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Internal autoresonance in coupled oscillators with slowly decaying frequency
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In this work, we study resonance energy transfer from an impulsively loaded strongly nonlinear oscillator to a
weakly coupled linear attachment with a slowly time-decaying stiffness. It is shown that even in the absence of
external periodic forcing both oscillators may exhibit the resonance phenomenon, with the permanent response
enhancement of the linear oscillator and the corresponding response reduction of the nonlinear actuator. This
effect is said to be internal autoresonance. The influence of the system parameters on the emergence and stability
of autoresonance is investigated both analytically and numerically.
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I. INTRODUCTION

In this work, we study targeted energy transfer (TET) in an
oscillator array composed of an impulsively excited strongly
nonlinear oscillator with cubic stiffness weakly coupled to a
linear oscillator, whose stiffness slowly decays in time. The
problem is investigated within the frames of the standard
approach to resonance phenomena in nonlinear systems [1],
which employs an intrinsic property of a nonlinear oscillator
to change both its amplitude and natural frequency when the
driving frequency changes. The ability of a nonlinear oscillator
to stay captured into resonance due to variance of its structural
and/or excitation parameters is known as autoresonance (AR).

In a large number of previous works, AR with persistent
response enhancement has been identified as one of the most
effective methods of excitation of high-energy regimes in a
broad range of nonlinear systems. After first studies for the
purposes of particle acceleration [2–4] and planetary dynamics
[5,6], AR has become a very active field of research; recent
advances in this field have been presented and discussed, e.g.,
in [7–9]. Special attention has been given to external AR
induced by external forcing with a slowly varying frequency.
The particular case of parametric AR [10,11] has been
interpreted as an extension of classical parametric resonance
[12] to the phenomenon of response enhancement in the
nonlinear oscillator subjected to parametric excitation with
slowly varying frequency.

This work discusses internal AR arising due to the slow
change of structural parameters in the absence of both external
and parametric fast periodic forcing. It will be shown that a
strongly nonlinear oscillator having no preferential resonance
frequencies may be engaged in resonance due to its intrinsic
property to change both its amplitude and natural frequency
in accordance with the frequency of the linear attachment.
This type of resonance interaction represents internal AR in
coupled oscillators. It is important to note that internal AR in
the system under consideration suggests a reducing response
of the nonlinear oscillator such that its frequency diminishes in
accordance with the frequency of the linear oscillator. From a
practical viewpoint, AR of this type proposes a mechanism
of vibration mitigation in a structure subjected to seismic
effects (see, e.g., [13]). In the analysis of seismic protection
devices, the linear oscillator with a slowly decreasing fre-
quency serves as a model of a one-particle mass-string model
with linearly decreasing in time spring stretching, or of an

elastic beam subjected to linearly increasing axial compressive
loading [14,15].

The rest of this article is organized as follows. The
governing equations of the resonant system are introduced
in Sec. II. Initial conditions for both oscillators are set equal
to zero, except for an initial impulse applied to the nonlinear
oscillator. These initial conditions determine the basic limit-
ing phase trajectory (LPT) corresponding to the maximum
possible energy transfer from the excited oscillator to the
attachment (see, e.g., [16–19], and references therein). Note
that the procedures needed to obtain required results remain
valid for arbitrary initial conditions but the motion along the
LPT is of primary interest because it is associated with the
most intense energy transfer. Furthermore, the approaches
developed in this work can be extended to the arrays with
more complicated nonlinear characteristics provided that the
nonlinear oscillator exhibits resonant oscillations with a single
dominant frequency close to the natural frequency of the linear
oscillator. Nonlinearities of even orders (quadratic, quartic,
etc.) do not satisfy this condition.

In Sec. III, asymptotic solutions of the resonant system
are derived using the method of multiple scales [20,21]. The
obtained solutions confirm the growth of the mean-square
amplitude of the linear oscillator together with the simulta-
neous reduction of the amplitude of the nonlinear oscillator.
Furthermore, the asymptotic solutions clearly demonstrate that
the backbone curves adequately depict the growth/detuning
rate of the mean-square amplitudes, so that the examination
of resonance TET can be reduced to the analysis of the
corresponding backbone curves. Modifications of LPTs in the
systems with different initial conditions are briefly discussed
at the end of Sec. III. Numerical results in Sec. IV elucidate
the effect of parameters on the intensity of energy transfer.
Concluding remarks are collected in Sec. V.

II. RESONANCE DYNAMICS
OF COUPLED OSCILLATORS

The equations of motion are given by

m1
d2U1

dt2
+ γU 3

1 + c12(U1 − U2) = 0,

m2
d2U2

dt2
+ c2(1 − st)U2 + c12(U2 − U1) = 0. (2.1)
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In (2.1), m1 and m2 are the masses of the oscillators,
m2 � m1; c2 is the linear spring stiffness constant; γ is
the nonlinear spring stiffness; c12 is the stiffness parameter
of linear coupling; ω = (c2/m2)1/2 is the eigenfrequency
of the separated linear oscillator in the uncoupled time-
invariant system (c12 = 0,s = 0). The system is assumed to be
initially at rest, with a nonzero initial velocity V0 of the non-
linear oscillator, i.e., U1 = U2 = 0, V1 = dU1

dt
= V0, V2 = 0

at t = 0+ (the subscript index “+” will be omitted in further
expositions).

The above equations involve eight independent parameters
(including initial impulse). This creates significant compu-
tational difficulties, particularly due to the wide range of
numerical parameter values. For computational purposes, it is
convenient to diminish the number of independent parameters
by reducing (2.1) to the dimensionless form. First, we
introduce the dimensionless fast and slow time scales τ0 = ωt

and τ = ετ0, respectively. Then, assuming weak coupling, we
define the small parameter of the system ε=c12/2c2 �1;
small detuning rate is now defined as s = 2ε2βω. The
transformed equations of motion are given by the following:

d2U1

dτ 2
0

+ 8

3
α1U

3
1 + 2εM(U1 − U2) = 0,

d2U2

dτ 2
0

+ [1 − 2εζ0(τ )]U2 + 2ε(U2 − U1) = 0, (2.2)

where the relative mass M = m2/m1 � 1,ζ0(τ ) = βτ , α1 =
3γ /8m1ω

2. The system is initially at rest with a nonzero initial
velocity v0 = V0/ω of the nonlinear oscillator. Introducing
the dimensionless variables ur = Ur

v0
, vr = dur

dτ0
= Vr

v0
(r = 1,2)

into (2.2), we reduce the equations of motion to the form

d2u1

dτ 2
0

+ 8

3
αu3

1 + 2εM(u1 − u2) = 0,

d2u2

dτ 2
0

+ [1 − 2εζ0(τ )]u2 + 2ε(u2 − u1) = 0, (2.3)

with the coefficient of nonlinearity

α = 3V 2
0 γ

/
8m1ω

4. (2.4)

Equations (2.3) include only four independent parameters
instead of eight parameters in (2.1). The dimensionless initial
conditions

u1(0) = 0, v1(0) = 1; u2(0) = 0, v2(0) = 0 (2.5)

determine the LPT of system (2.3) corresponding to the
maximum possible energy transfer from the excited oscillator
to the attachment. The notion of LPT, first introduced for
time-invariant oscillators (e.g., [16,17], and references therein)
plays an important role in the analysis of irreversible tunneling
in a pair of quasilinear oscillators with slowly time-varying
linear spring stiffness [17] as well as in the study of AR
in quasilinear chains [9,18,19]. In this work, this notion is
extended to strongly nonlinear oscillator arrays. The solution
of (2.3) with initial conditions (2.5) is further considered as a

basic LPT. Modifications of LPTs in the oscillator arrays with
other initial conditions are briefly discussed in Sec. III.

III. ASYMPTOTIC ANALYSIS OF ENERGY TRANSFER

In this work, the existence of 1:1 resonance interactions
between the oscillators is assumed. The emergence and
stability of this regime is discussed in the Appendix. Under
the condition of 1:1 resonance, Eqs. (2.3) can be rewritten as

d2u1

dτ 2
0

+ u1 + εμ

(
8

3
αu3

1 − u1

)
+ 2εM(u1 − u2) = 0,

d2u2

dτ 2
0

+ [1 − 2εζ0(τ )]u2 + 2ε(u2 − u1) = 0. (3.1)

The scaling parameter μ = ε−1 is introduced to preserve
the formal equivalence of (2.4) and (3.1) under the condition
of resonance. We note that overall linear stiffness remains pos-
itive and the system is stable in the interval τ0 ∈ [0,1/(2ε2β)]
(Fig. 1). Therefore, the interval I0: τ0 ∈ [0,1/(2ε2β)] can be
considered as an interval of validity in the study of resonant
oscillations.

Asymptotic solutions of (3.1) for small ε are derived using
the method of multiple scales [20,21]. The first step for
applying this method is to express the system responses in
terms of the new complex variables

	r = (vr + iur )e−iτ0 , 	∗
r = (vr − iur )eiτ0 , r = 1,2,

(3.2)

where the asterisk denotes complex conjugate. Substituting
(3.2) into (3.1) yields the following alternative (still exact)
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FIG. 1. Responses u1 and u2 in system (2.3) with parameters
M = 1, ε = 0.1, β = 0.05, and different coefficients of nonlinearity:
(a) displacements u2 of the linear oscillators in system (2.3) with
different coefficients of nonlinearity; (b) displacements of both
oscillators at nonlinearity α = 2.

032213-2



INTERNAL AUTORESONANCE IN COUPLED OSCILLATORS . . . PHYSICAL REVIEW E 96, 032213 (2017)

equations:

d	1

dτ0
= iε

[
μ

(
α|	1|2 − 1

2

)
	1 + M(	1 − 	2) + G1

]
,

	1(0) = 1,

d	2

dτ0
= −iε[ζ0(τ )	2 + (	1 − 	2) + G2],

	2(0) = 0. (3.3)

The terms G1,2 include higher harmonics in τ0 but an
explicit expression of these terms is insignificant for further
analysis. In the next step, the following asymptotic expansion
is introduced:

	r (τ0,τ,ε) = ψr (τ ) + εψ (1)
r (τ0,τ ) + O(ε2), r = 1,2. (3.4)

The equations for the slowly varying envelopes ψr (τ ) can be
obtained by straightforward averaging of (3.3) with respect to
τ0. The standard procedure [21] yields the following equations
for the slow envelopes ψr (τ ):

dψ1

dτ
= i

[
μ

(
α|ψ1|2 − 1

2

)
ψ1 + M(ψ1 − ψ2)

]
, ψ1(0) = 1,

dψ2

dτ
= −i[ζ0(τ )ψ2 + (ψ1 − ψ2)], ψ2(0) = 0. (3.5)

Once the solutions ψr (τ ),r = 1,2, are found, the leading-
order approximations to the solutions of the generating system
(3.1) can be calculated by (3.2) and (3.4). As a result, we obtain

ur0(τ0, τ ) = |ψr (τ )|sin[τ0 + γr (τ )],

vr0(τ0, τ ) = |ψr (τ )|cos[τ0 + γr (τ )],

r = 1,2, (3.6)

where γr (τ1) = argψr (τ ). It is well known that the suggested
asymptotic procedure leads to an error of approximations of
order ε in the time interval τ0 ∼ O(1/ε) [1,20,21]. However,
a refined analysis has shown that the interval of convergence
depends on the properties of approximate solutions (see, e.g.,
[1,21]). Moreover, relatively large values of ε used in particular
problems do not necessarily imply that the derived analytical
approximations will be poor at larger times (certain applica-
tions can be found, e.g., in [13]). The accuracy of approxima-
tions should be additionally verified by numerical simulations.

Note that Eqs. (3.5) are integrable yielding the following
integral of motion:

|ψ1(τ )|2 + M|ψ2(τ )|2 = |ψ1(0)|2 = 1. (3.7)

It follows from (3.5) and (3.7) that |ψ2(τ )|2 ≈ τ 2 but
|ψ1(τ )|2 ≈ 1 − Mτ 2 in the initial time interval.

The polar representation

ψ1 = aeiδ1 ,
√

Mψ2 = beiδ2 , � = δ2 − δ1,

a = cos θ, b = sin θ (3.8)

reduces (3.5) to the following real-valued equations:

dθ

dτ
= −

√
M sin �,

sin 2θ
d�

dτ
= −[

μ
(
αcos2θ − 1

2

) + ζ (τ )
]

sin 2θ

− 2
√

M cos 2θ cos �, (3.9)

where ζ (τ ) = ζ0(τ ) − (1 − M). In analogy to quasilinear
theory [17], the initial conditions θ (0) = 0,�(0) = π/2 de-
termine the LPT of the slow motion as a function of slow
time τ .

Note that the variables y = a2,z = b2 depict the states of
the nonlinear and linear oscillators, respectively. Since the
response of the linear oscillator characterizes the emergence
and intensity of TET from the excited nonlinear oscillator
to the attachment, it is convenient to consider z(τ ) as a new
independent variable. Substituting z = b2 into (3.9), we obtain
the equations

dz

dτ
= −2

√
Mz(1 − z) sin �,

d�

dτ
= −

{
μ

[
α(1 − z) − 1

2

]
+ ζ (τ )

}
−

√
M

1 − 2z√
z(1 − z)

cos �

(3.10)

with initial conditions z(0) = 0,�(0) = π/2. The quasisteady
solutions of (3.10) obey the equations

dz

dτ
= 0,

d�

dτ
= 0. (3.11)

The first equation in (3.11) yields sin �̄ = 0; the phase
�̄ = 0 is stable (see [17]). In the stable system, the second
equation of (3.11) takes the form

F (z) = −μ

[
α(1 − z) − 1

2

]
−

√
M

1 − 2z√
z(1 − z)

= ζ (τ ).

(3.12)

If ζ0 ≡ 0,ζ = −(1 − M), then the solution z̄0 of (3.12)
determines the stable equilibrium position of the nonlinear
oscillator in the conservative system; if ζ0(τ ) 	= 0, the solution
z̄(τ ), which depicts the slow movement of the quasisteady
state along the axis �̄ = 0, determines the backbone curve of
the oscillator [20]. It is obvious that z̄(0) = z̄0. Substituting
y = 1 − z into (3.10)–(3.12), we derive similar equations for
the amplitude squared y = a2; the corresponding quasisteady
state ȳ(τ ) = 1 − z̄(τ ) determines the backbone curve of the
nonlinear oscillator.

Since the derivative

F ′(z) = μα + 0.5
√

M/[z(1 − z)]3/2 > 0, 0 < z < 1,

(3.13)

the function F (z) increases with increasing z in the interval of
interest, and thus, the root z̄(τ ) of Eq. (3.12) grows with time
τ . On the contrary, the solution ȳ(τ ) = 1 − z̄(τ ) is decreased
as time grows. It follows from (3.13) that these effects hold
true for every set of parameters, which ensures resonance
interactions between the oscillators. Since the solutions ȳ(τ )
and z̄(τ ) are associated with the energy of the nonlinear and
linear oscillators, respectively, resonance interactions between
the oscillators can be explained and interpreted as TET, where
energy is directed from the excited nonlinear oscillator to the
linear attachment in a one-way irreversible fashion.
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If the initial state of the nonlinear oscillator is
changed, e.g., from u1(0) = 0,v1(0) = 1 to u1(0) = 1,v1(0) =
0 but u2(0) = 0,v2(0) = 0, then the system response can
be expressed through the complex variables 	̃r = (ur −
ivr )e−iτ0 = 	re

−iπ/2, 	̃∗
r = (ur + ivr )eiτ0 = 	∗

r eiπ/2 such
that 	̃1(0) = 	̃∗

1 (0) = 1, 	̃2(0) = 	̃∗
2 (0) = 0. It is easy to

deduce that the functions 	̃r also satisfy Eqs. (3.3) and thus, the
above-mentioned conclusions remain valid for the functions
	̃r and for the corresponding averaged solutions. Hence,
system (2.3) with the displaced initial conditions moves along
the modified LPT obtained from the basic solution by a simple
phase shift. A similar conclusion can be made if the nonlinear
oscillator starts at an arbitrary point on the basic LPT.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, this effect of parameters on the emergence
of resonant energy transfer is illustrated by direct numerical
simulations. As mentioned earlier in this work, the dimen-
sionless slow system contains four independent parameters
but the coefficients depend on all parameters of the original
system including the initial impulse. Formula (2.4) indicates
similar effects of nonlinearity γ and the squared impulse V 2

0
on the coefficient α. In turn, variations of linear stiffness c2 and
the mass m2, which determine the frequency ω = (c2/m2)1/2,
modifies not only the relative mass M and the dimensionless
coupling coefficient ε but also the rate β = s/2ε2ω. This
implies that the influence of each original parameter on the
system dynamics should be examined separately.

It is mentioned in the Appendix that strongly nonlinear
systems with coefficients α > 1 may be excluded from
consideration because small oscillations of the attachment
weakly affect the dynamics of the nonlinear oscillator. In this
section, this effect is confirmed by numerical simulations of

system (2.3) with parameters M = 1,ε = 0.1,β = 0.05, and
different coefficients of nonlinearity (Fig. 1).

Figure 1(a) illustrates the dynamics of the linear oscillators
in system (2.3) with coefficients of nonlinearity α = 0.5,α =
1,α = 2. We observe the response enhancement in the systems
with α = 0.5 and α = 1 but small oscillations at α = 2. Note
that all trajectories become unstable at a point close to τ0 =
1/2ε2β = 1000. Figure 1(b) illustrates the responses of the
linear and nonlinear oscillators in the system with stronger
nonlinearity α = 2. It is seen that systems with nonlinearities
α = 0.5 and α = 1 yield similar resonance responses but at
α = 2 small oscillations of the linear attachment weakly affect
the dynamics of the excited nonlinear oscillator.

Taking into account the close similarity of the responses
at α = 1 and α = 0.5, we restrict our focus on the oscillators
with α = 0.5. Figure 2 illustrates TET in the basic system
with parameters M = 1,α = 0.5,ε = 0.1(μ = 10),β = 0.05.
In this case, Eq. (3.12) for the quasisteady solution z̄(τ ) takes
the form

F (z) = μ

2
z − 1 − 2z√

z(1 − z)
= βτ. (4.1)

The system is stable in the interval τ ∈ [0,1/(2εβ)], or τ ∈
[0,100]. Figure 2(a) clearly demonstrates that the reduction
of the nonlinear response occurs together with an enhanced
response of the linear attachment; Fig. 2(b) depicts the ampli-
tude squared z(τ ) of the linear oscillator, the corresponding
backbone curve z̄(τ ), and its linear approximation z̄l(τ ) [see
formula (4.2) below] for the basic system. From Fig. 2(b),
it is seen that the backbone curve adequately depicts the
growth rate of the mean-square amplitude. This means that
the study of the resonance effects can be reduced to the
analysis of the backbone curves. In general, Eq. (4.1) should
be solved numerically. However, Fig. 2(b) demonstrates that
the backbone curve z̄(τ ) may be approximated by the function

FIG. 2. Responses of the oscillators in the basic system with parameters M = 1, α = 0.5, ε = 0.1, β = 0.05: (a) the amplitudes squared
a2 and b2, (b) the function z(τ ) = b2(τ ), the backbone curve z̄(τ ) (the solid line), and its linear approximation z̄l(τ ) (the dashed line) for the
linear oscillator.
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Z

FIG. 3. Backbone curves of the linear oscillator (4.1) with pa-
rameters: (a) ε = 0.1,M = 1,β = 0.05 (basic); (b) ε = 0.1, M = 1,

β = 0.01; (c) ε = 0.05, M = 1, β = 0.05; (d) ε = 0.1, M = 0.25,

β = 0.05.

z̄l(τ ) = z̄0 + ξ (τ ) satisfying the linearized equation

F (z̄0 + ξ ) = F (z̄0) + F ′(z̄0)ξ = βτ − (1 − M). (4.2)

Taking into account that F (z̄0) = −(1 − M), we obtain the
following linear equation for the variation ξ :

F ′(z̄0)ξ = βτ, (4.3)

In particular, for the basic system we obtain the linearized
solution with initial value z̄0 = 0.24, and the terminal value
z̄lT = 0.68 against the numerical value z̄T = 0.76 [Fig. 2(b)]
with the maximum difference between the numerical and
approximate results being close to 10%. Direct numerical
calculations reveal errors of the same order for all above-
mentioned sets of structural parameters. This implies that

linear approximations can be used to evaluate the rate of the
amplitude growth.

Figure 3 presents the backbone curves for the linear
oscillators in the systems with different parameters.

The solid line (a) depicts the backbone curve z̄(τ ) of the
basic system. The dotted line (b) corresponds to the backbone
curve in the system with coupling stiffness ε = 0.1 and
detuning rate β = 0.01. In this system, the mass and stiffness
parameters coincide with the basic parameters but the rate β

is decreased due to the decrease of the detuning parameter
s = 2ε2βω. Note that the interval of stable motion in this
system is given by τ ∈ [0,500] but, for comparison purposes,
motion in the truncated interval τ ∈ [0,100] is analyzed. It
is seen that the growth rate at β = 0.01 is small enough,
and the resulting process in the interval τ ∈ [0,100] cannot
be considered as energy localization on the linear oscillator.
The dashed line (c) corresponds to the backbone curve z̄(τ )
in the system with the weak-coupling coefficient ε = 0.05.
The coefficient ε = 0.05 can be achieved by the reduction of
the coupling stiffness c12. As expected, the reduction of the
coupling strength diminishes the mean value of the amplitude
squared b2(τ ) compared to the basic system.

Line (d) depicts the enhancement of TET in the system
with the relative mass M = 0.25. The mass m1 is assumed to
be four times more than in the basic system; the coefficient
of nonlinearity γ is also proportionally increased to leave
unchanged the coefficient α. The quasisteady solution can now
be found from the equation

F (z) = μ

2
z − 1 − 2z

2
√

z(1 − z)
= βτ − 3

4
. (4.4)

Although the initial value of the backbone curve z̄0 = 0.106
is much less than the corresponding value z̄0 = 0.24 in the
basic system, the terminal value z̄T = 0.74 is close to the value
z̄T = 0.76 in the system with equal masses. Note that initially
the amplitude |ψ2| = |b|/√M = 2|b| is close to the amplitude
of the linear oscillator in the basic system but at large times it
becomes twice more than the corresponding amplitude in the
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FIG. 4. Responses u1 and u2 in the system with parameters α = 0.5, ε = 0.1, β = 0.05, and different values of the relative mass M: (a)
responses of both oscillators at M = m2/m1 = 0.25; (b) responses of the linear oscillators at M = 0.25 and M = 1 (equal masses).
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FIG. 5. Tunneling generated by the unit initial impulse imposed
on the linear oscillator: the solid line corresponds to the excited
linear oscillator; the dotted line depicts the response of the nonlinear
oscillator.

system with equal masses. This result can be understood with
the help of approximations (3.13), (4.2), and (4.3). It follows
from (3.13) and (4.2) that the initial state z̄0 is decreased with
decreasing M . On the other hand, expression (3.13) shows
that the derivative F ′(z̄0) grows when the parameters M and
z̄0 are diminished, thus compensating the gap between the
initial points of the backbone curves at different values of the
relative mass M .

The obtained approximations are confirmed by the results
of numerical simulations for system (2.3) with parameters α =
0.5,ε = 0.1,β = 0.05, and different coefficients M (Fig. 4).

Finally, we note that an application of an initial impulse to
the linear oscillator while the nonlinear one is initially at rest
transforms self-sustained resonance into adiabatic tunneling
with irreversible energy transfer from the excited linear
oscillator to the nonlinear attachment. An example for the basic
system with parameters ε = 0.1,M = 1,β = 0.05,α = 0.5 is
presented in Fig. 5.

The earlier work [22] described a similar process in a
system with the potential of the nonlinear oscillator U1 =
1
2c1u

2
1 + 1

4γ u4
1 such that c1/m1 = c2/m2. It was shown that,

although the system is initially engaged in resonance, energy
transfer from the excited linear oscillator gives rise to adiabatic
tunneling, in which energy of the excited oscillator falls due
to escape from resonance, together with a simultaneous rapid
increase of energy of the nonlinear oscillator. In contrast to
tunneling, the above-discussed decreasing resonance response
of the excited nonlinear oscillator is caused by capture of the
oscillator into resonance with slowly decaying frequency.

V. CONCLUSIONS

In this article, we have studied energy transfer from an
impulsively excited strongly nonlinear oscillator to a linear
attachment with a slowly time-decaying stiffness. It is shown
that even in the absence of external or parametric periodic
forcing the system may exhibit internal AR, with permanent

growth of the mean-square amplitude of the linear attachment
and the simultaneously decreasing amplitude of the nonlinear
oscillator. In the first part of the article, the governing equations
of the slow dynamics are derived under the condition of 1:1
resonance interactions between the oscillators. The conditions
of capture into resonance are collected in the Appendix. The
numerical results obtained in the second part of the work
motivate the investigations of the effect of parameters on
the emergence of AR. In particular, it is shown that AR may
occur in the array with moderate nonlinearity but the growth
of nonlinearity results in failure of resonance capture and
localization of energy on the excited oscillator. A similar effect
is observed in the system with diminishing relative mass.
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APPENDIX: CONDITIONS OF 1:1
INTERNAL RESONANCE

In this work, resonance energy transfer under the condition
of 1:1 resonance between the oscillators is investigated. It is
important to note that, in contrast to the linear oscillator the
frequency of a strongly nonlinear oscillator is not a pregiven
constant but directly depends on the energy of oscillations
determined by both nonlinearity and initial conditions. This
implies that 1:1 resonance in the time-invariant analog of the
coupled system (2.3) may occur if the natural frequency of the
separated nonlinear oscillator

d2u1

dτ 2
0

+ 8

3
αu3

1 = 0 (A1)

with initial conditions u1(0) = 0, v1(0) = 1 is close to unity.
The frequency of nonlinear oscillations can be approximately
computed by the harmonic balance method [20], i.e., by
seeking the time-periodic response in the form

u1(τ0) = A sin[�(A)τ0],
du1

dτ0
= �(A)A cos[�(A)τ0]

(A2)

with frequency �(A) = α1/2A. Taking into account initial
conditions, we obtain

�(A)A = α1/2A2 = 1, A = α−1/4, �(A) = α1/4 (A3)

and, respectively, � = 1 if α = 1. Note that the approximate
analysis allows considering a more general set of parameters
α ∼ 1. Indeed, the parameters α = 2 and α = 0.5 correspond,
respectively, to the frequencies � = 1.18 and � = 0.84, which
are close to the required resonance frequency � = 1 but
formula (A3) shows that the amplitude A decreases with
increasing α. This effect becomes even more enhanced for
the coupled oscillators (Fig. 1).

Prerequisites for the emergence of TET in the oscillator
array can be formally obtained in the same way as for
quasilinear systems [17]. However, the dependence of the
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FIG. 6. Responses u1 and u2 in the time-invariant coupled oscillators with parameters M = 1, ε = 0.1, β = 0, and different coefficients of
nonlinearity. u1: dashed line; u2: solid line.

coefficients on a number of parameters complicates the
theoretical analysis. We simplify the problem by studying
the dynamics of the attachment under the condition |z| � 1.
Substituting b = √

z into (3.10) and assuming |b| � 1,ζ0 = 0,
we reduce (3.10) to the following equations:

db

dτ
= −

√
M sin �,

b
d�

dτ
= −

{
μ

[
α(1 − b2) − 1

2

]
− (1 − M)

}
b −

√
M cos �,

(A4)

which agree with the averaged equations for the amplitude and
the phase of the Duffing oscillator. Using the results earlier
obtained for the Duffing oscillator [16], we conclude that the
linear attachment performs small oscillations if the condition

27μαM < [μα − 0.5μ − (1 − M)]3 (A5)

holds true. Let M = 1,μ = 10(ε = 0.1). In this case, condition
(A5) holds at α > 1.2; otherwise, 27μα > (μα − 0.5μ)3. In
other words, at α < 1.2 the system exhibits energy exchange
manifested as large oscillations of both oscillators but at
α > 1.2 energy remains localized on the excited nonlinear
oscillator (Fig. 6). A similar result for system (2.3) with
slowly decreasing in time linear stiffness is demonstrated in
Fig. 1. Also, in the particular case of M = 1

4 we find that the
energy remains localized on the excited nonlinear oscillator at
α > 0.98.

The obtained results have a clear physical meaning: energy
transfer and exchange may occur for moderate coefficients
of nonlinearity satisfying conditions (A3) and (A5); a further
increase of nonlinearity leads to localization of energy on the
excited nonlinear oscillator. At the same time, the reduction
of the relative mass M is equivalent to the reduction of the
coupling strength, thus diminishing energy transferring to the
attachment and reducing its response.
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