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Correlations in magnitude series to assess nonlinearities:
Application to multifractal models and heartbeat fluctuations
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The correlation properties of the magnitude of a time series are associated with nonlinear and multifractal
properties and have been applied in a great variety of fields. Here we have obtained the analytical expression of
the autocorrelation of the magnitude series (C|x|) of a linear Gaussian noise as a function of its autocorrelation
(Cx). For both, models and natural signals, the deviation of C|x| from its expectation in linear Gaussian noises can
be used as an index of nonlinearity that can be applied to relatively short records and does not require the presence
of scaling in the time series under study. In a model of artificial Gaussian multifractal signal we use this approach
to analyze the relation between nonlinearity and multifractallity and show that the former implies the latter but the
reverse is not true. We also apply this approach to analyze experimental data: heart-beat records during rest and
moderate exercise. For each individual subject, we observe higher nonlinearities during rest. This behavior is also
achieved on average for the analyzed set of 10 semiprofessional soccer players. This result agrees with the fact
that other measures of complexity are dramatically reduced during exercise and can shed light on its relationship
with the withdrawal of parasympathetic tone and/or the activation of sympathetic activity during physical activity.
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I. INTRODUCTION

In the field of time series analysis, the concept of nonlin-
earity can be interpreted in different ways [1]. An intuitive
definition is that nonlinear time series are those generated
by nonlinear dynamic equations, i.e., the values of the series
depend on time, or on other values of the series, according
to nonlinear expressions: squares, logarithms, trigonometric
functions, etc. But usually we do not have prior information
about this dependence, in fact, in most of the cases the goal is
nothing but finding such dynamic equations. Nonlinearity is
also frequently defined in terms of the autocorrelation function:
a time series is nonlinear when there is dependence between
the values of the series at different positions even though its
autocorrelation vanishes. Although a bit more complicated,
the definition of of Schreiber and Schmitz [2] is quite suitable
for practical purposes. According to this definition, a time
series is linear when its Fourier phases are random, i.e.,
the series of phases of its Fourier transform is a random
number uniformly distributed in the interval [−π,π ]. Thus,
the presence of nonlinear correlations in a time series can be
assessed by means of surrogate data tests: (1) Given a time
series, compute its Fourier transform, randomize its Fourier
phases, and transform it back. The resulting surrogated series
preserves the distribution of the data and the linear correlations
because its power spectrum remains unchanged [2]. (2) Some
relevant statistics is evaluated in the original as well as in
the surrogated signal, and, if there is a statistically significant
difference between both signals, it means that the original
Fourier phases were not random and thus, the original signal
was nonlinear, i.e., the null hypothesis of linearity can be
rejected. Sometimes instead of accepting or rejecting the
null hypothesis, the goal is simply to compare the degree of
nonlinearity of two different time series (e.g., records obtained
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under different physiological conditions) and the value of the
statistics is directly used as a measure of nonlinearity.

The autocorrelations in the magnitude series are also a good
indicative of the presence of nonlinear correlations. For a given
time series {yi}, i = 1, . . . ,N , its magnitude series (sometimes
also called volatility) is usually defined as the absolute value
of the series increments:

|xi | = |yi+1 − yi |. (1)

It is defined as the magnitude of the increments rather than the
magnitude of the series itself because in most cases the series
of increments is fairly stationary while the original series is
not. Apart from its utility in revealing nonlinear properties, the
magnitude series together with the sign series (magnitude-sign
analysis [3]) provides complementary information about the
original series: the magnitude measures how big the changes
are and the sign indicates their direction.

Once one has obtained the magnitude series, the standard
procedure to quantify its correlations is the use of the detrended
fluctuation analysis (DFA). In brief, the DFA method obtains
the root mean square fluctuations of the series around the local
trend, Fd (�), in all windows of a given size � and repeats the
procedure for different window sizes. Scaling is present when

Fd (�) ∝ �α. (2)

Typically, α is estimated as the slope of a linear fitting of
log(Fd ) versus log(�). The exponent α quantifies the strength of
the correlations present in the time series and is also related to
the power spectrum exponent β and the autocorrelation func-
tion exponent γ [4,5]. The scaling analysis of the magnitude
series was first introduced to study nonlinearities in heart-beat
fluctuations [3], but since then, examples of quantifying
nonlinearity using the DFA exponent of the magnitude series
can be found in many other fields such as fluid dynamics [6],
geophysical [1,7,8], and economical time series [9].
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The scaling exponent of the magnitude fluctuations is easy
to compute and is also related to the width of the multifractal
spectrum [10,11], another quantity also frequently used to
unveil the nonlinear properties of a signal [12].

Nevertheless, this approach shows three main drawbacks:
(1) In order to properly define the scaling exponent α,

Fd (�) versus � must show a good fit to a power law, which is
not the case in many natural series. Also, the interpretation of
crossovers in Fd (�) versus � as a signature of the existence of
regions with different scaling has been recently challenged. In
particular, it has been shown that the evaluation of short-range
scaling exponent (α1), a quantity widely used in heart rate
analysis [13], could be affected by spurious results [14] and
that α1 is strongly biased by the breathing frequency [15].
Without judging the validity of these criticisms, the truth is that
some results obtained with α1 are contradictory [16]. These
problems affect DFA in general as a technique to evaluate
scaling exponents.

(2) Furthermore, particularizing to the evaluation of the
scaling exponent of the magnitude series, we have shown very
recently that in some situations DFA does not properly detect
the correlations and assigns uncorrelated behavior to correlated
magnitude series [17].

(3) It is assumed implicitly that the presence of correlations
in the magnitude series is a signature of nonlinearity, but, as
we show later, even for a linear time series, C|x| > 0 when
Cx �= 0.

For these reasons we propose here a different approach:
We consider a linear Gaussian noise {xi}, i.e., a time series
whose values follow a Gaussian distribution and its Fourier
phases are random, with correlations given by Cx and obtain
analytically the correlations C|x| of the magnitude series
{|xi |} which depends only on Cx . Note that C|x| are the
magnitude correlations expected in purely linear noises. When
analyzing an experimental time series {xexp,i}, the deviation
of the correlation of its magnitude C|xexp| with respect to the
linear expectation C|x| is then a good signature of nonlinear
correlations. Taking into account that natural data do not
always follow Gaussian distributions, prior to the computation
of the magnitude correlations, we transform the distribution
of the data to a normal distribution with zero mean and unit
standard deviation, N (0,1).

This article is organized as follows: Motivated by the fact
that in most of the examples cited above correlated nonstation-
ary natural series are modeled as fractional Brownian motions
(fBm), and thus their stationary increments as fractional
Gaussian noises (fGn), in Sec. II we obtain the analytical
expression of the autocorrelation of magnitude series C|x| of
a linear Gaussian noise as a function of its autocorrelation
Cx as well as a quadratic approximation. We also obtain the
corresponding expression for the series of squares, {x2

i }, which
is sometimes used to study nonlinear correlations (Sec. II A)
and discuss the autocorrelation of the sign series and its relation
to the autocorrelation of the magnitude series (Sec. II B). In
Sec. III we explore the nonlinear properties of artificial series
generated with a model that produces Gaussian noises with
multifractal properties, and in Sec. IV, as an example of their
utility, we apply the relations derived here to the study of heart
beat time series during rest and moderate exercise. Section V
concludes the paper.

II. AUTOCORRELATION OF MAGNITUDE SERIES

Given a time series {yi}, with its corresponding series
of increments {xi}, our aim is to obtain the autocorrelation
C|x|(�) of its magnitude series {|xi |} (1) as a function of the
autocorrelation of the series of increments Cx(�) provided that
{xi} is a linear Gaussian noise, i.e., all xi ∼ N (0,1) and that
only linear correlations are present in the series. Thus, the
autocorrelation function at distance � is given by

Cx(�) = 〈xi xi+�〉 − 〈xi〉〈xi+�〉
σ 2

x

= 〈xi xi+�〉, (3)

where 〈·〉 denotes average over the series and σ 2
x is the variance

of the series.
Under the assumption of xi ∼ N (0,1) the autocorrelation

coincides with the autocovariance

Kx(�) ≡ 〈xi xi+�〉 − 〈xi〉〈xi+�〉 = Cx(�). (4)

On the other hand, for the magnitude series we have

σ 2
|x| = 1 − 2

π
, (5)

and we can write for its autocorrelation

C|x|(�) = 〈|xi | |xi+�|〉 − 〈|xi |〉〈|xi+�|〉
σ 2

|x|
= πK|x|(�)

π − 2
. (6)

Taking into account that xi and xi+� are two linearly
correlated Gaussian random variables, the autocovariance of
the magnitude series, K|x|(�), can be expressed as a function
of Kx(�) according to Eq. (A10) in Appendix A:

K|x| = 2

π

[√
1 − K2

x + Kx arcsin Kx − 1
]
, (7)

and replacing in (6):

C|x| = 2
[
Cx arcsin Cx − 1 + √

1 − C2
x

]
π − 2

. (8)

It is easy to check that (8) is an even and positive function,
which implies that the magnitude of a linear Gaussian noise
cannot be anticorrelated (Fig. 1).

If we consider small values of Cx , Eq. (8) can be
approximated by a Taylor expansion and obtain

C|x| = 1

π − 2
C2

x + O
(
C4

x

)
. (9)

Thus, for small values, C|x| behaves essentially as the square
of Cx . In fact, the error of (9) is around 2% for Cx = ±0.5,
which makes this approximation virtually correct for most
real data. In Fig. 1 we plot Eq. (8), its quadratic approximation
Eq. (9), as well as several examples of artificial series created
with Gaussian linear models.

This result is especially interesting when studying the
scaling behavior of series with power-law correlations that
have been found in a great variety of complex systems.
We can characterize these series by their power spectral
exponent β because most methods of generating power-law
correlated Gaussian noises consist in the generation of series
with 1/f β decay in their power spectrum with −1 < β < 1
(e.g., Refs. [18,19]). In particular, these methods are widely
used to generate approximate fractional Gaussian noises (fGn),
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FIG. 1. Autocorrelation of the magnitude series C|x| as a function
of the autocorrelation of the series Cx . The solid line corresponds
to the exact expression given by Eq. (8) and the dashed line to its
quadratic approximation given by Eq. (9). The symbols correspond
to the autocorrelation at distances � = 1, . . . ,20 for several artificial
series generated with linear Gaussian models: diamonds, autorregre-
sive AR(1) model xi = c + φxi−1 + εi , with φ = 0.9, c = 0 and {εi}
a white noise; circles, fractional Gaussian noise (fGn) with Hurst
exponent H = 0.95, and triangles fGn with H = 0.05. While the
two first models (diamonds and circles) generate highly correlated
series, the last one (triangles) leads to an anticorrelated series.
However, in all cases the correlations of the magnitude series are
positive.

which are indeed linear Gaussian noises whose autocorrelation
function decays asymptotically as a power law [20]:

Cx(�) � (1 − γ )(2 − γ )

2�γ
∝ sgn(1 − γ )

�γ
, (10)

where γ = 1 − β. It is also quite common to characterize the
fGns by their Hurst exponent (H ), which is related to both β

and γ by

H = β + 1

2
= 2 − γ

2
. (11)

For stationary time series (0 < H < 1), the Hurst exponent
also coincides with the DFA exponent α (2). Note that
the term sgn(1 − γ ) in the numerator of (10) vanishes for
β = 0 (H = 0.5, white noise) thus leading to an uncorrelated
random noise. For β > 0 (H > 0.5) the series is long-range
correlated, also known as having “long memory” [5,20], in the
sense that its autocorrelation decays very slow with exponent
γ < 1. In fact

∑L
�=1 Cx(�) diverges as L → ∞. Likewise for

β < 0 (H < 0.5), i.e., γ > 1, Cx is negative and the series is
anticorrelated. In this situation, although the autocorrelation
also decays as a power law, we cannot properly speak about
long-range anticorrelations because they decay relatively fast,
in the sense that now the autocorrelation function is summable.
Another conclusion drawn from (10) is that we cannot obtain
linear Gaussian noises with positive autocorrelation functions
decaying faster than 1/�.

We obtain from (9) that the autocorrelation of the magnitude
series of a fGn also decays as a power law with exponent
2γ and is always positive, even for H < 0.5 when the fGn
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FIG. 2. Autocorrelation function Cx (triangles) and autocorre-
lation function of magnitude series C|x| (circles) as a function of
distance � for two examples of fractional Gaussian noises (fGn): H =
0.9 > 0.75 (full symbols) and H = 0.7 < 0.75 (open symbols). We
generate series of approximate fGns of length 224 � 1.6 × 107 using
the Fourier Filtering Method [19]. To avoid statistical fluctuations
we average over an ensemble of 100 realizations. The dashed line
corresponds to 1/�, which is the boundary between the regions of
long- and short-range correlations (see text). As expected, C|x| decays
with an exponent double that of Cx , and in both cases the magnitude
series are positively correlated, but for H = 0.7 < 0.75 C|x| decays
faster than 1/� and lies in the short-range correlations region. Note
also that in this case and due to both the fast decay of C|x| and its
small values at � = 1, a noisy behavior is reached relatively soon
(� < 100) even for long series. This makes difficult the detection
of power-law behaviors in this region when dealing with real
data.

is anticorrelated:

C|x| ∝ 1

�2γ
. (12)

Nevertheless, we must distinguish two different situations:
(1) H > 0.75. Here 2γ < 1 and C|x| decays slower than

1/� thus leading to long-range power-law correlations in the
magnitude series.

(2) H < 0.75. Now 2γ > 1 and C|x|, although still being
positive and following a power law, decays very fast. For
example, in Fig. 2 we can see that for H = 0.7, C|x| reaches
the background noise level for relatively short scales (� < 100)
even for a time series as long as 224 � 1.6 × 107.

Indeed, the methods quantifying correlations by means
of the study of fluctuations fail to detect the power-law
correlations present in magnitude series for H < 0.75. For
example, two widely used techniques like fluctuation analysis
(FA) or detrended fluctuation analysis (DFA) [21] wrongly
classify as “white noise” the magnitude series of Gaussian
noises with H < 0.75 [10,11] despite being true only for
H = 0.5 [17].
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A. Relation with the autocorrelation of square series

For simplicity, sometimes the autocorrelation of square
series, {x2

i }, is studied instead of the magnitude series:

Cx2 (�) =
〈
x2

i x2
i+�

〉 − 〈
x2

i

〉〈
x2

i+�

〉
σ 2

x2

. (13)

Indeed, it has been shown numerically that the scaling prop-
erties of the correlations of both series are quite similar [10].
Below we justify analytically this similarity.

As we did for the magnitude series, first we obtain the
autocovariance of the square series, Kx2 , as a function of the
autocovariance of the series, Kx (Appendix B):

Kx2 (�) ≡ 〈
x2

i x2
i+�

〉 − 〈
x2

i

〉〈
x2

i+�

〉 = 2Kx(�)2. (14)

Taking into account that xi ∼ N (0,1) and thus σx2 = √
2,

we obtain

Cx2 = C2
x , (15)

which obviously implies that the squares of a linear Gaussian
noise, just as the magnitude, cannot be anticorrelated.

Equation (15) also justifies the fact that for power-law
correlated series, C|x| and Cx2 scale asymptotically with the
same exponent: for long enough values of � we have Cx � 1,
and thus the approximation (9) is valid, leading to C|x| ∝ Cx2 .

B. Relation with the autocorrelation of the sign series

Apart from its relevance in the study of nonlinear corre-
lations, the magnitude series together with the sign series
(defined below) provide complementary information about the
original series {yi}: while the magnitude measures how big the
changes of {yi} are, the sign indicates their direction. Sign
series are also relevant for the study of first-passage time in
correlated processes [22]. Below we obtain a relation between
C|x| and the autocorrelation of the sign series, Cs .

Given a time series {xi}, the series {sgn(xi)} is defined by

sgn(x) =
⎧⎨
⎩

−1 if x < 0
0 if x = 0
1 if x > 0

. (16)

If the series of increments {xi} is a linear Gaussian noise,
Apostolov et al. [23] have shown that the autocorrelation
of the sign series Cs(�) can be expressed in terms of the
autocorrelation Cx(�) by

Cx = sin
(π

2
Cs

)
. (17)

Again, we can also obtain an approximation for small values
of Cx(�):

Cs = 2

π
Cx + O

(
C3

x

)
, (18)

which implies that, if Cx is a power law, Cs scales asymptot-
ically with the same exponent as Cx . In particular, this result
holds for fGns (Fig. 3).

In addition and, taking into account that −1 � Cs � 1,
from here it is clear that Cx and Cs always have the same
sign, and thus, the sign series will be correlated where {xi}
is correlated and anticorrelated where {xi} is anticorrelated
(Fig. 3).
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FIG. 3. Autocorrelation function Cx (full symbols) and autocor-
relation function of sign series Cs (open symbols) as a function of
distance � for two examples of fractional Gaussian noises (fGn): cor-
related H = 0.9 > 0.5 (triangles) and anticorrelated H = 0.3 < 0.5
(circles). In this case we plot |Cx | and |Cs | to allow the representation
in double logarithmic scale. We generate series of approximate fGns
of length 224 � 1.6 × 107 using the Fourier Filtering Method [19].
To avoid statistical fluctuations we average over an ensemble of 100
realizations. As can be expected from (18), Cx and Cs decay with the
same exponent. Note that for the anticorrelated series (H = 0.3) the
anticorrelations decay very fast (γ = 1.4) and an oscillatory behavior
can be observed. This oscillation is amplified for H < 0 (not shown).

Equation (17), together with (8), allows us to express the
autocorrelation of the magnitude series as a function of the
autocorrelation of the corresponding sign series:

C|x| = 2

π − 2

[π

2
Cs sin

(π

2
Cs

)
+ cos

(π

2
Cs

)
− 1

]
. (19)

III. EXAMPLE OF A NONLINEAR MODEL

Up to now we have only shown examples of linear Gaussian
signals for which the derived relations among Cx , C|x|, and
Cs [Eqs. (8), (17), and (19)] must hold. Nevertheless, if we
consider nonlinear Gaussian signals, i.e., signals that, despite
having a Gaussian distribution have nonrandom Fourier
phases, these relations are no longer valid and the deviation
from these equations can be used as a signature of nonlinearity.
For example, if C|x|(�) �= 0 and Cx(�) = 0, i.e., Eq. (8) does
not hold, two values of the signal at distance � are not linearly
correlated [Cx(�) = 0] but they are not independent because
C|x|(�) �= 0 and thus, the signal is nonlinear according to one
of the definitions given in the introduction.

Here it is important to stress that these equations are valid
for each individual value of the autocorrelation function, and
the possible deviations from nonlinearity can be observed
without the assumption of any kind of scaling or power-law
behavior in the signal.

We concentrate here on Eq. (8) because the correlations
in the series of magnitudes have been related to the presence
of nonlinear correlations and multifractal structure [3,10,11].
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To show the effect of nonlinearities we generate artificial
series using a simple method proposed by Kalisky et al. [10]
which is able to generate multifractal Gaussian noises just by
multiplying the sign and the magnitude of two independent
linear Gaussian noises. Despite its simplicity, this method is
able to independently control both the linear correlations of the
signal and its multifractal spectrum width; see also Ref. [11]
for a systematic exploration of the method.

In brief this procedure, composition method from now on,
works as follows:

(1) Obtain the magnitude series of a N (0,1) fGn {xmag(i)},
with Hurst exponent H1 and the sign series of another N (0,1)
fGn {xsign(i)}, with Hurst exponent H2, where i = 1, . . . ,N ,
being N the size of the series.

(2) Obtain the composed series as the product of the
magnitude and sign series:

xcomp(i) = xmod(i) xsign(i) (20)

for i = 1, . . . ,N .
The resulting series {xcomp(i)} is Gaussian by construction,

but it presents nonlinear correlations and Eq. (8) is not fulfilled.
Instead, it can be shown that its autocorrelation function is
given by [11]

Cx(�) = Cs(�)
(π − 2)C|x|(�) + 2

π
, (21)

where obviously C|x| and Cs coincide with the autocorrelation
functions of the magnitude of the fGn with H1 and the sign
of the fGn with H2 respectively. Note that, although Cx is not
exactly a power law, it decays asymptotically as 1/�2−2H2 , i.e.,
the autocorrelation of the composed series decays asymptoti-
cally with the same exponent as the autocorrelation of the fGn
used to obtain the sign series. Indeed, just take into account
approximations (9) for C|x| and (18) for Cs and the asymptotic
expression for the autocorrelation of a fGn (10) to obtain

Cx(�) � 2H2(2H2 − 1)

π2�2−2H2

[
H 2

1 (2H1 − 1)2

�4−4H1
+ 2

]
. (22)

For 0 < H1,H2 < 1 the second summand is the leading one,
and we get asymptotically Cx(�) ∝ 1/�2−2H2 . In that sense
we say that the linear correlations of the composed series are
controlled by the sign [11].

In Fig. 4 we show C|x| versus Cx for several examples
of nonlinear series generated by means of the composition
method. For all the series shown H2 = 0.85, and thus, all of
them have the same scaling behavior for the linear correlations;
nevertheless the different values of H1 lead to different degrees
of nonlinearity according to the deviation of C|x| from the
linear expectation (dashed line in Fig. 4). Note that, no matter
the value of H1, in all cases we observe a deviation from
linearity. For smaller values of H1 this deviation is more
evident at small Cx (long scales), while for large H1 it appears
mainly at great Cx (small scales).

This means that the uncoupling of magnitude and sign (i.e.,
the magnitude of the changes is independent of its direction)
always leads to a nonlinear behavior, or, conversely, in a linear
Gaussian signal magnitude and sign are not independent but
coupled in a specific way that leads to the behavior described
by Eq. (19). In general, for natural signals where magnitude
and sign are neither independent nor Gaussianly coupled, plots
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FIG. 4. Autocorrelation of the magnitude series C|x| as a function
of the autocorrelation of the series Cx for nonlinear series generated
using the composition method [11] by multiplying the series of
magnitudes and signs of two independent fGns (see text). Equation (8)
(dashed line) has been included as a reference for the linear Gaussian
noise. Solid lines correspond to the theoretical curves obtained
using (21) and assuming that the fGns verify the exact asymptotic
formula for their autocorrelation function (10). Equation (21) is exact,
the observed deviations from these curves are due to the fact that
the series generated by means of the Fourier filtering method are
approximate fGns, the expressions used for the autocorrelation are
only valid asymptotically and also due to the statistical fluctuations
(especially for small values of C|x|).

of C|x| versus Cx can be of great utility to shed light about the
way in which the magnitude of the changes is related to its
direction, i.e., the magnitude and sign coupling.

A. Nonlinearity and multifractality

Multifractality and nonlinearity are two concepts that usu-
ally go together. Indeed, the width of the multifractal spectrum
is considered to be linked to the degree of nonlinearity of the
signal [24,25], and the finding of multifractal properties is
usually associated with complex nonlinear interactions in the
systems under study. Nevertheless, although related concepts,
multifractality and nonlinearity describe the properties of the
signal from different points of view [26].

The nonlinear signals generated by means of the compo-
sition method described above are a good example to show
that nonlinearity is not always related to multifractality. This
method was originally developed [10] to generate Gaussian
signals with multifractal properties; in fact, it has been shown
that the width of the multifractal spectrum grows linearly
with the Hurst exponent H1 of the signal used to obtain
the magnitude series for H1 > 0.75 and when H1 < 0.75
the width of the multifractal spectrum almost vanishes [11].
Nevertheless, we show here (Fig. 4) that for all values of H1
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(including the white noise for which H1 = 0.5) the composed
signal is clearly nonlinear, despite having an almost zero
mutifractal spectrum width. Here it is important to point out
that the region where multifractal detrending techniques give
null multifractal width (H1 < 0.75) [11] coincides with the
region where C|x| lies below the linear expectation, at least
in the region where the power law fits are carried out (� > 4).
According to this, we can say that for this model multifractality
is a signature of nonlinearity only when the autocorrelations
in the magnitude are larger than expected in a linear model. In
the opposite situation, the time series is indeed nonlinear but
the multifractal analysis will not reveal it.

IV. EXAMPLE OF NATURAL SIGNALS: HEART RATE
DURING REST AND EXERCISE

Since the pioneering works [27], much attention has been
paid to the study of correlations in time series of interbeat
intervals, i.e., series of times between consecutive heart beats
{tRR,i}, also known as RR time series. In fact, the correlations
in such series have been revealed as a powerful tool to evaluate
alterations due to disease or aging [28,29], discriminate
between physiological states [30], and assess the state of
fitness [31,32]. In most cases, studies are limited to linear
correlations (power-spectrum, autocorrelation function, DFA,
etc.) but nonlinear correlations are indeed present in RR time
series [33] and are supposed to play an important role in heart
dynamics as their reduction or absence has been related to
aging and certain pathological conditions [3,12]. It is worth
mentioning that frequently the correlations of the data are
supposed to scale as power laws.

Regarding the heart rate during exercise, it is well known
that heartbeat dynamics can change dramatically with physical
activity. The most evident changes are the abrupt increase in
the heart rate (i.e., reduction of the mean RR intervals) and
the reduction of the heart rate variability, i.e., the variance
of the RR times series [34]. In addition to these features
that can be observed by direct inspection of raw RR time
series [Fig. 5(a)], it has also been found that exercise modifies
the distribution of the power spectrum by reducing the
low-frequency components [16,34,35], introduces very high
frequencies related to the respiration rate [36] and decreases
the sample entropy [37]. Also, the linear correlations measured
by the short scale DFA exponent (α1) are not only reduced with
exercise [37,38] but also can be correlated with the intensity of
the exercise [39]. Nevertheless it is fair to say that the opposite
result can also be also found in the literature [40]. In summary,
despite this last contradiction, the general agreement is that in
a wide sense the complexity of the RR time series is reduced
during exercise and that this effect is related to the breakdown
of the equilibrium between the two branches of the autonomic
nervous system due to the withdrawal of parasympathetic tone
and/or the activation of sympathetic activity (see Refs. [16,36]
for reviews).

Here we hypothesize that this reduction in complexity
should also be reflected in the loss of nonlinearity in the heart
dynamics during exercise. In particular, we focus on short
scales because it has been reported that in this range (� < 11
beats) linear correlations seem to be clearly affected by the
intensity of the exercise and because, in practice, the typical
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FIG. 5. Record of interbeat intervals tRR during rest and moderate
exercise for a semiprofessional soccer player. (a) Full record of 10
minutes resting in supine position on the soccer field pus 20 minutes
running at moderate pace. (b, c) Separate records for rest and exercise.
(d, e) Series of 
tRR for rest and exercise. (f, g) Distributions of

tRR . For comparison it has been included the best fit to a Gaussian
distribution (thick line).

length of the records at rest is rarely longer than 10-15 minutes
(500–1000 beats) to avoid excessive interferences with the
training sessions, thus preventing from accurate evaluation of
autocorrelation functions at long distances.

We analyze records during rest and moderate exercise from
10 semiprofessional soccer players all of them healthy males
(age 23.8 ± 2.9 yr) without any prior history of cardiovascular
disease. Each record includes two stages: (1) 10 minutes
of normal wake rest condition, lying in supine position on
the soccer field (2) followed by 20 minutes of moderate
running, i.e., at typical warming-up pace [Fig. 5(a)]. Heart
rate was monitored beat-by-beat using a Polar S810i RR
cardiotachometer (Polar Electro, Oy, Finland) [41].

As RR time series are typically nonstationary, especially
during exercise [Figs. 5(b) and 5(c)], it is a common practice
to analyze the series of its increments:


tRR,i = tRR,i+1 − tRR,i , (23)

which are quite stationary, at least in the weak sense [Figs. 5(d)
and 5(e)]. Following the notation introduced in Sec. II {yi}
would be the series of RR intervals while {xi} would be the
series of interbeat intervals increments (
tRR).

The distributions of 
tRR are fairly symmetric, although
they are not exactly Gaussian but Levy-stable distributions
with tails decaying slower than in the Gaussian case [27]
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C|x| for the series of 
tRR during rest and exercise shown in Fig. 5.
(a) C|x| vs Cx during rest (circles) and exercise (triangles). The thick
line corresponds to the theoretical expectation for a linear Gaussian
noise (8). (b) Autocorrelation Cx(�) as a function of the lag � during
rest and exercise. (c) Autocorrelation of magnitude series C|x|(�) as a
function of the lag � during rest and exercise. (d) Difference between
C|x| and the theoretical expectation for a linear Gaussian noise given
Cx (see text) as a function of the lag � during rest and exercise.

[Figs. 5(f) and 5(g)]. For this reason, prior to the analysis
we convert the distribution of the data to a standard normal
distribution by means of the transformation

x ′ = �−1[F (x)], (24)

where F (·) is the cumulative distribution of the original 
tRR

data and �(·) is the cumulative standard normal distribution
N (0,1). We have observed that this transformation practically
does not modify the linear correlations Cx (not shown).

For each subject we compute the autocorrelation function
of the series of increments Cx(�) and of the magnitude series
C|x|(�) for both rest and exercise records.

In Fig. 6 we show the results for one of the subjects for
� = 1, . . . ,20. In general, we observe that Cx reaches similar
values during rest and exercise or even greater values for the
latter [Fig. 6(b)], but, on the other hand, C|x| is typically greater
during rest [Fig. 6(c)]. In addition, if we inspect carefully
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FIG. 7. Nonlinearity index 
 (�max = 10) for 10 semiprofessional
soccer players, all males with age 23.8 ± 2.9 yr. Circles: records of 10
minutes of normal wake rest condition, lying in supine position on the
soccer field. Squares: 20 minutes of running at typical warming-up
pace. Triangles: average of 
 over an ensemble of subseries of the
running record with the same size of the corresponding rest record
(see text). Error bars indicate ± standard deviation.

Fig. 6(a) it is clear that not only the values of C|x| are greater
on average for rest than for exercise but also the exercise
records are closer to the thick line (expectation for a Gaussian
linear noise). For this reason, a good measure of nonlinearity
is not simply the autocorrelation in the magnitude C|x| but
its difference with the expectation for a linear Gaussian noise
computed using Eq. (8) [thick line in Fig. 6(a)]:

δC(�) = C|x|(�) − C|x|,linear[Cx(�)]. (25)

This quantity takes into account not only the value of C|x| but
also its difference with the linear expectation. For example,
C|x|(� = 1) reaches a relatively high value for both rest and
exercise [Fig. 6(c)] but, once subtracted the linear expectation
δC(� = 1), is much higher for rest than for exercise [Fig. 6(d)].

In order to obtain a single number to quantify the nonlin-
earity of a signal we propose here the sum of the squares of
the curve δC(�):


 =
�max∑
�=1

δC(�)2. (26)

In particular, as we are interested in the short-scale correla-
tions, and following most of the authors in the bibliography,
we adopt �max = 10. We obtain that our nonlinearity index 


is clearly higher during rest than during exercise (Fig. 7). For
each individual subject 
 is higher for his record during rest
than for his corresponding record during exercise, and also
the group averages are clearly different for rest and exercise
(p < 10−7). Nevertheless, we have to take into account
that when dealing with relatively short records, comparisons
between series of different length can lead to spurious results
due to finite size effects. Here we have that the records during
exercise are two times longer than those during exercise;
in addition due to the fact that HR increases with physical
activity, the records during exercise are four to five times
longer in number of beats. For this reason, we check the
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validity of our findings by comparing our records during rest
with records of the same number of beats during exercise:
consider a subject with a Nr beats record during rest and a
corresponding record during exercise of length Ne > Nr beats
and let n = �Ne/Nr�. We extract n nonoverlapping windows
from the exercise record starting from left to right and another
n nonoverlapping windows from right to left (in order to use
all available data). For all these 2n subseries we compute 


and average for each subject. Results are shown in Fig. 7
(red triangles). Although now the differences between rest
and exercise are a bit smaller, all the values of 
 for rest
are above the corresponding values for exercise (including the
error bars), and the difference between group averages is still
statistically significant (p = 3 × 10−4).

V. CONCLUSIONS

We have obtained analytically the expression of the auto-
correlation of the magnitude series C|x| of a linear Gaussian
noise as a function of its autocorrelation Cx as well as several
analytical relations involving C|x|, Cx and the autocorrelation
of the sign series Cs . These expressions are useful to study
the nonlinear properties of artificial series obtained by models
as well as natural series with the great advantage that our
approach does not make any prior assumption about the scaling
or functional form of the autocorrelation functions. Indeed, the
nonlinearity index proposed in Sec. IV has the advantage that
it can be evaluated on relatively small samples and does not
require scaling in the autocorrelation function.

In particular, we study the nonlinear properties of a
Gaussian model designed to produce series with multifractal
properties and show that this model generates nonlinear
signals for all the values of the parameters even for those
leading to monofractal behavior. This means that, although
multifractality seems to imply nonlinearity, the reverse is not
always true.

We also analyze natural time series. Specifically, we have
shown that the heart-beat records during rest show higher
nonlinearities than the records of the same subject during
moderate exercise. This behavior is also achieved on average
for the analyzed set of 10 semiprofessional soccer players.
With this result we show that the nonlinear properties of the
heart-beat dynamics is yet another feature supporting that
the complexity of the heart-beat is reduced during exercise.
It is also worth mentioning that our nonlinearity index is
sensible for moderate exercise. This means that it could
probably be applied to the study of nonlinear properties during
exercise at different levels of intensity, and thus, it could
be of interest to study the changes in the balance between
sympathetic and parasympathetic nervous systems during
exercise.
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APPENDIX A: AUTOCOVARIANCE OF THE
MAGNITUDES OF TWO LINEARLY CORRELATED

GAUSSIAN VARIABLES

Consider two random variables {X,Y }, both with zero
mean and unit standard deviation and following the bivariate
Gaussian distribution [42]:

ρ(x,y) ≡ Prob{X = x,Y = y}

= 1

2π
√

1 − K2
exp

[
−x2 + y2 − 2Kxy

2(1 − K2)

]
, (A1)

where K = 〈xy〉 is the covariance of variables X and Y , which
also coincides with their correlation taking into account that
both of them have zero mean and unit standard deviation. Note
that from (A1) it follows that K = 0 if and only if {X,Y } are
independent, i.e., they have only linear correlations.

The covariance of |X| and |Y | is given by

Kmag ≡ 〈|x| |y|〉 − 〈|x|〉〈|y|〉

=
∫ ∞

−∞
|x| dx

∫ ∞

−∞
|y| dy ρ(x,y) − 2

π
, (A2)

where we have used that 〈|x|〉 = 〈|y|〉 = √
2/π .

Now, changing the integration variables ξ = x/Ak and ϕ =
y/Ak , where Ak ≡ √

1 − K2, we obtain

Kmag = 2A3
k

π

∫ ∞

0
ξdξ exp

(
−ξ 2

2

)

×
∫ ∞

0
ϕdϕ exp

(
−ϕ2

2

)
cosh(Kξϕ) − 2

π
. (A3)

The integral over ϕ can be written as∫ ∞

0
ϕdϕ exp

(
−ϕ2

2

)
cosh (Kξϕ)

= 1

ξ

∂

∂K

[∫ ∞

0
dϕ exp

(
−ϕ2

2

)
sinh (Kξϕ)

]

= 1

ξ

∂

∂K

[√
π

2
exp

(
K2ξ 2

2

)
erf

(
Kξ√

2

)]

=
√

π

2
Kξ exp

(
K2ξ 2

2

)
erf

(
Kξ√

2

)
+ 1, (A4)

where we have used the identity [43]∫ ∞

0
dϕ e−bϕ2

cosh(aϕ) = 1

2

√
π

b
exp

(
a2

4b

)
(A5)

with a = Kξ , b = 1/2 and the fact that

d

dx
erf(x) = 2√

π
e−x2

. (A6)

Replacing (A4) in (A3)

Kmag =
√

2

π
KA3

k

∫ ∞

0
ξ 2dξ exp

(
−A2

kξ
2

2

)
erf

(
Kξ√

2

)

+ 2A3
k

π

∫ ∞

0
ξdξ exp

(
−ξ 2

2

)
− 2

π
(A7)

032218-8



CORRELATIONS IN MAGNITUDE SERIES TO ASSESS . . . PHYSICAL REVIEW E 96, 032218 (2017)

and using the identity [44]∫ ∞

0
ξ 2 dξ exp(−b2ξ 2)erf(aξ )

=
√

π

4b3
sign(a) − 1

2
√

π

[
1

b3
arctan

(
b

a

)
− a

b2(a2 + b2)

]
(A8)

with a = K√
2

and b = Ak√
2
, we get

Kmag = |K| + 2

π

[
K2Ak + A3

k − K arctan

(
Ak

K

)
− 1

]

= |K| + 2

π

[√
1 − K2 − K arctan

(√
1 − K2

K

)
− 1

]
.

(A9)

Finally, after some trigonometric manipulation:

Kmag = 2

π

(√
1 − K2 + K arcsin K − 1

)
. (A10)

APPENDIX B: AUTOCOVARIANCE OF THE SQUARES OF
TWO LINEARLY CORRELATED GAUSSIAN VARIABLES

Considering again, as in Appendix A, two Gaussian vari-
ables {X,Y } following the bivariate Gaussian distribution (A1),
the autocovariance of their squares is given by

Ksq = 〈x2 y2〉 − 〈x2〉〈y2〉

=
∫ ∞

−∞
x2 dx

∫ ∞

−∞
y2 dy ρ(x,y) − 1

= 1

2πAk

∫ ∞

−∞
x2y2 exp

[
−x2 + y2 − 2Kxy

2A2
k

]
− 1,

(B1)

where we have used that 〈x2〉 = 〈y2〉 = 1. Now, changing the
integration variables ξ = x/Ak and ϕ = y/Ak we obtain

Ksq = A5
k

2π

∫ ∞

−∞
ξ 2 dξ exp

(
−ξ 2

2

)
(B2)

×
∫ ∞

−∞
ϕ2 dϕ exp

(
−ϕ2

2

)
exp (−Kϕξ )︸ ︷︷ ︸−1

√
2πe

K2ξ2

2 (1 + K2ξ 2). (B3)

Taking into account that A2
k = 1 − K2,

Ksq = A5
k√

2π

[∫ ∞

−∞
ξ 2 dξe− A2

k
ξ2

2 + K2
∫ ∞

−∞
ξ 4e− A2

k
ξ2

2

]
− 1

= A2
k√

2π

∫ ∞

−∞
x2 dxe− x2

2 + K2

√
2π

∫ ∞

−∞
x4 dxe− x2

2 − 1,

(B4)

and finally,

Ksq = 2K2. (B5)
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