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We study the transport and diffusion properties of passive inertial particles described by a six-dimensional
dissipative bailout embedding map. The base map chosen for the study is the three-dimensional incompressible
Arnold-Beltrami-Childress (ABC) map chosen as a representation of volume preserving flows. There are two
distinct cases: the two-action and the one-action cases, depending on whether two or one of the parameters
(A,B,C) exceed 1. The embedded map dynamics is governed by two parameters (α,γ ), which quantify the mass
density ratio and dissipation, respectively. There are important differences between the aerosol (α < 1) and the
bubble (α > 1) regimes. We have studied the diffusive behavior of the system and constructed the phase diagram
in the parameter space by computing the diffusion exponents η. Three classes have been broadly classified—
subdiffusive transport (η < 1), normal diffusion (η ≈ 1), and superdiffusion (η > 1) with η ≈ 2 referred to as
the ballistic regime. Correlating the diffusive phase diagram with the phase diagram for dynamical regimes
seen earlier, we find that the hyperchaotic bubble regime is largely correlated with normal and superdiffusive
behavior. In contrast, in the aerosol regime, ballistic superdiffusion is seen in regions that largely show periodic
dynamical behaviors, whereas subdiffusive behavior is seen in both periodic and chaotic regimes. The probability
distributions of the diffusion exponents show power-law scaling for both aerosol and bubbles in the superdiffusive
regimes. We further study the Poincáre recurrence times statistics of the system. Here, we find that recurrence
time distributions show power law regimes due to the existence of partial barriers to transport in the phase space.
Moreover, the plot of average particle kinetic energies versus the mass density ratio for the two-action case
exhibits a devil’s staircase–like structure for higher dissipation values. We explain these results and discuss their
implications for realistic systems.
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I. INTRODUCTION

The study of transport and diffusion of impurities in fluid
flow has significant practical implications for diverse areas of
science. Examples include the dynamics of passive scalars
in fluid models [1–5], atmospheric motion [6,7], flows in
planetary science [8], and in several engineering applications
[9,10]. A number of studies of the chaotic advection of
finite-size passive and active particles in fluids exist ([11–21])
(see Ref. [22] for the most recent review on chaotic
advection).

However, most of these studies consider two-dimensional
(2D), and quasi-two-dimensional models. The dynamics of
impurities in models of three-dimensional (3D) fluids has
received relatively limited attention [23–27] despite their ob-
vious implications for practical applications. Such impurities
can be effectively modelled by the bailout embedding maps
of 3D volume preserving maps [15]. The dynamical behavior
of these systems has been studied elsewhere [28]. Here, we
consider the dynamical and statistical properties of impurity
transport in 3D incompressible flows by investigating such
embedding maps.

The Lagrangian dynamics of small spherical tracers in
nonuniform, incompressible flows is described by the Maxey-
Riley (MR) equations [29], under the assumption of local
incompressibility. The MR equation, under various approx-
imations [27], leads to a set of minimal equations for neutrally
buoyant tracers, known as the embedding equations [14,27].
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In the case of nonneutrally buoyant tracers for which the
particle density differs from the surrounding fluid density, the
embedding equations lead to a generalized set of discretized
equations [30]. Such map analogues of the embedding equa-
tions preserve the features of the embedding dynamics under
which the fluid dynamics is embedded in the particle dynamics
and may be recovered under appropriate limits. The particle
motion in the flow thus becomes dissipative in nature and
gives rise to regions of contraction and expansion without
affecting the incompressible nature of the Lagrangian fluid
flow. The underlying idea of the generalized embedding is
that the difference in the densities of the fluid and the particles
results in their trajectories separating from each other. This has
interesting consequences for diffusion and transport properties
of the system [31–35].

Bail-out embeddings of two- and three-dimensional flows,
as well as maps have been studied earlier [15,18,19,28].
In the two-dimensional case, wherein the base fluid flow
was modelled by an area-preserving map, the standard map,
the predominant dynamical regimes in the system are the
periodic regime, the chaotic structure regime, and the mixing
regime. The nature of the inertial particles whether heavier
(aerosol) or lighter (bubble) than the base flow, in the three
dynamical regimes, was shown to have definite consequences
for the diffusion, drift, and recurrence properties of the system
[18,19]. Chaotic structure regimes contained inhomogeneous
sticky regimes in the phase space, and these contributed
power-law tails to the recurrence time distributions and jump
length distributions. Superdiffusive behavior was observed for
the periodic regimes of both types of passive scalars. The
dynamical and transport phase diagrams of the systems showed
distinctly correlated behavior [19].
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Our recent study of the bail-out embeddings of three-
dimensional volume-preserving maps [28] identified a set of
rich structures with complex dynamics. Here, the motion of the
advected particles is represented in the Lagrangian description
by an embedding map with the volume preserving Arnold-
Beltrami-Childress (ABC) map as the base map. The resulting
embedded ABC map is invertible and dissipative involving
two sets of parameters, namely (A,B,C), which belong to
the base map, and the mass ratio and dissipation parameters,
(α,γ ) due to the embedding method, which is described in
next section. We considered one and two-action versions of
the ABC map. Three types of dynamical behaviors—periodic
orbits, chaotic and hyperchaotic regions were found to be
present. The bubble regime in the two-action case was seen to
be mostly hyperchaotic, but the corresponding aerosol regime
also contained a tongue of hyperchaoticity at low values
of dissipation. Crisis-induced intermittency was seen in this
region, and power-law behavior for the characteristic times
between bursts along with unstable dimension variability was
observed in the neighborhood of the crisis. The bubble regime
also displayed the existence of multiple coexisting attractors
and a riddled basin of attraction with several windows of
interior crisis. An interesting two-ring attractor was observed
in the post crisis setting with trajectories hopping between the
rings with period two. We had also carried out a preliminary
study for the one-action case of the ABC map, wherein
the aerosol regime with α = 0.2 where the largest Lyapunov
exponent was seen to be negative for most of the range 0 �
γ � 4, and periodic attractors with even periods were seen.
The bubble regime with α = 1.25 showed fully hyperchaotic
behavior and patched structures appeared in the phase-space
plots in some cases. Thus, our toy model showed a variety
of phenomena that could lead to consequences for transport
and pattern formation. In this paper, we explore the diffusion
and transport properties of the embedded ABC map. We use
Lyapunov exponent analysis, diffusion studies, and recurrence
time statistics to investigate the clustering and concentration
phenomena seen here. Similar studies have been carried out
for the 2D area preserving case earlier [18,19]. We expect that
the presence of a third dimension in the underlying flow will
contribute its own signatures to the clustering and transport
properties seen here.

We note that the bailout embeddings of the ABC maps have
also been studied in Refs. [15,16] for the case where the impu-
rities are neutrally buoyant. It has been shown that the neutrally
buoyant impurities detach themselves from the fluid trajecto-
ries near hyperbolic lines and tend to accumulate in the tubular
regions of the phase space of the ABC map. This results in the
formation of 3D structures in the phase space. Furthermore,
particle dynamics with noise was also studied in these refer-
ences, wherein a temperature amplitude is defined that con-
nects the variances of the separation between fluid and particle
velocities and noise at a given point in the phase space. The
results show that the particles appear to avoid the points with
larger values of the amplitude and prefers those with smaller
values. In contrast, our study discusses the transport of impu-
rities of the aerosols and bubbles types in the ABC flow. How-
ever, we have not considered the effects of noise in this paper.

This paper is organized as follows. Section II outlines
the theoretical formulation of the embedded map model.

The dynamical regimes and the phase diagram based on
the Lyapunov exponents of the one-action case have been
discussed in Sec. III. The study of recurrence time statistics
and the diffusion properties of the system have been described
in Secs. V and IV, respectively. Energy studies for the impurity
particles in the embedded map are discussed in Sec. VII. The
major findings of the paper are then summarized together with
a discussion of their implications in Sec. VIII. The Appendix
gives a short derivation of the bailout embedding map from
the Maxey-Riley equations.

II. THE BAILOUT EMBEDDING MAP:
DYNAMICAL REGIMES AND PHASE DIAGRAM

The transport of passive particle tracers of finite size in
fluids is given by the Maxey-Riley equation [29]. Under
certain simplifying assumptions (see the Appendix for details),
i.e., low Reynolds number, negligible buoyancy effects, and
retaining only the Bernoulli, Stokes drag, and Taylor added
terms, the Maxey-Riley equation reduces to the following
bailout embedding equation [15,16,28]:

dv
dt

− α
du
dt

= −γ (v − u). (1)

Here, the velocity of the particle and the fluid flow are given
by v and u, respectively, and γ is the dissipation parameter.
The parameter α is the mass density ratio, α = ρf

ρf + 2ρp
,

corresponding to the aerosol case (α < 1), the bubble case
(α > 1), and the neutrally buoyant cases (α = 1), where ρf

and ρp are fluid and particle densities, respectively.
A bailout embedded version for neutrally buoyant particles

where the densities of the particle and fluid are the same
has been discussed for maps and flows in Refs. [14–16] and
as mentioned in the Introduction. Here, the general bailout
embedding for a given map xn+1 = T (xn) was considered to
be

xn+2 − T (xn+1) = K(xn)[xn+1 − T (xn)], (2)

where the bailout function K(x) is given by

K(x) = e−γ ∇T , (3)

and γ is the dissipation parameter. In the present paper, we
take into account the differences in the densities of impurity
particles and the fluid, as aerosols and bubbles, described by
the value of parameter α in Eq. (6). The mass density ratio α

gives the aerosol case (α < 1), the bubble case (α > 1), and
the neutrally buoyant cases (α = 1), as stated earlier.

The bailout embedding map of Eq. (2) can also be expressed
in the form [28,30]

xn+1 = T (xn) + δn,
(4)

δn+1 = e−γ [αxn+1 − T (xn)].

Here, the base map T (xn) is the base map taken to
be a volume-preserving map as a representation of the
incompressible fluid acting as the base flow. The vector
x represents the position of the particle and the vector δ

defines the detachment of the particle from the fluid velocities.
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FIG. 1. (a) The configuration space of the one-action ABC map for (A,B,C) = (1.5,0.08,0.16) and (b) the configuration space of the
two-action ABC map for (A,B,C) = (2,1.5,0.08). We only indicate regular trajectories. The configuration space of the two-action does not
have any invariant sheets leading to the global transport of trajectories. The plots in (c) and (d) show the Y = 0.5 plane in the one and the
two-action cases, respectively. In (c), the elliptic orbits indicate the existence of tubes and invariant surfaces are reflected in the form of lines
spanning X

2π
= 0 to 1. These surfaces cover the Y plane dividing the phase space in many isolated partitions. The configuration space of the

two-action in (d) does not have any invariant sheets leading to global transport of trajectories. We show trajectories for 25 initial conditions
randomly chosen from the uniform distribution of angles in the interval [0,2π ]. The thickness of the Y plane used here is 0.01.

The dissipation parameter γ is a measure of contraction or
expansion in the phase space of the particle’s dynamics. The
particle is said to have bailed out of the fluid trajectory when
δ �= 0, where the new variable δ is defined to be the detachment
of the particle from the local fluid parcel velocity [30]. The
fluid dynamics is recovered under the limits δ → 0, α = 1,
and γ → ∞. This is the sense in which the fluid dynamics
is said to be embedded in the particle equations. This map
is dissipative with a phase-space contraction rate e−3γ . We
will use this version of the bail-out embedding map in all
subsequent analysis.

We use a well-known volume preserving map, the Arnold-
Beltrami-Childress (ABC) map as the base map for the fluid
in our work. The presence of chaotic streamlines seen in the
nonintegrable case motivates its study as a prototype fluid
dynamical model in three dimensions. The version of the ABC
map employed here [23,36] is given by

xn+1 = xn + A sin(zn) + C cos(yn)

yn+1 = yn + B sin(xn+1) + A cos(zn)

zn+1 = zn + C sin(yn+1) + B cos(xn+1)

⎫⎪⎬
⎪⎭ mod 2π. (5)

The corresponding bailout embedded version of the ABC
map is given by the following six-dimensional map [28,37]:

xn+1 = xn + A sin(zn) + C cos(yn) + δx
n

yn+1 = yn + B sin(xn+1) + A cos(zn) + δ
y
n

zn+1 = zn + C sin(yn+1) + B cos(xn+1) + δz
n

δx
n+1 = e−γ

[
αxn+1 − (

xn+1 − δx
n

)]
δ

y

n+1 = e−γ
[
αyn+1 − (

yn+1 − δ
y
n

)]
δz
n+1 = e−γ

[
αzn+1 − (

zn+1 − δz
n

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

mod 2π.

(6)

The ABC map and its embedded versions are implemented
with modulo 2π , including the mass ratio α and dissipative
parameter γ in addition to a set of real parameters (A,B,C).
We investigate two quasiintegrable cases of the ABC map
[23]. We will refer to the map as the one-action map if
one of the parameters exceeds 1; and as the two-action
version if two of parameters (A,B,C) are larger than 1. The
one-action ABC map displays KAM-like invariant surfaces
called resonance sheets which divides the configuration space
into many isolated partitions. Figure 1(a) shows the Y plane
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of the one-action ABC map at (A,B,C) = (1.5,0.08,0.16).
The elliptic orbits indicate the existence of tubes, and res-
onance sheets are reflected in the form of lines spanning
the range where X

2π
∈ [0,1]. These KAM barriers cover the

Y plane dividing the phase space into many isolated partitions.
The trajectories within these partitions remain bounded and
parts of these barrier sheets break down under small perturba-
tions, but the trajectories remain bounded within the invariant
surfaces that are intact. In the two-action ABC map, on the
other hand, unbounded diffusive motion occurs through the
KAM barriers which are absent in the configuration space.
Figure 1(b) shows the orbits on the Y plane for (A,B,C) =
(2,1.5,0.08), indicating the existence of tubes but the KAM
barriers of resonance sheets are now absent. The resulting
motion is thus unbounded and leads to the global transport
of trajectories—a phenomenon known as resonance-induced
diffusion. This kind of diffusion is similar to Arnold diffusion
and, therefore, has significant implications for the mixing and
transport properties of passive scalars.

The dynamical regimes and phase diagram for the two-
action case embedded map has been described in detail earlier
[28], along with a preliminary study of these regimes for
the one-action case. The aerosol and bubble regimes showed
remarkably different behavior. In the case of 2D flows, it was
believed that for the motion of inertial particles, the elliptical
islands and their neighborhoods act as centrifuges by pushing
away the heavy aerosol and trapping the lighter bubbles
[38,39]. However, at high values of dissipation γ , it was seen
that the dissipation can counteract the influence of centrifugal
force on the aerosols and trap them in the neighborhood of the
islands [18]. Such trapping of aerosols has also been reported
earlier for 2D open chaotic flows [40–42]. Bubbles, on the
other hand, are expelled out of the invariant regions owing to
the centrifugal forces but tend to be trapped in the vicinity of
regular orbits at higher dissipation values. However, at small
values of dissipation, bubbles may penetrate the regions of
high shear through leaky barriers in the phase space [28].
Therefore, it was observed that the dynamical behavior of
aerosol and bubbles sensitively depends upon both the mass
density ratio α and the dissipation parameter γ .

We now discuss the dynamical regimes seen for the
embedded dynamics for the one-action case of the base ABC
map, followed by diffusion and transport studies for this case
in the subsequent section.

III. DYNAMICAL REGIMES FOR THE ONE-ACTION CASE

The set of parameter values for (A,B,C) chosen for the
one-action case under study are (1.5,0.08,0.16). Our analysis
of the system in the aerosol regime at α = 0.2 showed periodic
structures, whereas in the bubble regime at α = 1.2, we found
hyperchaotic behavior. If the largest two Lyapunov exponents
(LEs) are indicated by λ1 and λ2, then a scheme to distinguish
the dynamical behaviors is the following:

(λ1,λ2) < 0 ⇒ Regular/Periodic,

λ1 > 0,λ2 < 0 ⇒ Chaotic,

(λ1,λ2) > 0 ⇒ Hyperchaotic behaviors.

FIG. 2. The phase diagram of the embedded one-action ABC map
for parameter values (A,B,C) = (1.5,0.08,0.16) [periodic orbits,
blue (P); chaotic behavior, red (C); hyperchaotic regions, green (H)].
The α-γ space is covered by a 400 × 800 mesh, each element is of
size 0.005 × 0.005. The phase diagram has been plotted using LE-s
calculated for 25 000 iterates after discarding the first 5000 iterates
as transients.

Figure 2 shows the complete phase diagram using the above
scheme. We have computed the two largest LEs, (λ1,λ2) for
25 000 iterates, discarding 5000 iterates as transients. The
computations have been performed for the α-γ parameter
space on a 400 × 800 mesh of cell size 0.005. The bubble
regime (α > 1) is predominantly hyperchaotic indicated by
the color green and is labeled by “H.” The aerosol regime
(α < 1), on the other hand, is covered with periodic structures
(in blue and labeled by “P”) and chaotic behavior (in red
and labeled by “C”). The chaotic region has a tonguelike
structure on the aerosol side of a reasonably sharp boundary
at α = 1 with γ < 2. In comparison with the phase diagram
for the embedded two-action case (see Ref. [28]), the aerosol
regime in Fig. 2 has chaotic and periodic regions, with chaotic
regions with diffuse boundaries in the approximate range
where α < 0.25 and γ > 1.2. For γ < 0.5, we observe fingers
of hyperchaotic regions containing a thin boundary of chaotic
behavior in red. However, the bubble regimes for both the cases
are almost completely hyperchaotic, indicating two diverging
directions which may result in a higher efficiency of mixing
and transport in the fluid flow. We note that the phase diagram
is plotted after a very long asymptote, and other kinds of
behavior are seen in the bubble regime in the transient.

Although the hyperchaotic regime looks simple, the phase
space in these regimes has complex structures in the phase
space. Deep inside the regime, for γ > 3, an interesting
attractor appears which has two parts. Trajectories are seen
to hop between the two parts in discrete steps. An example
is shown in Fig. 3 at (α,γ ) = (1.85,3.20). The attractor in
Fig. 3(a) has two parts with spiralling tubular structures.
The trajectory returns to each part after spending a finite
amount of time in the other one. We refer to this time as
the return time. Surprisingly, despite the hyper chaotic nature,
i.e., (λ1,λ2) > 0, the distribution of return times to each of the
parts are discrete. In Fig. 3(b), the bars in black correspond to
returns to the part R of attractor for which Y

2π
< 0.5 and those

032210-4



TRANSPORT, DIFFUSION, AND ENERGY STUDIES IN . . . PHYSICAL REVIEW E 96, 032210 (2017)

FIG. 3. (a) The attractor in the X-Y -Z configuration space of the embedded one-action map at α = 1.85 and γ = 3.2. (b) The frequencies
of return times for discrete hopping between the two parts of the attractor. The bars in black correspond to the part R for which Y

2π
<

0.5 and those in green to the part L for which Y

2π
> 0.5. The return times for the part R are (1,2,3,4), whereas that for the part L are

(2,9,10,11,...,15,24,...,27,39). The computations are carried out for 50 000 iterates of which 5000 were discarded as transients.

in green correspond to the return to part L of the attractor
for which Y

2π
> 0.5. The computations are carried out for

50 000 iterates of which 5000 were discarded as transients.
The return times for the part R are (1,2,3,4) whereas that for
the part L are (2,9,10,11,...,15,24,...,27,39). We note that
for the two-action case (A,B,C) = (2.0,1.3,0.16), a similar
attractor was seen [28] with a double ring structure at the
parameter values (α,γ ) = (0.7,2.82) for which the asymptotic
trajectory continuously hopped between the rings with period
2. Therefore, it appears that such attractors are generic to the
bubble regime in the embedded ABC map.

We now examine the transport properties using detailed
diffusion studies and correlate them with the recurrence times
statistics and the dynamical regimes.

IV. DIFFUSION

The transport of passive scalars in flows can be described
statistically by examining the dispersion as a function of the
parameters (α,γ ). We consider an ensemble of N particles
distributed uniformly in phase space and evolve it in time. The
individual particles in the particle cloud disperse with time in
the three-dimensional configurational space from their initial
positions in the cloud. The dispersion of these particles is given
by the variance of the displacement of particles σ 2,

σ 2(t) = 〈(x(t) − 〈x(t)〉)2〉 ∼ Dtη. (7)

Here, x(t) denotes the position of a particle and 〈x(t)〉
indicates the average position of all the particles at time t ,
both in configuration space. The diffusion coefficient D and the
exponent η quantify the type of diffusion. The angular brackets
denote the ensemble average. The configuration space in three
dimensions considered here is the cover space, i.e., without
the periodic boundary conditions which have been used later
in Sec. V.

Generally, depending on the value of the exponent η in
Eq. (7), the diffusion process broadly belongs to one of the
three classes—subdiffusive transport (η < 1) indicates slow
diffusion of particles with time, normal diffusion (η ≈ 1)

stands for normal transport in which the variance grows
linearly with time, and superdiffusion (η > 1) implies that
the trajectories of the particles have long displacements.
Subdiffusive behavior in the embedding map may be further
subcategorized viz., one associated with the trapping regions
with stationary states while the other with trapping regions
with nonstationary states. The ballistic regime where η ≈ 2 is a
special subset of the superdiffusive regime. We analyze the be-
havior of these classes below in detail, for both one-action and
two-action cases and highlight the differences in their behavior.

The phase diagram of Figs. 6 and 8 maps out the distinct
dynamical regimes in the (α,γ ) parameter space. It will be
useful to obtain a similar phase diagram that classifies the main
diffusion regimes as a function of the parameters (α,γ ). The
value of the exponent η can be used for such a classification.
For this, the log-log plot of the variance as a function of time
is fitted to a straight line after discarding initial transients. We
used a linear square fit for finding the value of η for each data
point in the (α,γ ) space.

In principle, the normal diffusion regimes in the phase
diagram can be distinguished from the anomalous diffusion
regimes if the values of the exponent are either η < 1 and
η > 1. For instance, in Fig. 4, we show the cases of ballistic
diffusion, normal diffusion, and subdiffusion. In Fig. 4(a),
the system (α,γ ) = (0.5,3.7) demonstrates ballistic diffusion,
whereas Fig. 4(b) indicates a case of normal diffusion for
(α,γ ) = (1.21,1.45). For the subdiffusive regime, we identify
two kinds of states—stationary and nonstationary in Figs. 4(c)
and 4(d) for (α,γ ) = (0.33,1.17) and (α,γ ) = (1.21,2.75),
respectively. The stationary states are identified when η < 0.92
when the fluctuations in σ 2(t) during the last 2000 iterations are
below 1%. The nonstationary states are near periodic states as
in Fig. 4(c) for which η < 0.92 and fluctuations are above 1%.
We adopt this strategy to obtain the phase diagram based on the
diffusion exponent for the subdiffusive regime. As examples,
we show the cover phase spaces of the two states in Figs. 5(a)
and 5(b)—stationary and nonstationary states, respectively, for
the same set of (α,γ ) values as in Figs. 4(c) and 4(d). For
computations, we consider 2 × 104 iterations with 103
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FIG. 4. The plots show the variance of the particle cloud evolving with time. (a) Superdiffusive behavior is observed at (α,γ ) = (0.5,3.7).
(b) A case of normal diffusion is seen at (α,γ ) = (1.21,1.45). Trapping regimes show the plateauing of the variance—(c) with nonstationary
states at (α,γ ) = (0.33,1.17) and (d) stationary states at (α,γ ) = (1.21,2.75). The stationary states are identified when η < 0.92 together with
fluctuations in σ 2(t) taking values below 1% during the last 2000 iterations.

discarded as transients. The trapping regions in the phase
space wherein the stationary states appear in parts of the
tubular regions. The trajectories therefore behave as if they
get trapped in these attractors and their dispersion grows

sublinearly with time. These states exist in the aerosol as well
as bubble regimes.

To identify the normal diffusion regimes in a numerical
computation, we choose a window where η values lie in the

FIG. 5. The location of the attractor in the cover space for (a) nonstationary states at (α,γ ) = (0.33,1.17) and (b) stationary states at
(α,γ ) = (1.21,2.75). The trajectories behave as though they are trapped in the neighborhood of these attractors and their dispersion grows
sublinearly with time.
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FIG. 6. The phase diagrams showing the four diffusion regions in the embedding map for the two-action case in the (α,γ ) parameter
space: the ballistic regime is marked by the color red with the label “B,” the superdiffusive regime is marked in yellow with the label “S,”
normal diffusive regimes are marked in green with the label “N,” subdiffusion with stationary states is marked in blue with the label “T,” and
subdiffusion with nonstationary states is shown by black with the label “T∗.” Panels (a) and (b) correspond to the aerosol regime and the bubble
regime, respectively. The fraction of the phase space occupied by different diffusive regimes are indicated in (c) for the aerosol and (d) for the
bubble regimes.

range 0.92 < η < 1.08 to indicate normal diffusion in the
system. Further, the superdiffusive and the ballistic regime
are identified by the ranges 1.08 < η < 1.92 and 1.92 <

η < 2.12, respectively. Ballistic diffusion (i.e., η = 2) has
been seen in diverse contexts, such as the motion of atoms,
molecules, and clusters on solid surfaces [43], and in random
walk models with random velocities [44]. We now construct
a phase diagram (Fig. 6) based on the values of the exponent
of η using 104 iterations averaged over 200 trajectories. The
diagram for the aerosol regime is shown in Fig. 6(a) and for that
of the bubble regime in Fig. 6(b). The distribution of exponents
is shown in Fig. 6(c) for the aerosol and in Fig. 6(d) for the bub-
ble regime wherein two peaks are observed at about η = 1 and
η ≈ 2. The long tail in the window 1.05 < η < 1.98 associated
with larger peak at η ≈ 2 has power-law scaling 1.429 ± 0.079
for the cumulative distribution as seen in Figs. 7(a) and 7(c). In
the bubble regime, the long-tail associated with the larger peak
at η = 1, in Figs. 7(b) and 7(d), plotted within 1.02 < η < 1.98
has a power-law scaling with exponent 1.630 ± 0.055 for the
reverse cumulative distribution.

We also show, for completeness, the corresponding phase
diagram and fraction of the parameter space covered by

different diffusive regimes for the one-action case in Fig. 8.
Similar to the two-action case, the aerosol regime of the
one-action case is dominated by the ballistic regime, which
occupies about 67% of the available space, on the average.
But, the subdiffusive regime stands at almost 15% of the
whole, which is about three times that of the aerosol regime in
the two-action case [Fig. 8(a)]. The corresponding fraction of
stationary states is less than 10%, about one-third of that of the
two-action case. The bubble regime of both the one- and the
two-action cases have very similar phase diagrams [Figs. 8(b)
and 6(b)]. There is a well-defined arch-like boundary between
the superdiffusive and normal or subdiffusive regimes for
higher values of (α,γ ). The contribution of the subdiffusive
regime is slightly above 10%.

The distributions of diffusion exponents for the one-action
case in the aerosol regime and in the bubble regime are shown
in Figs. 9(a) and 9(b). The long tails again show power-law
scaling [see Figs. 9(c) and 9(d)]. The peaks here are smaller in
size and demonstrate that the aerosol and the bubble regimes
have a greater degree of heterogeneity. This is due to the fact
that the one-action case of the ABC map has resonance sheets.
These sheets get broken up in the embedded map version but
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FIG. 7. The distribution of diffusion exponents for the two-action case in (a) the aerosol and (b) the bubble regimes. Power-law scaling is
observed in the the long tail: (a) In the aerosol regime in the window 1.05 < η < 1.98, associated with larger peak at η ≈ 2, has power-law
scaling 1.429 ± 0.079 for the cumulative distribution. (b) In the bubble regime, the long-tail associated with larger peak at η = 1, within
1.02 < η < 1.98, has a power-law scaling with exponent 1.630 ± 0.055 for the reverse cumulative distribution.

influence the diffusion process of the trajectories in the cover
space. In comparison, the two-action case where these sheets
are absent shows global transport without constraints leading
to a relatively less heterogeneous diffusion phase diagram.

Many of these behaviors are strongly influenced by the
recurrence properties of the system. We now study the Poincaré
recurrence times statistics to further characterize the transport
behavior.

V. RECURRENCE TIME STATISTICS

The statistics of recurrence times in chaotic systems are
of fundamental importance. These constitute the study of
recurrences of a given dynamical system of the chaotic system
in finite time. The recurrence time of a trajectory is defined as
the time τ taken by the trajectory which starts from a small
subset ξ of the phase-space � of the system to return to the
same subset ξ , in the limit ξ → 0 (see Fig. 10). The recurrence
time corresponding to the ith recurrence is denoted by τi . The
distribution of recurrence times τ1,τ2, ..., τn for a trajectory
may thus be obtained in the long time limit. The average
recurrence time of the subset ξ is calculated by averaging over
the recurrence times of the trajectories starting in the subset,

and the average recurrence time of the entire phase-space �

can be obtained by averaging over the recurrence times of all
such subsets in the phase space (see Refs. [45,46] for more
rigorous definitions).

Mean recurrence times in low-dimensional Hamiltonian
systems have been studied extensively. The phase space
of area-preserving systems commonly exhibits mixed phase
space; i.e., regular structures and chaotic regions may co-exist.
The interfaces of these chaotic regions and regular orbits are
complex causing the trajectories to spend longer times in
these neighborhoods. A major consequence of this “stickiness”
is the existence of power laws in the Poincaré recurrence
times, indicating algebraic decay for long times rather than the
exponential decay expected for normal transport. The quantity
of interest here is the cumulative probability distribution
Pcum(τ ) defined by

Pcum(τ ) =
∞∑

τ ′=τ

P (τ ′). (8)

Straight lines in the log-log plot of this distribution indicate
power-law decays of the form Pcum(τ ) ∼ τ−β , where β is the
decay exponent.
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FIG. 8. The phase diagrams showing the four diffusion regions in the embedding map for the one-action case in the (α,γ ) parameter space:
the ballistic regime is marked by the color red with the label “B,” the superdiffusive regime is marked in yellow with the label “S,” the normal
diffusive regimes are marked in green with the label “N,” subdiffusion with stationary states is marked by the color blue with the label “T,”
and subdiffusion with nonstationary states is shown in black with the label “T∗.” Panel (a) shows the aerosol regime, and panel (b) shows the
bubble regime. The fraction of the phase space occupied by different diffusive regimes are indicated in (c) for the aerosol and (d) for the bubble
regimes.

We apply recurrence time statistics to the embedding of
the ABC map. The computations for recurrence times have
been performed for 3D recurrences in the X-Y -Z configuration
space. The phase space is divided into a grid comprising of
50 × 50 × 50 cells, each of size 0.02 × 0.02 × 0.02 units.
We compute the recurrences after 107 iterations with 1000
iterates discarded as transients. All the values of (X,Y,Z) were
normalized by 2π in the interval [0,1]. The mean recurrence
time for each cell c is given by

〈τ 〉c = 1

N (r)

N(r)∑
i=1

τi . (9)

Here, N (r) indicates the total number of recurrences in a
given cell. The resulting cumulative probability distributions
of recurrence times are shown in Fig. 11.

These distributions depend upon the nature of the dynamics
at the given set of parameter (α,γ ). The trajectories in both the
aerosol and bubble regimes may breach the invariant regions
or get pushed away from them. The complete breach of the
invariant surfaces, in the embedded system, leads to global
transport with chaotic or hyperchaotic dynamics. For our study
here, we choose a set of four pairs of parameters (α,γ ); two for

both the two- and the one-action cases. Figures 11(a) and 11(b)
show the decay for the two-action case at (α,γ ) = (1.6,3.7)
(hyperchaotic) and (0.9,1.0) (chaotic) at parameter values
(A,B,C) = (2,1.5,0.08).

We will continue the discussion with special attention
to the example drawn from the hyperchaotic regime of the
two-action case. The trajectories visit the neighborhood of the
invariant tubes of the two-action base map and experiences
stickiness (see Fig. 12). The darker regions on the Y = 0.5
plane indicate that trajectories tend to spend longer times in
the area surrounding the invariant surfaces corresponding to
the base ABC map. Notice that in Fig. 12, largely unpenetrated
elliptic regions are seen that envelop the tubular regions of the
base ABC map indicated by periodic orbits on the slice (in
color “red”).

It has been observed that algebraic decays of recurrence
times are seen in area-preserving systems due to the occurrence
of partial barriers [47,48] in the form of Cantori, which form
hierarchical structures around the principal regular island.
Unlike this situation, the mechanism that contributes to
algebraic decays in the recurrence times in the embedded map
system here does not appear to be the existence of a hierarchy
in the phase space. This observation is similar to that reported

032210-9



SWETAMBER DAS AND NEELIMA GUPTE PHYSICAL REVIEW E 96, 032210 (2017)

FIG. 9. The distribution of diffusion exponents for the one-action case in (a) the aerosol and (b) the bubble regimes. Power-law scaling is
observed in the long tail in diffusion exponent distribution. (a) In the aerosol regime in the window 1.01 < η < 1.92, associated with larger
peak at η ≈ 2, has power-law scaling 3.381 ± 0.120 for the cumulative distribution. (b) In the bubble regime, the long-tail associated with
larger peak at η = 1, within 1.02 < η < 1.82, has a power-law scaling with exponent 2.032 ± 0.062 for the reverse cumulative distribution.

recently [49], where it has been demonstrated that in the case
of a 4D symplectic map, the trapping does not take place due
to hierarchy of satellite islands in phase space but occurs at the
surface of regular regions and also outside of the Arnold web.

Another important aspect of the decay curve to be noted
is that the distributions display plateaus in Fig. 11. Similar
distributions with plateaus were seen in a 3D volume preserv-
ing extended standard map [50]. The plateaus indicate that the
trajectories are evolving for longer times, as no recurrences
occur within the number of iterations computed. The long
recurrences observed here are due to the surviving trapping
effects of the invariant tubes of the base two-action map.
Similar trapping effects are observed in Ref. [50], wherein
a non-Hamiltonian volume-preserving map has been studied.

We also note that the one-action case also shows sim-
ilar decay of recurrence times embedded with plateaus in
Figs. 11(c) and 11(d) for (α,γ ) = (1.85,3.2) and (0.85,2.0),
respectively. However, the transport in the one-action case
is more complicated than the two-action case, owing to the
existence of invariant sheets. The probability distribution of
recurrence times shows heavy tails, but the location of the
sticky regions is not as clear as in the two-action case. It is

highly likely that the invariant surfaces act as partial barriers
and influence the transport process. Therefore, the mechanisms

FIG. 10. The schematic illustration of the recurrence phenomena
in an invariant set �. A trajectory starting in a small subset ξ is
revisiting the subset in finite time. The diagram shows only the first
three recurrences corresponding to recurrence times τ1, τ2, and τ3.
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FIG. 11. Recurrence time distributions in (a) the hyperchaotic regime (α,γ ) = (1.6,3.7) for the two-action case (b) the chaotic regime
(α,γ ) = (0.9,1) for the two-action case, (c) the hyperchaotic regime (α,γ ) = (1.85,3.2) for the one-action case, and (d) the chaotic regime
(α,γ ) = (0.85,2.0) for the one-action case. The plateaus indicate very long recurrences due to the trapping of particles in the tubular regions.

suggested in Ref. [49] appear to be at work in the embedded
map too. However, a detailed study is required to establish the
exact mechanism of the trapping behavior conclusively.

VI. CONNECTION BETWEEN THE DYNAMICAL
BEHAVIORS AND TRANSPORT PROPERTIES

The discussion so far indicates an intimate connection
between the dynamical behavior and the statistical properties
of the system. In this section, we outline the important
inferences.

As stated earlier, the phase diagram for the dynamical
regimes of the embedded ABC map, a paradigm for the dynam-
ics of inertial particles in 3D fluid flows, contains three distinct
dynamical regimes, viz., periodic orbits, chaotic structures,
and hyperchaotic behavior. The dynamics also differentiates
between the aerosol and bubble regime. Figure 13 shows the
phase diagram for the two-action case that was reported in
our earlier work [28] (see Fig. 2 for the phase diagram for the
one-action case).

In Sec. IV, we constructed the phase diagrams in α-γ
parameter space that encapsulate the diffusive behaviors
in the system. Once again, distinctly different behaviors,
viz., subdiffusive, normal, i.e., of the Brownian type, and
superdiffusive, including ballistic behavior, were observed for
the aerosol and the bubble regimes in both the cases.

We first discuss the two-action case. In the diffusion phase
diagram, the aerosol regime is clearly dominated by ballistic

FIG. 12. This figure demonstrates the stickiness of the trajectories
around the tubes in the embedded two-action case in the hyperchaotic
regime at (α,γ ) = (1.6,3.7). The plot shows the X-Z space at the
Y = 0.5 plane. The darker regions correspond to the neighborhoods
of the invariant tubes of the base ABC map. Trajectories wander inside
the tubes briefly, resulting in plateaus in the corresponding recurrence
time distribution. Regular structures and islands in red indicate the
elliptical invariant regions in the base ABC map (two-action) [see
Fig. 1(d)].
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FIG. 13. The phase diagram of the embedded two-action ABC
map for parameter values (A,B,C) = (2.0,1.3,0.16) [periodic orbits,
blue (P); chaotic behavior, red (C); hyperchaotic regions, green (H)].
The α-γ space is covered by a 400 × 800 mesh, each of size 0.005 ×
0.005. A total of 25 000 iterates have been calculated in each case.
The phase diagram has been plotted for 25 000 iterates discarding
first 5000 iterates as transients.

transport covering over 70% of the parameter space. The
dynamical behavior in this regime shows largely periodic
nature. In addition, the chaotic structures and hyperchaotic
behavior here are correlated with normal diffusion and
superdiffusion. The superdiffusive regime overall occupies
about 9% of the phase diagram, whereas 16% of the diagram
shows normal diffusive behavior. The region with the greater
degree of heterogeneity in the neighborhood of α > 0.7
corresponds mostly to the chaotic structures and regions
where both chaotic and periodic behavior coexist in the phase
space. Small traces of subdiffusive transport also exist in the
aerosol regime, which mostly correspond to the region with
periodic dynamics. The subdiffusive region is approximately

the region that contains nonstationary states. We note that,
in the one-action case, however, the subdiffusive regimes
occupy a larger area, comprising about 10% of the phase
diagram.

On the other hand, normal diffusion is prominent in the
bubble regime occupying about 75% of the space. This regime
is almost completely hyperchaotic. Superdiffusive transport
is limited to higher values of dissipation in a region with a
diffuse boundary, and an additional narrow channel nearly
spanning the full range of α. The ballistic regime is much
smaller than that seen in the aerosol case and covers about
7%. The superdiffusive regions occupies about 14% of the
space. The fraction of subdiffusive regimes remain at about
8% but the contribution of stationary states rises to almost
99% of the subdiffusive regions. Stationary states are those
for which the variance remains below 1%. Therefore, the
subdiffusive behavior emerging here is that trapped states
are mostly nonstationary in the aerosol regime, whereas
the stationary states prevail over nonstationary states in the
bubble regime. This may lead to regions of preferential
concentration, as seen in the case of studies in the 2D case
[19,41], which showed that bubbles may get pushed toward the
islands forming regions of preferential concentration. Trapping
states in the aerosol regime has also been noted in other
works [42].

Our analysis for Poincaré recurrence times in Sec. V
showed that chaotic and hyperchaotic regimes contain tra-
jectories that display sticky behavior in the phase space. The
corresponding recurrence times statistics show power-law tails
in addition to the expected exponential decays as seen in
the previous section. Such power-law trapping has significant
consequences for chaotic transport in a variety of systems.
Examples of these include the three-body problem [51], in
dynamics due to the Caldera potential in organic chemical
reactions [52], driven coupled Morse oscillators [53], etc. We
now study the energetic properties of inertial particles in the
embedded ABC map.

FIG. 14. (a) Self-similar staircase in the variation of 〈E(α)〉 for the aerosol regime in the two-action case at γ = 3.5. These jumps in 〈E(α)〉
indicate that the particles move on trajectories confined inside different tubes with increasing α. (b) The corresponding bubble regime shows
entirely different behavior. For γ = 3.5, the energies are small due to the fact that the trajectories get concentrated around the invariant tubes,
whereas for γ = 0.5, the trajectories transport over the entire phase space. The one-action case shows similar behavior. The energy values have
been computed for 10 000 iterations and averaged over 200 particles.
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FIG. 15. All the plots show the Y = 0.5 plane. The left panel: (a) regular regions in the ABC map; (c), (e), and (g) show the phase
space of the embedded ABC map in the aerosol regime for α = {0.25,0.60,0.75}, respectively, at γ = 3.5. The trajectories go inside
the regular regions. The right panel: (b) chaotic regime in the ABC map; (d), (f), and (h) show the phase space of the embedded
ABC map in the bubble regime for α = {1.25,1.50,1.80}, respectively at γ = 3.5. The trajectories are expelled out of the regular
regions.
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VII. ENERGY STUDIES

We now move to study the energy associated with the
passive scalars in the embedded map dynamics. We examine a
specific contribution to the kinetic energy here, viz. we study
the quadratic contribution to the average kinetic energy of the
system, at given value of the dissipation parameter γ , due to
the relative velocity of the particles. This may be defined as

E(α) = 〈
1
2δ2(α)

〉
. (10)

Here δ indicates the relative velocity of the passive particles
immersed in the fluid flow, as in Eq. (4), we have defined
δ to be the detachment from the fluid velocity. The angular
brackets 〈. . .〉 indicate the ensemble average. We examine
both the aerosol regime (α < 1) as well as the bubble regime
(γ > 1). The most interesting behavior of the energy values
with respect to α in both the regimes for the two-action case
is shown in Fig. 14. In Fig. 14(a), at γ = 3.5, several plateaus
are visible that in fact have self-similar nature on small scales
reminiscent of a devil’s staircase. From the configurational
space dynamics of the particles, we know that at higher
dissipation values, particles in the aerosol regimes are trapped
inside the tubular regions of the base ABC map. The plots
on the top of Figs. 15(a) and 15(b) show regular and chaotic
regions, respectively, on the Y = 0.5 plane for the base ABC
map. With α increasing from values toward 1, the particle
trajectories get confined inside successive nested surfaces
inside the tubular regions (see Figs. 15(c), 15(e) and 15(g)
for α = {0.25,0.60,0.75}, respectively) until α = 1. These
successive “jumps” are reflected in the staircase structures
of the curve in Fig. 14(a). The bubble regimes (Figs. 15(d),
15(f) and 15(h) for α = {1.25,1.50,1.80}, respectively) show
that the trajectories always lie outside the regular regions. No
curves of the staircase type are observed in the bubble regime.

On the other hand, the bubble regimes behave in a com-
pletely different manner. For larger values of dissipation, see
Fig. 14(b), the energies remain small and largely constant. The
trajectories corresponding to these energies are concentrated
outside the invariant tubes and therefore their energies are
largely constant and small. However, for smaller values of
dissipation, such as γ = 0.5 in Fig. 14(b), trajectories are
initially outside the invariant tubes but access the regions of
the phase space inside the tubes once the dissipation rises.
The energy rises and reaches an almost constant level once
the penetration is complete, leading to global transport of the
trajectories. The fundamental difference to be noted is that the
trajectories in the bubble regime, for higher dissipation, always
remain outside the tubular regions and do not appear to leave
this vicinity but, for smaller dissipation, the trajectories evolve
throughout the phase space outside the tubular regions only at
small α. With increase in α, they start to penetrate the tubes
until global transport is complete.

The one-action case shows largely similar behavior in both,
aerosol and bubble regimes. In the aerosol regime, however,
the behavior in not as conspicuous as the phase space of the
base map has layers of resonance sheets in addition to tubes.
The phase space is divided by these sheets and at higher values
of dissipation, the trajectories may either stay close to them
or end up inside the tubular regions. Therefore, the staircase

structure of the energy curve is destroyed by the trajectories
outside the invariant tubes.

VIII. CONCLUSIONS

In this work, we have described the transport, diffusion, and
energetic properties of passive scalars in a volume-preserving
ABC map under the embedded map model. The model
encapsulates the dynamics of impurities in a 3D chaotic fluid
wherein the density of impurities differ from that of the fluid
parcels. Consequently, the trajectories of impurity particles
separate from those of the fluid resulting in highly complex
dynamics. The complexity primarily arises due to the mixed
nature of the phase space of the ABC map, which contains
invariant surfaces as well as chaotic trajectories in the bulk of
the phase space. The embedded dynamics also depends on the
parameters (α,γ ), which correspond to the mass ratio and the
dissipation in the system, with the mass ratio α distinguishing
between the aerosol (α < 1) and bubble (α > 1) regimes,
which display qualitatively different dynamical behavior.

We have considered the two-action and the one-action
versions of the base ABC map. The focus has been on the
former, wherein a higher efficiency of mixing is expected due
to the absence of invariant barriers. The phase spaces in both
aerosol and bubble regimes show rich and complex dynamics
with three types of dynamical behaviors—chaotic structures,
regular orbits, and hyperchaotic regions. We have observed
that the bubble regimes in the one-action and two-action
cases display bipartite attractors with interesting return times
statistics. The tendency of the sticking of chaotic trajectories
to some phase-space regions for long times as indicated by
power-law decays in the recurrence times statistics and has
been earlier seen in the case of low-dimensional Hamiltonian
systems, is found to be present in our system as well. However,
unlike the 2D cases, such partial barriers to transport in our
system do not appear to originate from hierarchical structures
in the phase space. Instead, in the hyperchaotic regime, for
γ > 2, such sticky regions exist around the invariant surfaces
for the two-action case. An analogous case has been seen
in a 4D symplectic map [49] where the power law trapping
of the trajectories is not due to a hierarchy in phase space,
but occurs at the surface of the regular region and outside
of the Arnold web. Moreover, we observe plateaus in the
recurrence time distributions indicating longer recurrence
times inside the trapping regions. Such plateaus have been
reported earlier in the volume preserving extended standard
map [50].

The system also exhibits the entire range of diffusive
properties including normal diffusion, subdiffusion and su-
perdiffusion. The aerosol regime is mostly dominated by the
ballistic type of superdiffusion while in the bubble regime, the
largest fraction of the available parameter space is occupied by
normal diffusion. The distribution of diffusion exponents in the
two-action case shows power-law scaling over a certain range
in both the aerosol and the bubble regimes. We also observe a
clear boundary between the normal and superdiffusive regions
in the bubble regime. The degree of heterogeneity in the phase
diagram of the one-action case is greater than that of the
two-action case. This is expected due to the fact that more
invariant surfaces get destroyed in the one-action case.
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Our energy studies show that the energy associated with
the passive scalars in the embedded map dynamics also shows
structure, the specific quantity under study being E(α), the
quadratic contribution to the kinetic energy due to the separa-
tion between the impurity and the fluid velocities. In the two-
action case, the variation of E(α) in the aerosol regime shows
the existence of plateaus which resemble the devil’s staircase.
The trajectories here, are localized in invariant tubular regions,
and move through the energy surfaces inside the tube with
increase in α. This behavior results in the staircase type of
behavior in the energy curve. On the other hand, trajectories
in the bubble regime either breach the invariant surfaces (for
small values of γ ) or are completely expelled out of them (for
higher values of γ ) leading to the absence of any plateaus in
the energy curve. Finally, we note, as expected, the existence
of invariant sheets alters the behavior in the one-action case
where a clear picture of diffusion and transport dynamics as
well as energies does not emerge unlike the two-action case.

It is to be clarified that the bailout embedding of particles
ignores the memory effects (as modeled by the Basset history
force term) seen in the dynamics of inertial particles. It
has recently been shown that these effects have important
influences on the chaotic advection of bubbles as well as
aerosols in the 2D von Kármán flow [54–56] leading to
phenomena like changing the nature and number of attractors,
the fractalization of basin boundaries, and weakening of the
diffusive effects. It would, therefore, be interesting to see the
ramifications of the history term for inertial particle advection
in 3D flows as well.

We now discuss the implications of our study. The transport
and diffusive properties of impurities in a three-dimensional
volume preserving map have been explored in detail, using the
embedded map paradigm. Such 3D volume preserving maps
are representations of time-periodic flows in three dimensions.
Early studies [15,16] of bailout embeddings of the ABC map
investigate the neutrally buoyant (α = 1) case and also study
the effects of noise. We hope to study these effects of noise for
our α �= 1 case elsewhere.

The specific map used here, is a map representation of
the ABC flow, which models cosmic magnetic fields [57–59].
The ABC map serves as as a paradigm for studying the
spatial diffusion of the magnetic field lines in astrophysical
plasmas. The conventional approach to describe the transport
of particles in plasmas involves the classical theory of random
walks. We, however, have seen that anomalous diffusion is
not only present in the our model, but is predominant in a
certain region of the parameter space. Similar results have
been obtained in recent work [60]. Also, the recurrences of
states are non trivial and may have definite consequences
for the evolution of magnetic fields in plasma. We have also
distinguished between the two- and one-action cases, which
have been not explored yet in the context of kinematic dynamo
model. Therefore, we hope that the insights gained here would
be useful in this, and other application contexts.

APPENDIX: THE MAXEY-RILEY EQUATIONS
AND THE BAILOUT EMBEDDING MAP

The transport of passive point particle tracers in fluids is
usually studied using the Lagrangian description, wherein the

particle advection problem is expressed as a finite-dimensional
dynamical system. If the density of the particle tracers is
different from that of the fluid, the problem needs to be tackled
using the Maxey-Riley framework [29], which involves a series
of simplifying assumptions [35]. These equations are

ρp

dv
dt

= ρf

du
dt

+ (ρp − ρf )g − 9νρf

2a2

(
v − u − a2

6
∇2u

)

− ρf

2

(
dv
dt

− D

Dt

[
u + a2

10
∇2u

])

− 9ρf

2a

√
ν

π

∫ t

0

1√
(t − ξ )

d

dξ

(
v − u − a2

6
∇2u

)
dξ.

(A1)

Here v represents the particle velocity, u the fluid velocity,
ρp the density of the particle, ρf the density of the fluid,
and ν, a, and g represent the kinematic viscosity of the fluid,
the radius of the particle and the acceleration due to gravity,
respectively. The first term on the right of Eq. (A1) represents
the force exerted by the undisturbed flow on the particle, the
second term represents the buoyancy, the third term represents
the Stokes drag, the fourth term represents the added mass,
and the last term is the Basset-Boussinesq history force term.
The two derivatives involved in the equation, Du

dt
and du

dt
, are

defined as follows:

Du
Dt

= ∂u
∂t

+ (u∇)u, (A2)

du
dt

= ∂u
∂t

+ (v∇)u. (A3)

The derivatives Du
dt

and du
dt

are taken along the path of the fluid
element and the trajectory of the particle, respectively.

In this framework, we arrive at the following simplified
equation of motion for the motion of a spherical particle
immersed in the fluid [27], under the low Reynolds number
approximation, with negligible buoyancy effects, and retaining
only the Bernoulli, Stokes drag, and Taylor added terms:

dv
dt

− α
du
dt

= −2

3

(
9α

2a2Re

)
(v − u). (A4)

Here, the parameter α is the mass density ratio, α = ρf

ρf +2ρp
,

corresponding to the aerosol case (α < 1), the bubble case
(α > 1), and the neutrally buoyant cases (α = 1). Defining
the particle Stoke’s number St = 2

9a2Re and defining the
dissipation parameter to be γ = 2α

3St , the equation takes the
form

dv
dt

− α
du
dt

= −γ (v − u). (A5)

A map version of this bailout embedding is given by Eq. (2)
in Sec. II.
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