � δD(t1,t2)

1 − (λe−L)D
,

(A13)

and the two metrics δD(t1,t2) and ‖Hλ(x(t1)) − Hλ(x(t2))‖L1

are equivalent.

When a metric is sandwiched with another metric in this
manner, the correlation dimensions estimated for both metrics
agree with each other [32]. That is one of the reasons why we
call these two metrics equivalent.

Note: The condition of λ < eL is, intuitively, comple-
mentary for the condition described in Berry et al. [9] for
dimension reduction. Thus, our condition is reasonable from
this viewpoint as well.

APPENDIX B: DETAILS FOR NUMERICAL
CALCULATIONS

1. Calculation for distance matrices using InDDeCs

Suppose that we calculate the distance matrix S ∈ RI×I

for a scalar time series {si ∈ R|i = 1,2, . . . ,I } with length I

using InDDeCs. In addition, let s be the difference between
the minimum and the maximum of {si}. Then, we apply the
following algorithm to calculate S:

For i from 1 to (n-1)
Calculate the (i,1) element as follows:

S(i,1) := λs

1 − λ
+ |si − s1|. (B1)

Copy it to the (1,i) element:

S(1,i) := S(i,1). (B2)

For j from 2 to (i-1)
Calculate the (i, j ) element as follows:

S(i,j ) := λS(i − 1,j − 1) + |si − sj |. (B3)
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Copy it to the (j , i) element:

S(j,i) := S(i,j ). (B4)

This algorithm means that if we go back to a time point
before the beginning of the given time series, we insert the
dummy value s for the past distances. By this algorithm, we
will overcome the differences of dimensions we can access.

There is another remark here: This implementation for
InDDeCs is much simpler than the implementation for the
conventional delay coordinates using the decomposition of
Eq. (4) of Ref. [5], where we must subtract the past pairs of
distances appropriately to obtain the current distances.

2. Estimation of correlation dimension

The time series of length 10 000 was used for the calcu-
lations. After obtaining the distance matrices using InDDeCs,
we threw away the components corresponding to the first
1000 points and used the remaining parts for the estimation
because we need to supply dummy distances for the times
before the beginning of the time series and the distances for
the first 1000 points may not be calculated precisely because
0.5100 ∼ 10−30 will approach the margin of machine errors.
We found the minimum nonzero distance m and set the range
of [10m,1000m] as the scaling region. The other parts were
the same as Ref. [14].

3. Estimation of maximal Lyapunov exponents

We used the time series containing 10 000 time points for
estimating the maximal Lyapunov exponents. After obtaining
the distance matrices using InDDeCs, we threw away the
components corresponding to the first 1000 points and used
the remaining parts for the estimation. We chose the five
nearest neighbors avoiding points in the same strands, i.e.,
neighbors within 200 time points, for estimating each of the
maximal Lyapunov exponents. For the flows, we found the
slope by fitting a line between 50 and 100 time points forward
in time. For the maps, we found the slope between the first
and the second steps. The rest of the calculation was similar
to Ref. [15].

4. Identifying directional couplings

We used the method of joint distribution for distances [24]
here. After obtaining the distance matrix as described above,
we subsampled the distance matrix every 10 points to reduce
the temporal correlations as well as the calculation costs. Then,
we applied the method of joint distribution of distances [24]
directly.

5. Mutually coupled logistic maps

Two logistic maps [33] were coupled in the following way
mutually [24]:

x(t + 1) = (1 − ηyx)(3.8x(t)(1 − x(t)))

+ ηyx(3.81y(t)(1 − y(t))), (B5)
y(t + 1) = (1 − ηxy)(3.81y(t)(1 − y(t)))

+ ηxy(3.8x(t)(1 − x(t))). (B6)

After we removed the initial transient, we generated time
series of length 2000 for each set of parameters (ηyx,ηxy).
Parameters ηyx and ηxy were varied between 0 and 0.2.

6. Two logistic maps driven by another logistic map

We considered the following coupled logistic maps:

x(t + 1) = (1 − ηzx)(3.8x(t)(1 − x(t)))

+ ηzx(3.82z(t)(1 − z(t))), (B7)

y(t + 1) = (
1 − ηzy

)
(3.81y(t)(1 − y(t)))

+ ηzy(3.82z(t)(1 − z(t))), (B8)

z(t + 1) = 3.82z(t)(1 − z(t)). (B9)

Namely, in this coupled system, z drives x and y, but x and
y are not mutually connected. We varied ηzx and ηzy between
0 and 0.2. The rest is similar to the case of mutually coupled
logistic maps.

7. Mutually coupled logistic map driven by another

Here we considered the following coupled systems:

x(t + 1) = (1 − ηyx − ηzx)(3.8x(t)(1 − x(t)))

+ ηyx(3.81y(t)(1 − y(t)))

+ ηzx(3.82z(t)(1 − z(t))), (B10)

y(t + 1) = (1 − ηxy − ηzy)(3.81y(t)(1 − y(t)))

+ ηxy(3.8x(t)(1 − x(t)))

+ ηzy(3.82z(t)(1 − z(t))), (B11)

z(t + 1) = 3.82z(t)(1 − z(t)). (B12)

In this example, we set ηzx = ηzy = 0.05 and varied ηyx

and ηxy between 0 and 0.2. The rest is similar to the case of
the mutually coupled logistic maps.

8. Extracting slow-driving forces

First, we obtain a recurrence plot of observables using
InDDeCs. Second, we make the granularity of the recurrence
plot coarse by using box sizes of 50 and 24, respectively, for
the toy model and the weather example, to obtain the metare-
currence plot [25]. This metarecurrence plot corresponds to
a recurrence plot of slow-driving forces. Third, we apply the
method of Ref. [26] to reproduce the time series of driving
forces. Note that the method of Ref. [26] for reconstructing an
original time series from a recurrence plot has mathematical
support [32,34].

9. The Hénon map driven by the Lorenz model
and the Rössler model

We fed the Lorenz model [Eqs. (B13)–(B16)] and the
Rössler model [Eqs. (B17)–(B20)] to the Hénon map
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[Eqs. (B21)–(B22)] in the following way:

ẋ = −10(x − y), (B13)

ẏ = −xz + 28x − y, (B14)

ż = xy − 8

3
z, (B15)

x̃(t) = x(t) − x̄

σx

, (B16)

u̇ = −(v + w), (B17)

v̇ = u + 0.36v, (B18)

ẇ = 0.4 + w(u − 4.5), (B19)

ũ(t) = u(t) − ū

σu

, (B20)

p(t + 1) = 1 − 1.2(1 + 0.05x̃(0.0005t))p(t)2

+ 0.3(1 + 0.1ũ(0.002t))q(t), (B21)

q(t + 1) = p(t). (B22)

After removing the initial transient, we generated a series
of p(t) with 20 000 time points.

10. Weather data at Akita and their analysis

We used the temperature, the precipitation, the solar
irradiance, and the wind speed measured at Akita, Japan.
The measurements were given every 10 min between 1

January 2010 and 31 May 2016. If a measurement was
missing, we inserted its most recent valid value instead and
preprocessed the dataset. For extracting slow-driving forces,
we subsampled the measurements every hour. For detecting
directional couplings, we divided the dataset into 77 segments
corresponding to each month and analyzed the segments.

11. Validating reconstructed slow-driving forces and network
structure by time series prediction

We used the radial basis function model in Ref. [28]
to test whether additional time series improved time series
prediction. When we used the reconstructed slow-driving
forces, we interpolate the time series so that the sampling
intervals become the same as the original time series. Then
we normalized the additional time series so that their standard
deviations become 10% of the time series we predicted. By
increasing the number of additional time series taken into
account, we validated whether or not the reconstructed slow-
driving forces and/or the found topologies are appropriate. For
each case, we generated 10 time series predictions by choosing
different centres for the radial basis functions. In Figs. 9 and
10, we used two-dimensional delay coordinates with additional
dimensions for the additional time series. In Fig. 15, we used
the usual delay coordinates spanning the time window of 2 h
for the precipitation as well as the temperature and wind speed
when they were considered.
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SIAM J. Appl. Dyn. Syst. 12, 618 (2013).

[10] J. H. Friedman, J. L. Bentley, and R. A. Finkel, ACM Trans.
Math. Soft. 3, 209 (1977).

[11] J. Stark, J. Nonlinear Sci. 9, 255 (1999).
[12] J.-P. Eckmann, S. O. Kamphorst, and R. Ruelle, Europhys. Lett.

4, 973 (1987).
[13] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep.

438, 237 (2007).
[14] P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346

(1983).

[15] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, Physica D 65,
117 (1993).

[16] H. Kantz, Phys. Lett. A 185, 77 (1994).
[17] O. E. Rössler, Phys. Lett. A 57, 397 (1976).
[18] M. Sano and Y. Sawada, Phys. Rev. Lett. 55, 1082 (1985).
[19] Y. Hirata, K. Judd, and D. Kilminster, Phys. Rev. E 70, 016215

(2004).
[20] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D.

Farmer, Physica D 58, 77 (1992).
[21] T. Schreiber and A. Schmitz, Phys. Rev. Lett. 77, 635 (1996).
[22] M. Hénon, Commun. Math. Phys. 50, 69 (1976).
[23] Y. Hirata and K. Aihara, Phys. Rev. E 81, 016203 (2010).
[24] Y. Hirata et al., PLoS ONE 11, e0158572 (2016).
[25] M. C. Casdagli, Physica D 108, 12 (1997).
[26] Y. Hirata, S. Horai, and K. Aihara, Eur. Phys. J. Spec. Top. 164,

13 (2008).
[27] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[28] K. Judd and A. I. Mees, Physica D 82, 426 (1995).
[29] M. Tanio, Y. Hirata, and H. Suzuki, Phys. Lett. A 373, 2031

(2009).
[30] N. Gershenfeld, The Nature of Mathematical Modeling

(Cambridge University Press, Cambridge, UK, 1999).
[31] T. D. Sauer, J. A. Tempkin, and J. A. Yorke, Phys. Rev. Lett. 81,

4341 (1998).
[32] Y. Hirata, M. Komuro, S. Horai, and K. Aihara, Int. J. Bifurcat.

Chaos 25, 1550168 (2015).
[33] R. May, Nature 261, 459 (1976).
[34] A. Khor and M. Small, Chaos 26, 043101 (2016).
[35] R. Hegger, H. Kantz, and T. Schreiber, Chaos 9, 413 (1999).

032219-15

https://doi.org/10.1007/BFb0091924
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1038/srep15736
https://doi.org/10.1038/srep15736
https://doi.org/10.1038/srep15736
https://doi.org/10.1038/srep15736
https://doi.org/10.1016/0167-2789(93)90127-M
https://doi.org/10.1016/0167-2789(93)90127-M
https://doi.org/10.1016/0167-2789(93)90127-M
https://doi.org/10.1016/0167-2789(93)90127-M
https://doi.org/10.1137/12088183X
https://doi.org/10.1137/12088183X
https://doi.org/10.1137/12088183X
https://doi.org/10.1137/12088183X
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1007/s003329900072
https://doi.org/10.1007/s003329900072
https://doi.org/10.1007/s003329900072
https://doi.org/10.1007/s003329900072
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevE.70.016215
https://doi.org/10.1103/PhysRevE.70.016215
https://doi.org/10.1103/PhysRevE.70.016215
https://doi.org/10.1103/PhysRevE.70.016215
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1103/PhysRevE.81.016203
https://doi.org/10.1103/PhysRevE.81.016203
https://doi.org/10.1103/PhysRevE.81.016203
https://doi.org/10.1103/PhysRevE.81.016203
https://doi.org/10.1371/journal.pone.0158572
https://doi.org/10.1371/journal.pone.0158572
https://doi.org/10.1371/journal.pone.0158572
https://doi.org/10.1371/journal.pone.0158572
https://doi.org/10.1016/S0167-2789(97)82003-9
https://doi.org/10.1016/S0167-2789(97)82003-9
https://doi.org/10.1016/S0167-2789(97)82003-9
https://doi.org/10.1016/S0167-2789(97)82003-9
https://doi.org/10.1140/epjst/e2008-00830-8
https://doi.org/10.1140/epjst/e2008-00830-8
https://doi.org/10.1140/epjst/e2008-00830-8
https://doi.org/10.1140/epjst/e2008-00830-8
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1016/0167-2789(95)00050-E
https://doi.org/10.1016/0167-2789(95)00050-E
https://doi.org/10.1016/0167-2789(95)00050-E
https://doi.org/10.1016/0167-2789(95)00050-E
https://doi.org/10.1016/j.physleta.2009.03.069
https://doi.org/10.1016/j.physleta.2009.03.069
https://doi.org/10.1016/j.physleta.2009.03.069
https://doi.org/10.1016/j.physleta.2009.03.069
https://doi.org/10.1103/PhysRevLett.81.4341
https://doi.org/10.1103/PhysRevLett.81.4341
https://doi.org/10.1103/PhysRevLett.81.4341
https://doi.org/10.1103/PhysRevLett.81.4341
https://doi.org/10.1142/S0218127415501680
https://doi.org/10.1142/S0218127415501680
https://doi.org/10.1142/S0218127415501680
https://doi.org/10.1142/S0218127415501680
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1063/1.4945008
https://doi.org/10.1063/1.4945008
https://doi.org/10.1063/1.4945008
https://doi.org/10.1063/1.4945008
https://doi.org/10.1063/1.166424
https://doi.org/10.1063/1.166424
https://doi.org/10.1063/1.166424
https://doi.org/10.1063/1.166424



