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Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions
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The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling
scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and
incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling,
mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200
nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the
coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are
the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered
chimera states exist in a wide region of the parameter space and we provide quantitative characterization for
the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the
nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.
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I. INTRODUCTION

Coupled lasers have been extensively studied in terms of
nonlinear dynamics [1–5] and synchronization phenomena
[6–8]. Most of these studies have been concerned with
semiconductor laser arrays. They have been demonstrated as
sources that can produce high output power in a spatially
coherent beam. Coupling between lasers may arise due to the
overlap of the electric fields from each laser waveguide or due
to the presence of an external cavity [9,10]. In the latter case,
a time delay is required for the mathematical modeling of the
system. In general, most works on laser arrays consider either
global coupling, where each laser interacts with the whole
system [11,12], or local coupling, where each laser interacts
with its nearest neighbors [13,14]. The main property of those
systems is that although the emission from the individual
elements is often unstable and even chaotic [15], the total
light output from the semiconductor array can be stable.

In recent years, semiconductor laser networks have been
studied in terms of a peculiar form of synchronization called
chimera states. Since the first discovery of chimeras for
symmetrically coupled Kuramoto oscillators in 2002 [16],
this counterintuitive symmetry breaking phenomenon of par-
tially coherent and partially incoherent behavior has received
enormous attention (see Ref. [17] and references within). In
laser systems, chimeras were first reported both theoretically
and experimentally in a virtual space-time representation of a
single laser system subject to long delayed feedback [18,19].
Small networks of globally delay-coupled lasers have also
been studied and chimera states were found for both small
and large delays [10,20]. Moreover, “turbulent” chimeras were
recently observed and classified in large arrays of nonidentical
laser arrays with nearest-neighbor interactions [21]. There, the
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crucial parameters were the coupling strength and the relative
optical frequency detuning between the emitters of the array.

The experimental realization of laser arrays is challenging,
but these devices have significant technological advantages:
By achieving phase locking of the individual lasers we
obtain a coherent and high-power optical source. In Ref. [22]
synchronization phenomena were studied in large networks
with both homogeneous and heterogeneous coupling delay
times. Moreover, in Ref. [23] a new experimental approach
to observe large-scale geometric frustration with 1500, both
nonlocally and locally, coupled lasers was presented. In the
present work, we will focus on the intermediate case, i.e.,
nonlocal coupling. In laser networks this kind of coupling
has never been attempted before, and with this paper we
aim to fill this gap. In our study we use nonlocal coupling,
where the crucial parameters for the observed dynamics are
the strength, the phase and the range of the coupling. Our
focus, in particular, is to identify the parameter regions where
chimera states or other phenomena emerge and subsequently
characterize them following a recently proposed classification
scheme [24].

II. THE MODEL

In the present analysis, we consider a ring of M = 200
semiconductors lasers of class B. Each node j is symmetrically
coupled with the same strength to its R neighbors on either
side (nonlocal coupling). The evolution of the slowly varying
complex amplitudes Ej = Ej exp (iφj ) (where Ej is the
amplitude and φj the phase of the electric field) and the
corresponding population inversions Nj are given by

dEj

dt
= (1 + ia)EjNj + ke−i2Cp

2R

j+R∑
l=j−R

El , (1a)

dNj

dt
= 1

T
[p − Nj − (1 + 2Nj )|Ej |2], j = 1, . . . ,M, (1b)
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FIG. 1. Conceptual model of (a) the overlap of the electric fields
in nonlocally coupled waveguide lasers and (b) a laser array coupled
by a common highly reflective (HR) mirror via an external cavity.
(FAC denotes fast-axis collimating lens.)

where all indexes has to be taken modulo M . T is the
ratio of the lifetime of the electrons in the excited level and
that of the photons in the laser cavity. Lasers are pumped
electrically with the excess pump rate p = 0.23 [10]. The
linewidth enhancement factor a models the relation between
the amplitude and the phase of the electrical field. We consider
a = 2.5, which is a typical value for semiconductor lasers. The
coupling strength k and the phase Cp are the control parameters
that are used to tune the collective dynamics of the system.
This complex coupling coefficient models the important effect
of a phase shift introduced as the electric field of one laser
couples into another [25]. Equations (1) are a reduced form
of the Lang-Kobayashi model in the limit where the delay of
the external cavity tends to zero [10]. By shifting the coupling
phase to (Cp + π ), we can obtain the model that describes the
interaction of each field of semiconductor lasers in an array of
waveguides [11,12].

Physically, nonlocal coupling arises due to the overlap of
the electric fields within a range of R neighbor waveguides of
lasers [see Fig. 1(a)]. In this case, a portion of the electric
field from one laser extends into the active region of its
2R neighboring lasers. The strength of this field extension
decreases in space but for simplicity we assume a uniform
coupling k in every active region of 2R lasers. Another scheme
corresponding to this type of coupling can be achieved by
replacing all waveguides by a single external cavity where the
length of it or the delay tends to zero [see Fig. 1(b)]. In that case
the converging lense coupler for all of lasers inside the cavity
cannot converge all the M beams of light in one beam and so a
nonlocal coupling is a more realistic approach than an all-to-all
coupling. Equations (1) are numerically integrated using a
fourth-order Runge-Kutta algorithm with a fixed time step
and periodic boundary conditions. For the initial conditions,
the phases of the individual lasers are randomly distributed
along the complex unit circle while amplitudes and inversions
are chosen identical for all lasers Ej (t = 0) = √

p, Nj (t =
0) = 0. Moreover, the well known period Tr = 2π/� of the
individual laser relaxation oscillation frequency � = √

2p/T

will set the time scale of the system. For the parameters
considered in this work, we obtain Tr � 183. This high value of
Tr has motivated us to neglect the delay term τ in the coupling
for simplicity, since we obtain similar results for τ � 1. In
order to understand the effect of all three control parameters,
namely the coupling strength k, the coupling range R and the
coupling phase Cp, we split the problem into two parts: In the
first part, the coupling phase is set to zero and the coaction

of the coupling strength and range is studied. In the second
part, the coupling phase is also considered and we will show
that more complex phenomena like chimera states emerge. In
the concluding section, we summarize our results and discuss
open problems.

III. MEASURES FOR PHASE AND AMPLITUDE
SYNCHRONIZATION

By using polar coordinates the characterization of the
phase synchronization of our system can be done through the
Kuramoto local order parameter [26]:

Zj =
∣∣∣∣∣∣

1

2ζ

∑
|l−j |�ζ

eiφl

∣∣∣∣∣∣. (2)

We use a spatial average with a window size of ζ = 3
elements. A Zj value close to unity indicates that the j th
laser belongs to the coherent regime, whereas Zj is closer to
0 in the incoherent part. This quantity can measure only the
phase coherence and gives no information about the amplitude
synchronization of the electric field. For the latter, we will use
the classification scheme presented in Ref. [24] for spatial
coherence, which we have applied to other systems in recent
works as well [21,27]. In particular, we will calculate the so-
called local curvature at each time instance, by applying the
absolute value of the discrete Laplacian |DE| on the spatial
data of the amplitude of the electric field:

|DE|j (t) = |Ej+1(t) − 2Ej (t) + Ej−1(t)|, j = 1, . . . ,M.

(3)

In the synchronization regime the local curvature is close
to zero while in the asynchronous regime it is finite and
fluctuating. Therefore, if g is the normalized probability
density function of |DE|, then g(|DE| = 0) measures the
relative size of spatially coherent regions in time. For a fully
synchronized system g(|DE| = 0) = 1, while for a totally
incoherent system it holds that g(|DE| = 0) = 0. A value
between 0 and 1 of g(|DE| = 0) indicates coexistence of
synchronous and asynchronous lasers.

Note that the quantity g is time dependent. Complementary
to the local curvature we also calculate the spatial extent
occupied by the coherent lasers which is given by the following
integral:

g0(t) =
∫ δ

0
g(t,|DE|)d|DE|, (4)

where δ = 0.001 is a threshold value distinguishing between
coherence and incoherence, which is related to the system-
dependent, maximum curvature.

IV. COLLECTIVE DYNAMICS

In Fig. 2(a), the temporal mean of g0(t), averaged over
100Tr , is plotted in the (R,k) parameter space. There are
four distinct regions: The blue area corresponds to the
unsynchronized region, where g0(t) is close to zero and is
denoted by I, and the red region, denoted by IV, refers to a
stationary state where all lasers enter a fixed point and therefore
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FIG. 2. (a) Dependence of the temporal mean 〈g0(t)〉 on parameters k and R. (b) Snapshot of the amplitude of the electric field (left),
spatiotemporal evolution of the local curvature (middle), and the local order parameter (right) for fixed k = 0.21 and four different coupling
ranges: (I) R = 2, (II) R = 9, (III) R = 29, and (IV) R = 50. Other parameters: T = 392,p = 0.23,a = 2.5, and Cp = 0.

g0(t) is close to unity. Apart from those two well defined
regions, there exist two more interesting ones for intermediate
values of g0(t). The first one lies on the border between the
incoherent and the stationary state and is denoted by II, while
the second region exists within the stationary area and is
denoted by III. Figure 2(b) shows the corresponding snapshot
representations of the amplitude of the electric field (left), the
spatiotemporal evolution of the local curvature (middle), and
that of the local order parameter (right). Note that the local
curvature has been normalized to its maximum value [24].

Moving from points I to IV, the system goes from the
incoherent state to the stationary one through a wavelike
spatial structure (point II) and an almost fully stationary state
(point III). In the incoherent state the lasers are desynchronized
both in amplitude and in phase, which is depicted in the local
curvature and the local order parameter. With increase of the
coupling range R, the temporal oscillations of the lasers tend
to become closer in amplitude. This is reflected in the smooth
wavelike structure of the amplitude of the electric fields and
the discrete Laplacian which holds a value close to zero. The
corresponding phase oscillations are less coherent and this is
evident by the blue areas in the order parameter spatiotemporal
plot.

Before entering the fully stationary state (IV) the systems
undergoes another interesting region where g0(t) is close, but
less than one because of a deviation from the stationary state
of two lasers (left panel of III), which holds for both the
amplitude (middle) and the phase (right). In coupled systems,
the phenomenon where one or more oscillators exhibit large
amplitude oscillations whereas the rest are stationary, is called
localized breather and has been intensively investigated in the
past [28,29].

For finite coupling phase Cp, the situation is much more
complicated. By plotting the temporal mean of g0(t) in the
(Cp,k) plane [Figs. 3(a), 3(c) and 3(e)] as well as in the
(Cp,R) plane [Figs. 3(b), 3(d), and 3(f)] for various values
of the coupling strength k and the coupling range R, we can
identify the existence of many patterns, among which chimera

states, which we have marked with roman letters. Each chimera
state is characterized by its multiplicity, i.e., the number of
the (in)coherent regions also known as number of chimera
clusters. Single chimeras (I), as well as chimeras with two
(II), six (III), and nine heads (IV) are observed. Moreover,
localized oscillations and waves similar to those of Fig. 2
are also found (not shown). Finally, “turbulent” chimeras [21]
where the position of the (in)coherent regions changes in time
and g0(t) oscillates irregularly complete the picture of the
observed patterns (V).

More specifically, for nonlocal range coupling R > 10
and coupling strength k > 0.05, we can distinguish different
regions in terms of the coupling phase value. Below those
two values the interaction is so weak that each laser behaves
like an uncoupled one (see Fig. 3, lower left corners of all
panels). Around the region Cp ≈ 0 and the region Cp ≈ π the
case of full synchronization is most prominent, where Ei = Ej

holds for all lasers. The opposite situation of full asynchrony

FIG. 3. Dependence of the temporal mean 〈g0(t)〉 on param-
eters k and Cp for different values of nonlocal coupling range:
(a) R = 40, (c) R = 64, and (e) R = 88. Dependence on para-
meters R and Cp of the temporal mean 〈g0(t)〉 for different
values of the coupling strength: (b) k = 0.075, (d) k = 0.15, and
(f) k = 0.225. Other parameters: T = 392, p = 0.23, and a = 2.5.
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FIG. 4. The electric field in the complex unit circle (top), spatio-temporal evolution of the local curvature (middle), and spatio-temporal
evolution of the local order parameter (bottom) for different coupling ranges and phases: (I) R = 88,Cp = 0.1π,k = 0.15; (II) R =
64,Cp = 0.06π,k = 0.15; (III) R = 40,Cp = 0.1π,k = 0.15; (IV) R = 27,Cp = 0.1π,k = 0.15; and (V) R = 64,Cp = 0.4π,k = 0.225.
Other parameters: T = 392,p = 0.23, and a = 2.5.

where both amplitude and phase exhibit incoherent behavior
appears around the regions Cp ≈ π/4 and Cp ≈ 3π/4. On the
boundary between full synchronization and asynchrony lies a
small area where the chimeras arise.

Figure 4 shows typical snapshots of multiclustered chimera
states of the electric field in the complex unit circle (top
panel), the spatiotemporal evolution of the local curvature
(middle panel) and the spatiotemporal evolution of the local
order parameter (bottom panel) for points I–IV. We observe
that the decrease of R yields additional chimera heads both
in amplitude and in phase. Finally, around the region where
Cp ≈ π/2 turbulent chimeras appear (Fig. 4, V).

V. CONCLUSIONS

In conclusion, multiclustered chimera states have been
obtained and characterized in large arrays of semiconductor
class B lasers with nonlocal interactions. The observed
chimeras display the coherence and incoherence patterns in
both the amplitude and phase of the electric field and can
be both stationary or “turbulent,” where the size and position
of the (in)coherent clusters vary in time. In addition, other
spatiotemporal dynamics including wavelike spatial structures
and spatially localized oscillations (breathers) are possible.

The crucial parameters for the collective behavior are the
complex coupling strength and the nonlocal coupling range.
The latter is responsible for the multiplicity of the (in)coherent
domains of the obtained chimeras which has been observed
neither for local nor for global coupling. By applying recently
presented measures for spatial coherence we have identified
and classified the emerging dynamics in the relevant parameter
spaces. Our study addresses the effect of nonlocal coupling
in large laser arrays for the first time, providing a direction
for various technological applications. By considering the
proposed setups for the nonlocal coupling scheme, our results
can prove useful for further experimental investigations. For
future studies it would be worthwhile to explore the influence
of noise and anisotropy in the laser pump power.
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