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Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model
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We study the phenomenon of noise-induced torus bursting on the base of the three-dimensional Hindmarsh-
Rose neuron model forced by additive noise. We show that in the parametric zone close to the Neimark-Sacker
bifurcation, where the deterministic system exhibits rapid tonic spiking oscillations, random disturbances can turn
tonic spiking into bursting, which is characterized by the formation of a peculiar dynamical structure resembling
that of a torus. This phenomenon is confirmed by the changes in dispersion of random trajectories as well as the
power spectral density and interspike intervals statistics. In particular, we show that as noise increases, the system
undergoes P and D bifurcations, transitioning from order to chaos. We ultimately characterize the transition
from stochastic (tonic) spiking to bursting by stochastic sensitivity functions.
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I. INTRODUCTION

Neurons are known to exhibit an array of different behav-
iors, among which oscillatory activity plays an important role.
In particular, neurons can display various types of oscillations,
such as tonic spiking, bursting, amplitude-modulated spiking,
and mixed-mode oscillations [1–3]. Mathematical models are
actively developed to describe these complex activities of the
biological cell as well as possible mechanisms of transitions
between them.

Since neurons may be regarded as dynamical systems,
transitions between different types of neural oscillations can
be studied using tools of the theory for such systems. In
this regard, transitions between different types of oscillatory
activity in dynamical systems are often related not only to
complex bifurcations but also to the presence of specific
dynamical solutions, such as canards. The classical canard
[4] phenomenon explains the transition under variation of
a parameter from a small-amplitude limit cycle to a large-
amplitude relaxation cycle through a family of canard-type
cycles. This transition happens within a narrow interval of
the control parameter, whereby the phenomenon is dubbed
as a canard explosion. Canards are observed in the fast-slow
systems. Canard limit cycles consist of parts that go close to
both the attracting and the repelling branches of fixed points of
the fast subsystem. Well-known examples of planar systems
displaying canards are the van der Pol oscillator [4] are the
FitzHugh-Nagumo neuron model [5].

Recently, a new phenomenon related to torus canards
was discovered in neuron models [6,7]. Torus canards are a
three-dimensional generalization of classical two-dimensional
canard solutions. As with the limit cycle canards, torus canards
are observed in fast-slow systems. Limit cycle canards usually
appear when the full system undergoes Hopf bifurcation, and
the fast subsystem exhibits saddle-node (fold) bifurcation
of equilibria. Similarly, torus canards emerge when the full
system has Neimark-Sacker (torus) bifurcation, and the fast
subsystem undergoes saddle-node (fold) bifurcation of limit
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cycles [7]. The torus canard solutions spend a long time near
both the attracting and the repelling branches of the limit cycles
of the fast subsystem.

The torus canard phenomenon was first discovered in a
model of neural activity of the Purkinje cell [6], consisting
of five ordinary differential equations based on the Hodgkin-
Huxley model [8]. Torus canards were recently identified
[7] in other neuron models, such as the Hindmarsh-Rose-
type model, Morris-Lecar-Terman equations, and the Wilson-
Cowan-Izhikevich system. It was shown that in these models,
torus canards emerge in the zone of transition from the rapid
spiking regime to the bursting one. Benes et al. [9] proposed an
elementary model of torus canards: a three-dimensional van
der Pol–type system, in which the torus canards are rotated
versions of the limit cycle canards of a planar system.

Torus canards in neuron models are associated with the
emergence of bursting activity, where bursts are formed by a
torus dynamical structure. In this paper, we show that such
bursting can be induced by noise in the parametric zone where
the deterministic system exhibits only spiking oscillations. As
a basic example, we use the three-dimensional Hindmarsh-
Rose (HR) model [10].

The HR model is known to exhibit rich dynamics [11–14]
including bursting [12,15,16]. Several studies on the HR model
have also considered chaotic transitions between spiking and
bursting solutions [11,17]. Bifurcation scenarios underlying
the irregular or chaotic spiking and bursting were analyzed
in [18]. Mixed-mode bursting oscillations and limit cycle
canards were discussed in [19]. Moreover, it was recently
shown that the HR model can also exhibit torus canards and
bursting [7].

As in a living system, neurons are susceptible to random
disturbances. Accordingly, the study of phenomena related to
the influence of noise on neuronal models is of considerable
interest, particularly in light of the potential structuring effects
borne by noise. It has indeed been reported that noise can
induce a wide range of complex phenomena in neuron models:
coherence resonance [20–22], stochastic resonance [23,24],
noise-induced bursting [25–28], stochastic generation of large-
amplitude oscillations [22,29], noise-induced suppression of
firing [30], noise-induced chaos and order [28,31], stochastic
oscillating bistability in the zone of canard limit cycles [32],
etc.
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FIG. 1. Bifurcation diagram: stable (black dash-dotted line) and unstable (black dotted line) equilibria, maximal and minimal values of x

(z) coordinates along stable (blue solid) and unstable (blue dashed line) limit cycles, and maximal and minimal values of x (z) coordinates
along invariant tori (red thick solid line).

In this paper, we study a new phenomenon observed in
the neuron model, namely noise-induced torus bursting. We
show that in the parametric zone close to the Neimark-Sacker
bifurcation, where the HR system exhibits rapid spiking
oscillations, random disturbances can transform the spiking
regime to a torus bursting one.

For a quantitative analysis of this phenomenon, we suggest
an approach based on the stochastic sensitivity function
technique, confidence domains, and Mahalanobis distance
methods [29,30,33,34]. The stochastic sensitivity function
allows us to approximate a probability density distribution of
random states in the stochastic attractor. This distribution can
be geometrically described by a confidence domain (an
ellipsoid for an equilibrium and a torus for a limit cycle).
For an analysis of noise-induced phenomena, an appropriate
measure is needed for the distance from an attractor to a
boundary separating basins of attraction. For this purpose,
the Mahalanobis distance [30,35] can be used, insofar as this
distance is proportional to the probability of escape from a
basin of attraction.

The noise-induced transition from tonic spiking to torus
bursting can be considered as a stochastic bifurcation. Tradi-
tionally two types of stochastic bifurcations are distinguished
[36]. The first, called D bifurcation, occurs when dynamical
peculiarities of stochastic flows in the system are qualitatively
changed. Usually, a study of D bifurcations is based on the
analysis of Lyapunov exponents. Another type of bifurcation,
called P bifurcation, is connected to qualitative changes
of the stationary probability density function (PDF) for the
distribution of random states. In this study, we show that
noise-induced torus bursting in the HR model is accompanied
by both D and P bifurcations.

The present paper is organized as follows. Section II
discusses the essential features of the deterministic dynamics
of the Hindmarsh-Rose model in the parametric zone of
quasiperiodic oscillations. In Sec. III, we describe the phe-
nomenon of noise-induced torus bursting by direct numerical
simulations of solutions of the stochastic Hindmarsh-Rose
model. In the same section, we also study the probabilistic
distribution of random trajectories under a variation of noise
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FIG. 2. Deterministic trajectories (in projection on the xOy the xOz planes) and corresponding time series x(t) for (a) β = −0.162 and
(b) β = −0.15.

intensity, as well as the power spectral density and the inter-
spike interval statistics. The presence of P and D stochastic
bifurcations is also discussed here. Finally, in Sec. IV we
provide a characterization of this phenomenon based on the
stochastic sensitivity function technique.

II. DETERMINISTIC HINDMARSH-ROSE MODEL

Consider the Hindmarsh-Rose (HR) model in the form
[10,16]

ẋ = sax3 − sx2 − y − bz,

ẏ = ϕ(x2 − y),

ż = r(sαx + β − kz), (1)

where x is a membrane potential; y is a gating variable; z is a
recovery variable; and a, b, k, r, s, α, β, ϕ are the parameters
of the system. The small parameter r (0 < r � 1) controls the
separation of time scales.

Following [7], we set a = 0.5, b = 10, k = 0.2, s =
−1.95, α = −0.1, ϕ = 1, r = 10−5, and we study the
dynamics of the system (1) for variations of the parameter
β.
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FIG. 3. Stochastic trajectories (in projection on the xOy and xOz planes) and corresponding time series x(t) for β = −0.159:
(a) ε = 0.0001, (b) ε = 0.0004.

Figure 1 shows the bifurcation diagram of the deterministic
system (1) in the zone β ∈ (−0.22,−0.13). For β < β1 ≈
−0.1927, the system possesses a stable equilibrium. As β

increases, the equilibrium loses stability via the supercritical
Andronov-Hopf bifurcation at β = β1, resulting in the emer-
gence of a stable limit cycle. The limit cycle remains stable
in a very narrow parameter region: near the Andronov-Hopf
bifurcation, the Neimark-Sacker bifurcation occurs with the
generation of an invariant torus. Stable tori exist in the system
for −0.1927 � β < β2 ≈ −0.1603. As the parameter passes
the point β = β2, the second Neimark-Sacker bifurcation
occurs, and for β > β2 the stable limit cycle becomes the only
attractor. The transition from limit cycles to the torus near the
bifurcation point β = β2 is accompanied by the torus canard
explosion [7].

The torus in the zone β1 < β < β2 of model (1) describes
a special type of bursting oscillations, whereas the limit cycles
in the zone β > β2 reproduce the rapid tonic spiking behavior.
Examples of both oscillatory regimes are shown in Fig. 2
for β = −0.162 (torus, bursting) and β = −0.15 (limit cycle,
tonic spiking). In the case of torus bursting, one can observe

an alternation of intervals of rapid spiking with long quiescent
phases [see Fig. 2(a)], whereas in the tonic spiking regime,
spikes are generated continuously [see Fig. 2(b)].

III. STOCHASTIC SYSTEM: NOISE-INDUCED
TORUS BURSTING

Consider the stochastic variant of the model (1):

ẋ = sax3 − sx2 − y − bz + εξ (t),

ẏ = ϕ(x2 − y),

ż = r(sαx + β − kz), (2)

where ξ (t) is a standard uncorrelated white Gaussian noise
with parameters 〈ξ (t)〉 = 0, 〈ξ (t)ξ�(t + τ )〉 = δ(τ ), and ε sets
the noise intensity.

In what follows, we focus on the parameter zone β > β2 ≈
−0.1603, where the deterministic system (1) exhibits tonic
spiking (see Fig. 1).

First, consider the value β = −0.159. Here, the limit cycle
is the attractor of the deterministic system (1). Figure 3 shows
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FIG. 4. Stochastic trajectories (in projection on xOy and xOz planes) and corresponding time series x(t) for β = −0.15: (a) ε = 0.001 and
(b) ε = 0.005.

the random trajectories starting from this deterministic cycle
and the corresponding time series x(t) for two values of the
noise intensity. For a relatively small noise intensity value
(ε = 0.0001), random trajectories are concentrated in a small
vicinity of the deterministic limit cycle, and the neuron still

essentially exhibits tonic spiking, except that this occurs in
a noisy fashion [see Fig. 3(a)]. For a greater noise intensity
(ε = 0.0004), random trajectories deviate far from the limit
cycle and form a structure similar to a torus [see Fig. 3(b)]. On
the x(t) plot, one can observe the alternation of large-amplitude
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FIG. 5. Noise-induced torus bursting: z coordinates of stochastic trajectories for (a) β = −0.159 and (b) β = −0.15.
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FIG. 6. Power spectral density for (a) β = −0.159, ε = 0 (deterministic limit cycle); (b) β = −0.162, ε = 0 (deterministic torus); and (c)
β = −0.159 (ε = 0.0001 and 0.0004).

spiking oscillations and small-amplitude fluctuations near the
unstable equilibrium. This indicates that in the presence of
noise, oscillations changed from tonic spiking to bursting.

Consider the parameter value β = −0.15. Figure 4 shows
the random trajectories starting from the deterministic limit
cycle and the corresponding time series x(t) for two values of
the noise intensity. One can observe that for a sufficiently small
noise (ε = 0.001), random trajectories are located near the
deterministic limit cycle, and this corresponds to the spiking
activity. For a greater noise intensity value (ε = 0.005), the
stochastic torus is formed, and the type of oscillations can be
considered as noisy bursting.

Thus, in the parametric zone β > β2, where the limit
cycle is the attractor of the deterministic system (1), random
disturbances form a new dynamical structure resembling a

torus, and the dynamical regime changes from spiking to
bursting. Let us refer to the regime observed for small
noise intensity values as cycle-type stochastic oscillations
(CSO). We will refer to the new regime, formed under the
noise of sufficiently large intensities, as torus-type stochastic
oscillations (TSO).

Let us study the details of the transition from CSO
to TSO by examining the changes of the distribution of
random trajectories under increasing noise. Figure 5 shows
z coordinates of stochastic trajectories for β = −0.159 and
−0.15 depending on the noise intensity. For small noise
intensities, random states are localized near the deterministic
limit cycle, and they have a sufficiently small dispersion. With
an increase of noise, the dispersion of random states grows
abruptly. This corresponds to the emergence of TSO. Note that
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FIG. 7. ISI PDFs for (a) β = −0.162 (ε = 0), (b) β = −0.159, and (c) β = −0.15.

for the value β = −0.159, which is closer to the bifurcation
point β2, the generation of TSO is observed for smaller values
of noise intensity than for β = −0.15.

The magnitude of the dispersion of random trajectories
can be considered as a spacial characteristic for noise-induced
torus bursting. To further characterize the temporal features
of TSO, we estimate the power spectral density (PSD) of
oscillations. In this regard, Fig. 6 shows the PSD for the
deterministic attractors (limit cycle and torus). Figures 6(a)
and 6(b) show the PSD for β = −0.159 (deterministic limit
cycle) and β = −0.162 (deterministic torus). For β = −0.159,
the PSD has a single peak corresponding to the frequency of
the tonic spiking oscillations: ν ≈ 0.12 Hz [see Fig. 6(a)]. The
frequency distribution for bursting (torus) oscillations in the
HR model is more complicated. The PSD for β = −0.162 has
a peak at ν ≈ 0.0001 Hz. This matches the interburst frequency

(corresponding to the long interburst period). There is also
a significant power at a wide interval of higher frequencies
0.05 < ν < 0.15, which corresponds to the rapid spiking
oscillations in the active phase of the burst [see Fig. 6(b)].

Let us examine how noise changes the PSD for the limit
cycle (tonic spiking regime) for β = −0.159. For a small
noise intensity (ε = 0.0001), the PSD has a single slightly
widened peak at the frequency ν ≈ 0.12 Hz [see Fig. 6(c)].
This corresponds to a noisy spiking regime. With an increase of
the noise intensity (ε = 0.0004), a new additional peak at low
frequencies appears (ν ≈ 0.0001 Hz), and the peak at higher
frequencies expands further. This indicates the noise-induced
transformation from the tonic spiking oscillation regime to the
torus bursting one.

It is helpful to further analyze the temporal characteristics of
stochastic oscillations with the aid of interspike interval (ISI)
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statistics. An estimation of interspike interval τ distribution is a
common method to study stochastic changes in the oscillatory
dynamics of neuron models. Accordingly, to characterize the
ISI statistics, we can estimated the ISI probability density
function (PDF), the mean value m = 〈τ 〉, and the coefficient

of variation CV =
√

〈(τ−m)2〉
m

.
A phenomenon of TSO is confirmed by changes of ISI

PDFs displayed in Fig. 7 for a different parameter β and
noise intensity ε values. Consider β = −0.159. For a small
noise (ε = 0.0001), the ISI PDF is unimodal with the peak
corresponding to the period of the limit cycle: T ≈ 8.17 [see
Fig. 7(b)]. With an increase of noise (ε = 0.0004), the PDF
becomes bimodal: one can observe a new peak of the ISI
PDF in the zone of long ISIs (τ ≈ 3500). The emergence of
long ISIs indicates the noise-induced transition to the bursting
regime (a long interval accounts for a quiescence phase).
With a further increase of noise (ε = 0.001), the peak in
the zone of long ISIs shifts to the left (thus, the quiescence
intervals shorten). Random disturbances also induce changes
of probability distribution in the zone of short ISIs: a form
of the probability function becomes similar to that of the

deterministic torus [see Fig. 7(a) for β = −0.162]. A similar
transformation of the ISI PDF occurs also for β = −0.15 [see
Fig. 7(c)], which indicates the noise-induced transition to the
bursting regime. The change of the PDF from unimodal form to
bimodal indicates P bifurcation [36] related to the qualitative
change of the distribution of ISIs for the stochastic cycle.

Figure 8 shows the overall mean value m [Fig. 8(a)]
and the overall coefficient of variation CV [Fig. 8(b)] of
ISIs, the mean ISI value within bursts ms [Fig. 8(c)], and
the mean quiescence (interburst) interval mq [Fig. 8(d)] for
different parameter β values under variation of noise intensity.
One can observe that for small noise, the overall mean
ISI is almost constant and corresponds to the period of
the spiking limit cycle. An increase in the noise intensity
causes an abrupt rise of the overall mean ISI due to the
emergence of long ISIs corresponding to the quiescence phase
in the bursting regime. The plots of the overall CV display
anticoherence (an increase of variability of ISIs under random
disturbances). This is also typical for the bursting dynamics.
With a further increase of noise intensity, the variability of
ISIs decreases, which corresponds to an increase of system
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FIG. 9. ISI return maps during noise-induced bursting: (a) β = −0.162 (ε = 0), (b) β = −0.159, and (c) β = −0.15.
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coherence. Figure 8(c) shows that the mean ISI value within
bursts does not significantly change in the presence of noise. In
Fig. 8(d), estimations of the quiescence phase duration in the
noise-induced bursting regime are displayed. For small noise
there are no bursts, and the mean quiescence interval equals
zero. With an increase of noise, long ISIs emerge, and this
causes a sharp increase of the mean quiescence interval. As
noise further increases, the mean interburst interval decreases.

Noise-induced bursting is also clearly demonstrated in
return maps of ISIs (i.e., plots of the duration of interval τn+1

versus the duration of the preceding interval τn; see Fig. 9). For
a small noise, one cluster of ISIs in the bottom left corner of
the diagram is observed. This corresponds to the fast spiking
dynamics. With an increase of noise, two more clusters of ISIs
(in the bottom right and upper left parts of the diagram) appear.
Such an ISI return map is typical for the bursting regime:
a cluster of ISIs in the bottom left corner of the diagram
corresponds to fast spiking inside the bursts, whereas two
other clusters refer to the quiescence phases [compare with
the ISI return map of the deterministic bursting regime for
β = −0.162, Fig. 9(a)].

Consider finally how TSO in system (2) is mimicked by
the behavior of the largest Lyapunov exponent (LLE). Recall
that the LLE is a standard quantitative characteristic of the
dynamic peculiarities of flows. A negative LLE denotes that the
trajectories of the stochastic system mostly converge. Positive
values of the LLE instead mark that the divergence dominates.
Thus, a change of the sign of the LLE from negative to positive
indicates a transformation from regular to chaotic dynamics
[37,38].

Figure 10 shows LLEs [
(ε)] for various β values from the
zone of tonic spiking depending on noise intensity. It can be
seen that for relatively small values of noise intensity, 
(ε) =
0, and with the increase of noise, the exponent 
 becomes
positive. This coincides with the occurrence of a D bifurcation
[36] underpinning the qualitative change in the dynamics of
the stochastic flow and noise-induced chaos.
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FIG. 11. Deterministic limit cycle (black) and phase trajectories

(light gray and dark gray) starting from different initial points for
β = −0.15 with corresponding time series x(t).

In summary, Figs. 5, 8, and 10 allow us to make empirical
estimations for critical values of the noise intensity (ε∗)
corresponding to the transition from the spiking regime to the
bursting one. This transition is characterized by (i) the sharp
growth of z-coordinate dispersion, (ii) the increase of the ISI
mean value, (iii) the growth of the variation of ISIs, and (iv)
the change of the sign of the LLE, which appears at some
level of noise. For β = −0.159 we get ε∗ ≈ 0.0003, while for
β = −0.15 we have ε∗ ≈ 0.002.

IV. STOCHASTIC SENSITIVITY ANALYSIS OF
NOISE-INDUCED TORUS BURSTING

The emergence of the torus type of stochastic oscillations is
related to the peculiarities of the geometrical arrangement of
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FIG. 12. Stochastic sensitivity of limit cycles: (a) nonzero eigenvalues λ1,2(t) of the stochastic sensitivity matrix for β = −0.15, (b) maximal

eigenvalue λ1(t) (red thick solid) along the limit cycle (black thin solid) for β = −0.15, and (c) stochastic sensitivity factor in the zone of tonic
spiking limit cycles.

deterministic trajectories near the limit cycle and its stochastic
sensitivity.

Figure 11 shows the deterministic trajectories starting from
different points in the vicinity of the limit cycle for β = −0.15.
The trajectories tend to the stable cycle, but the character
of this movement can be different. One can determine two
types of transient regimes in the phase space. In the first
type, the trajectory tends to the limit cycle monotonically.
In the second type of transient, the trajectory first goes far
from the limit cycle, spends a long time in the vicinity of
the unstable equilibrium, and then makes a long approach to
the cycle. The type of transient regime depends on the location
of the initial point. Thus, there is some border surface between
these transient regimes in the phase space. Let us define this
border by the term “pseudoseparatrix.”

The behavior of the system in the presence of random
disturbances is also influenced by the stochastic sensitivity

of attractors. To pursue analysis of TSO emergence, we use
the technique of stochastic sensitivity functions (SSFs). The
mathematical details can be found in the Appendix.

The sensitivity of a stable limit cycle to noise is character-
ized by the stochastic sensitivity function W (t). In Fig. 12(a),
the nonzero eigenvalues λ1,2(t) of the matrix function W (t)
for β = −0.15 are plotted. One can observe that the stochastic
sensitivity varies nonuniformly along the cycle. The maximum
of the SSF (the maximal value of the largest eigenvalue λ1)
corresponds to the part of the cycle with small x coordinates
[see Fig. 12(b)].

To determine the stochastic sensitivity of the cycle as a
whole, the stochastic sensitivity factor M can be used (see
the Appendix). In Fig. 12(c), the stochastic sensitivity factor
M(β) for limit cycles in the zone β ∈ (−0.1603, − 0.14) is
plotted. One can observe that as the parameter β approaches
the point β = −0.1603 where the system undergoes the
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FIG. 13. Set of confidence ellipses (confidence torus) around the deterministic limit cycle (black thick solid) for β = −0.15 and ε = 0.0005
with fiducial probability P = 0.99: (a) in xyz space, (b) in projection on the xOy plane.
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Neimark-Sacker bifurcation, the sensitivity of the limit cycle
grows unlimitedly.

The SSF technique allows us to approximate the geometry
of a bundle of stochastic trajectories around the deterministic
limit cycle. Consider a hyperplane �t that is orthogonal to
the limit cycle at the point x̄(t). Eigenvalues and eigenvectors
of the SSF matrix W (t) define a confidence ellipse located in
the plane �t . A set of these ellipses for all points x̄(t) forms
in the 3D space a confidence torus around the limit cycle.
Random trajectories are located entirely inside this confidence
torus with the fiducial probability P . Figure 13 shows the
confidence torus (a set of confidence ellipses) around the
deterministic limit cycle for β = −0.15, and ε = 0.0005 with
fiducial probability P = 0.99.

In the generation of TSO, the distance between the deter-
ministic cycle and the pseudoseparatrix plays an important
role. For this purpose, the Mahalanobis distance,

dM (x,x̄(t)) =
√

[x − x̄(t)]�W+(t)[x − x̄(t)],

can be used insofar as it takes into account both the geometry
of the attractors and their stochastic sensitivity, while being
proportional to the probability of escape from a basin of
attraction.

Figure 14 shows the plots of the Mahalanobis distance
from points of the limit cycle to the pseudoseparatrix for
β = −0.159 and −0.15. The Mahalanobis distance is related
to the residence time of the system in the part of the phase

space isolated by the pseudoseparatrix surface: the larger the
Mahalanobis distance is, the longer is the residence time in
this region. Thus, the Mahalanobis metrics allows us to find
the “transition zone,” i.e., a part of the cycle from which the
random trajectories go off to the zone of the phase space
outside the pseudoseparatrix surface. This is the part of the
cycle where the Mahalanobis distance to the pseudoseparatrix
is minimal.

Let us consider the mutual position of the confidence
torus and pseudoseparatrix under different noise intensities.
Consider the point of the limit cycle from the transition zone
and a plane orthogonal to the limit cycle at this point. Let us
construct the pseudoseparatrix line, which is an intersection
of the pseudoseparatrix surface with the considered plane,
and confidence ellipses in this plane. Figure 15 displays a
point of cycle from the transition zone, the pseudoseparatrix
for β = −0.159 and −0.15, and the confidence ellipses
for different noise intensities. For sufficiently small noise
intensity, a confidence ellipse is close to the deterministic
cycle. With an increase of the noise intensity, the ellipse
expands and intersects the pseudoseparatrix. This means that
with high probability, stochastic trajectories can go to the
zone of the phase space where they form a stochastic torus.
The noise intensity that corresponds to the intersection of the
confidence ellipse with the pseudoseparatrix can be used to
estimate the critical value ε∗. Note that the point where the
confidence ellipse touches the pseudoseparatrix corresponds
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FIG. 15. Point of the limit cycle (black circle), confidence ellipses (solid and dashed lines) with fiducial probability P = 0.99,
pseudoseparatrix (red dash-dotted line), point of the minimal Mahalanobis distance from cycle to pseudoseparatrix (red asterisk) for (a)
β = −0.159 (for point t = 6) and (b) β = −0.15 (for point t = 4.2).
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to the minimal Mahalanobis distance. For β = −0.159 we
estimate ε∗ ≈ 0.0003, and for β = −0.15 we get ε∗ ≈ 0.003.
These values are in good agreement with the results from our
numerical simulations.

V. CONCLUSION

Neural activity is known to have a variety of oscillatory
regimes. Along with traditionally considered periodic regimes,
more complex ones are observed. Torus bursting takes an
important place among them [6,7,9]. A challenging problem is
to analyze mechanisms of noise-induced torus bursting. In this
paper, the phenomenon of stochastic generation of a torus in the
Hindmarsh-Rose neuron model was discovered. We showed
that in this model, random disturbances can transform the tonic
spiking regime to the torus bursting one. This phenomenon was
confirmed by the changes of dispersion of random trajectories
as well as the transformation of the power spectral density,
and the interspike interval statistics. Qualitative changes of the
probability density function (P bifurcations) of the distribution
of the interspike intervals were demonstrated. We found
that the emergence of torus-type stochastic oscillations is
related to the peculiarities of the geometrical arrangement of
deterministic trajectories near the limit cycle. Indeed, one can
determine two types of transient processes depending on the
initial deviation from the limit cycle. For the detailed para-
metric study of the noise-induced torus bursting mechanism,
we applied the approach based on the stochastic sensitivity
functions technique, confidence domains, and Mahalanobis
metrics methods. With the help of Lyapunov exponents, we
showed that the noise-induced torus bursting is accompanied
by the stochastic D bifurcation of the transition from order to
chaos.
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APPENDIX: STOCHASTIC SENSITIVITY
FUNCTION TECHNIQUE

Consider a general nonlinear system of stochastic differen-
tial equations:

dx = f (x) dt + εσ (x)ξ (t). (A1)

Here, x is an n vector, f (x) is a smooth n-dimensional
function, ξ (t) is an n-dimensional white Gaussian noise with
〈ξ (t)ξ�(t + τ )〉 = δ(τ )I, I is an n × n identity matrix, σ (x)
is an n × n matrix function, and ε is a scalar parameter
for the noise intensity. Let the corresponding deterministic
system (ε = 0) have an exponentially stable limit cycle �,
defined by a T -periodic solution x̄(t) = x̄(t + T ). Trajectories
of the randomly forced system (A1) leave the deterministic
cycle � and form some probabilistic distribution around it.

The time evolution of this distribution is governed by the
Kolmogorov-Fokker-Planck (KFP) equation. At steady state,
one can consider the stationary probability density function
ρ(x,ε), which is the solution of the stationary KFP equation.
This function, however, is often not derivable analytically in
multidimensional (n � 2) systems, therefore various approx-
imations and asymptotics are developed [21,39,40]. Here, a
well-known quasipotential method [41,42] and a stochastic
sensitivity function (SSF) technique [30,33,34] can be applied.

Let �t be a hyperplane (or Poincaré section) that is
orthogonal to the cycle at the point x̄(t) (0 � t < T ). For
this plane, in the neighborhood of the point x̄(t), a Gaussian
approximation of the stationary probabilistic distribution can
be written [33] as

ρt (x,ε) = K exp

(
− [x − x̄(t)]�W+(t)[x − x̄(t)]

2ε2

)
,

where x̄(t) denotes the mean value of x, and D(t,ε) = ε2W (t)
is the covariance matrix. Here the matrix function W (t) is
singular, and the sign “+” denotes a pseudoinversion. In
particular, W (t) is the unique solution of the boundary value
problem [33],

Ẇ = F (t)W + WF�(t) + P (t)S(t)P (t) (A2)

with conditions

W (T ) = W (0), W (t)r(t) = 0,

where

F (t) = ∂f

∂x
(x̄(t)), S(t) = G(t)G�(t), G(t) = σ (x̄(t)),

r(t) = f (x̄(t)), P (t) = Pr(t), Pr = I − rr�

r�r
.

The matrix function W (t) can be regarded as a measure of
stochastic sensitivity of the system to random perturbations,
and for this reason it is referred to as the “stochastic sensitivity
function” (SSF) for the system (A1). The eigenvalues λi(t)
and the eigenvectors vi(t) of the SSF matrix characterize the
dispersion of random states in the Poincaré section �t near the
point x̄(t) of the cycle. The value M = max

[0,T ]
λ1(t) is a useful

characteristic of the cycle as a whole. We consider M as a
stochastic sensitivity factor of the limit cycle �.

The SSF allows us to construct a confidence ellipse with
the center in the point x̄(t). The equation of such an ellipse in
the plane �t reads

[x − x̄(t)]�W+(t)[x − x̄(t)] = 2k2ε2,

where the parameter k determines a fiducial probability P =
1 − e−k . A set of these ellipses for t ∈ [0; T ) specifies some
confidence torus around a deterministic cycle. This torus is a
confidence domain in a phase space for the stochastic cycle as
a whole [34].
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