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Vibrational resonance in an inhomogeneous medium with periodic dissipation
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The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomogeneous system
characterized by a symmetric and spatially periodic potential and subjected to nonuniform state-dependent
damping and a biharmonic driving force. The contributions of the parameters of the high-frequency signal to the
system’s effective dissipation are examined theoretically in comparison to linearly damped systems, for which the
parameter of interest is the effective stiffness in the equation of slow vibration. We show that the VR effect can be
enhanced by varying the nonlinear dissipation parameters and that it can be induced by a parameter that is shared
by the damping inhomogeneity and the system potential. Furthermore, we have apparently identified the origin
of the nonlinear-dissipation-enhanced response: We provide evidence of its connection to a Hopf bifurcation,
accompanied by monotonic attractor enlargement in the VR regime.
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I. INTRODUCTION

Nonlinear systems are ubiquitous in nature. Their non-
linearity may arise in diverse ways, the most important
example being, arguably, nonlinear damping and dissipation
[1]. This is of particular interest on account of its wide
occurrence and applications in, for example, plasma science
[2,3], Josephson junctions [4–6], the Kramers oscillator [7],
nanoelectromechanical and nanomechanical systems [8–12],
aerospace structures [13], nonlinear suspension and isolation
systems [14], the acoustic nonlinearity of an orifice [15],
the cochlear amplifier [16], and the context of quantum
information processing with microwave cavity modes [17].

In nonlinear and quasilinear models, nonlinear dissipation
terms have been shown to influence the system dynamics
strongly, leading to emergent phenomena. For instance, the
stability of the equilibrium points may be altered, giving rise
to limit cycles or inducing bifurcation sequences, chaos, or
other forms of complex dynamics in certain parameter regimes
[1]. Mogilevtsev et al. [18] showed that nonlinear dissipation
can be designed to combat the effects of an arbitrarily
strong linear loss for both finite-time intervals and stationary
states. In the context of so-called absolute negative mobility,
where particles can surprisingly move against a constant bias,
nonlinear systems with nonuniform space-dependent damping
in a symmetric potential have been investigated in the presence
of noise [19], with a periodic force in the place of noise
[20], and in a biharmonically driven system [21]. Repeated
dispersionless (coherent) motion and a ratchet effect were
reported in a medium with a nonlinear friction coefficient
[22,23]. In addition, stochastic resonance [24] and the ratchet
effect have been described based on the coexistence of two
dynamical states in parameter space [25]. More recent studies
revealed that the performance of an underdamped ratchet
can be substantially enhanced by an optimal combination of
asymmetry of the potential and system inhomogeneity [26].
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These results underscore the roles played by noise, biharmonic
driving, and damping inhomogeneity, or by their combination,
in enhancing a system’s performance and driving it into
resonant states [27].

Traditionally, resonance implies a matching of frequencies,
e.g., between the natural frequency of an underdamped
oscillatory system and a periodic driving force, giving rise
to an enhanced response. More recently, however, the term
is being used more broadly to describe any case where
the amplification or response of a system can be optimized
through the adjustment of a parameter that is not necessarily a
frequency [27]. In stochastic resonance [28], for example, the
parameter in question is the noise intensity and only in special
cases [29] is there also any matching of frequencies. In fact,
many different kinds of external forces can induce resonances
and the latter can manifest in a diversity of different forms, such
as chaotic resonance [30,31], coherence resonance [32,33],
parametric resonance [27], stochastic resonance [28,34], ghost
resonance [35], vibrational resonance [36], autoresonance
[27], and antiresonance [37].

In what follows, we will focus on a form of vibrational res-
onance (VR). In systems with linear damping, VR has already
been widely investigated [38–45] following an early study
by Landa and McClintock [36]. The results have shed light
on the contributions to the effective potential of the various
components of the high-frequency signal [27], as well as the
roles played by system parameters such as delay and fractional
order terms in the induction, enhancement, and control of VR
[46–51]. However, relatively little attention has been paid to the
possible contribution of nonlinear dissipation to the occurrence
of VR, as described very recently for a prestressed beam fixed
at both ends [52] and for a biharmonically driven plasma [53].
Vibrational resonance is usually discussed in terms of a slowly
driven system’s response to variations in the parameters of an
imposed fast periodic signal. It has been shown, however, that
signal enhancement or suppression is also possible through
variation of the bifurcation parameters of the model in the
presence of a biharmonic drive, within appropriate parameter
regimes [53,54]. This result suggests that internal parameters,
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such as frictional inhomogeneity, or nonlinear dissipation may
also play independent or contributory roles in the occurrence
of VR.

In this paper we report the results of an investigation
of the role of frictional inhomogeneity in the enhancement,
control, and induction of vibrational resonance in a driven
oscillator with a symmetric potential but nonuniform and
space-dependent dissipation. We validate the occurrence of
VR both analytically and numerically and provide insights into
its origin and into the governing mechanism. We provide clear
evidence that VR can be enhanced significantly within appro-
priate parameter regimes by combining nonlinear dissipation
parameters with a biharmonic driving force. Furthermore, we
show that VR can be induced by a parameter that is shared by
the damping inhomogeneity and the system potential. The rest
of the paper is organized as follows. The model is introduced
and its applications discussed briefly in Sec. II. In Sec. III an
analytic description of the resonance behavior of the system is
presented using the method of separation of motion. Numerical
results in Sec. IV are used to verify the theoretical analysis. A
summary is given in Sec. V.

II. MODEL

The model is a nonlinear dissipative system with a sym-
metric periodic potential and a periodically varying friction
coefficient, of the generalized dimensionless form

d2x

dt2
+ γ (x)

dx

dt
+ dV (x)

dx
= F cos ωt + G cos �t. (1)

The system’s periodic potential V (x) is given by

V (x) = −V0

k
cos kx, (2)

while the inhomogeneous damping term γ (x) takes the form

γ (x) = γ0[1 − λ sin(kx + φ)]. (3)

Using Eqs. (2) and (3) in Eq. (1), the system can be written
explicitly as

ẍ + γ0[1 − λ sin(kx + φ)]ẋ + V0 sin kx

= F cos ωt + G cos �t, (4)

where the overdots denote differentiation with respect to time
t . In Eq. (4), x, ẋ, and ẍ refer to the spatial coordinate of
the system at time t , the friction term, and the inertial term,
respectively. The parameter γ (x) characterizes the system’s
dissipation; the damping term is a function of γ0, λ, and
φ, which are, respectively, the amplitude of the damping
coefficient, the strength of the system inhomogeneity, and the
phase lag between the potential and the damping coefficient
that share the same period. In addition, F cos ωt is a weak
periodic driving force of low frequency ω and amplitude F ,

while G cos �t is a fast periodic force of high frequency �

(� � ω).
The system (4) represents an archetypical model of an

inhomogeneous, nondamped, one-dimensional single particle
evolving within a periodic potential under the influence of
a biharmonic driving signal, each drive corresponding to a
separate unbiased external force. The system can equally be
adapted to apply to other physical applications such as Joseph-
son junctions, plasmas, phase-locked loops, or pendulums
[19–21,55,56]. In a Josephson junction setup, for example,
it describes the one-dimensional motion of a charged particle
subject to a periodic nonvarying friction γ (x), where γ (x) is
analogous to the ratio of the conductivities associated with the
Cooper pair and quasiparticle tunneling, respectively (see [23]
and references therein); γ0 is a constant damping coefficient
such that γ0 = v(ωjRC)−1 [4,5], where ωj is the Josephson
frequency and R and C are, respectively, the resistance and
capacitance of the junction. In the special case of λ = 0, k = 1,
and V0 = 1, the symmetry-breaking requirement met by γ (x),
essential for achieving the ratchet effect, is absent and Eq. (4)
then reduces to

ẍ + γ0ẋ + sin x = F cos ωt + G cos �t, (5)

which is the well-known linear nondamped pendulum for
which VR has already been studied within a range of different
parameter regimes [57]. In our analysis of VR in the system
(1), we focus on the overdamped regime in which only periodic
and quasiperiodic motions are admissible.

III. THEORETICAL ANALYSIS

Here we employ the method of direct separation of the
dynamics into fast and slow motions. We thus obtain a set of
integro-differential equations, one of which is the equation of
slow motion of the system whose response can be modulated
by varying the parameters of the high-frequency input drive.
The response amplitude Q given as the ratio of the amplitude
A to the frequency F is obtained by solution of the equation
for the slow motion. Thus, we consider the solution x(t) of the
system (4) as a superposition of only the solutions χ (t) of slow
evolution with frequency ω and ψ(t) of the fast oscillations
with frequency � when � � ω, in the form

x(t) = χ (t) + ψ(t,�t). (6)

Here χ (t) is periodic with period T = 2π
ω

, while ψ is periodic
in the fast time τ = �t , with period 2π , and its mean value
with respect to fast time τ is given by

〈ψ〉 = 1

2π

∫ 2π

0
ψ dτ = 0. (7)

The next step is to derive a system of two coupled integro-
differential equations for the variables χ and ψ from the
differential equation (4), though the main object of interest
is of course the slow component. The first of these equations
is obtained by substituting Eq. (6) in Eq. (4) to yield

χ̈ + ψ̈ + γ0[1 − λ sin(kχ + φ) cos kψ

− λ cos(kχ + φ) sin kψ](χ̇ + ψ̇)

+V0 sin kχ cos ψ + V0 cos kχ sin ψ

= F cos ωt + G cos �t. (8)
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By averaging both sides of Eq. (8) over the period of fast time
[0, 2π

�
] and noting that ψ is a rapid nonoscillating periodic

function of the fast time, we can then apply Eq. (7) to write

χ̈ + γ0[1 − λ sin(kχ + φ)〈cos kψ〉
− λ cos(kχ + φ)〈sin kψ〉]χ̇
+V0 sin kχ〈cos kψ〉 + V0 cos kχ〈sin kψ〉

= F cos ωt + 〈G cos �t〉. (9)

Simplifying Eq. (9) using the mean values

〈G cos �t〉 = 0,

〈sin kψ〉 = 1

2π

∫ 2π

0
sin kψ dτ = 0, (10)

〈cos kψ〉 = 1

2π

∫ 2π

0
cos kψ dτ = J0(kψ0),

where ψ0 is the amplitude of the steady-state solution of ψ

and J0(ψ0) is the zeroth-order Bessel function of the first kind,
gives

χ̈ + γ0[1 − λJ0(kψ0) sin(kχ + φ)]χ̇ + V0J0(kψ0) sin kχ

= F cos ωt. (11)

Equation (11) is the first of the set of coupled equations for
the variable χ . The equation for the fast motion ψ is obtained
by subtracting Eq. (11) from Eq. (8) and, by using the inertial
approximation ψ̈ � ψ̇ � ψ , can be approximated to that of
a damped and periodic nondriven particle whose long-term
solution is periodic in fast time τ = �t by considering that ψ

is rapidly oscillating,

ψ̈ + γ0ψ̇ = G cos �t, (12)

which has the steady-state solution

ψ = ψ0 cos(ωt + θ ) = G

�

√
�2 + γ 2

0

cos(ωt + θ ), (13)

sin θ = −γ0√
�2 + γ 2

0

, cos θ = −�√
�2 + γ 2

0

. (14)

Here ψ0 may be approximated by assuming � � γ0 so that

ψ0 = G

�2
. (15)

Equation (11) can now be written as

χ̈+γ0

[
1−λJ0

(
kG

�2

)
sin(kχ+φ)

]
χ̇+V0J0

(
kG

�2

)
sin kχ

= F cos ωt. (16)

Equation (16) is the analytic expression that we seek for the
slow vibration, containing the parameters of the fast signal, and
it will be used to compute the theoretical response amplitude Q

of the system at the lower frequency ω by linearizing it around
the equilibrium points. Equation (16) can be considered as a
forced slow motion of a particle of the form

χ̈ + γeffχ̇ + dVeff

dχ
= F cos ωt, (17)

−1

0

1
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FIG. 1. Effective potential Veff (χ ) for (a) four values of G with
k = 1 and � = 13 and (b) four values of k with G = 300 and � = 13.

where

Veff = −V0

k
J0

(
kG

�2

)
cos kχ (18)

and

γeff = γ0

[
1 − λ J0

(
kG

�2

)
sin(kχ + φ)

]
(19)

are the effective potential and the effective dissipation,
respectively. The effective potential Veff(χ ) is a function of
the parameters � and G, and its shape and number of local
minima and maxima are determined by the these parameters.
Figure 1(a) plots Veff(χ ) for G = 0, 100, 500, and 750, with
k = 1 and � = 13. It is clearly evident that, for all G values,
the depth of the well is reduced by increasing the value of
G while the shapes remain locally the same in each case.
However, the positions of the maxima for G = 0 and 100
correspond to those of the minima for G = 500 and 750. This
remarkable change occurs at G � 405. Above and below this
value of G, the positions of the extrema remain unchanged as
G is varied. Figure 1(b) shows the effective potential Veff(χ )
for k = 1, 1.5, 2.0, and 2.5. Variation in the k value exerts
an effect on the effective potential similar to that exerted by
G in Fig. 1(a), as would be expected from Eq. (18). It is
therefore reasonable to assume that for the system (4), whose
vibration can be completely described by Eq. (16), the effect
of varying the amplitude G of the high-frequency signal can be
mimicked by appropriate adjustment of the system parameter
k. Consequently, any optimization of signal amplification or
suppression achievable through modulation of the parameters
of the fast driving force may equally be achieved by adjustment
of the system parameter k. Note that with k acting like a
coefficient for the ratio G

�2 in Eq. (18), amplification of the
system’s response (governed by the ratio of G and � in VR
[57]) can effectively be tuned to resonance for fixed parameters
of the fast periodic driving signal. This means that the system’s
response can be controlled effectively by adjustment of its
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dissipation term to drive it into the resonant state. This fact
will be of central importance in what follows.

Next, linearization of the equation of slow oscillation (16)
around the equilibrium points (χ∗,χ̇∗) is carried out using
an appropriate approximation to obtain an analytic response
amplitude Q to be compared with the Q obtained by computing
the full equation of the system (4) numerically in Sec. IV. By
rewriting Eq. (17) as a set of coupled first-order differential
equations without the external driving force in (χ,ζ = dχ

dt
) and

then substituting in ( dχ

dt
= 0,

dζ

dt
= 0) to obtain (0 = χ∗,0 =

V0J0 sin kχ∗), where J0 = J0( kG
�2 ), the equilibrium points

around which slow oscillations occur are χ∗
min (max) = 2nπ ,

where n is an integer. The system’s oscillation can be described
in terms of the deviation of slow motion χ from the equilibrium
points χ∗ by using the deviation variable Y = χ − χ∗ in
Eq. (16). The equation of motion then becomes

Ÿ+γ0[1 − λJ0 sin(kY+φ) cos kχ∗]Ẏ + V0J0 sin kY cos χ∗

= F cos ωt. (20)

For χ∗ = χmin (max), J0 cos kχ∗ = |J0| and Eq. (20) can then
be written as

Ÿ + γ0[1 − λ|J0| sin(kY + φ)]Ẏ + V0|J0| sin kY

= F cos ωt. (21)

For F � 1, |Y | � 1, and φ � 1, sin(kY + φ) ≈ (kY + φ)
and sin kY ≈ kY , so Eq. (21) becomes

Ÿ + γ0[1 − λ|J0|(kY + φ)]Ẏ + V0|J0|kY = F cos ωt.

(22)

Clearly, the damping term in the system (22) consists
of both linear γ0[1 − λφ|J0|]Y and nonlinear [γ0λk|J0|]Y Ẏ

contributions. By neglecting the nonlinear damping term, an
approximate damped and periodically forced linear equation
of the form

Ÿ + γLẎ + ω2
r Y = F cos ωt (23)

is obtained, where the linear damping coefficient is γL =
γ0(1 − λφ|J0|), the resonant frequency is ωr = √

V0|J0|k, and
its steady-state solution Y (t), which describes the ultimate
behavior of the system in the long-time limit t → ∞, is
Y (t) = AL cos(ωt + ); further, AL = F√

S
, S = W 2 + γ 2

Lω2,

and W = ω2
r − ω2. The response amplitude is given by the

factor Q, which is defined as the ratio between the output and
the forcing signals

Q = AL

F
= 1√

W 2 + γ 2
Lω2

. (24)

In Eq. (24), Q is maximum when S is minimum, i.e., at
resonance W = 0 or ωr = ω. Note that the damping term
γL is a function of the fast motion parameters G and �

and other parameters (k,λ,φ) of the damping inhomogeneity.
The implication is that in the system (23), considerable
variation in the system’s response can indeed be achieved by
varying certain parameters of the damping term. From the
theoretical response amplitude, we deduce that the value of
λ corresponding to Qmax is given as λmax = 1

φ|J0| . Thus, for
λ > λmax, the system’s response Q diminishes.

IV. NUMERICAL RESULTS

To compute the system’s response to the biharmonic
forcing, a convenient approach is to express Eq. (4) as a system
of two first-order autonomous ordinary differential equations

dx

dt
= y,

dy

dt
= −γ0[1 − λ sin(kx + φ)]ẋ − V0 sin kx

+F cos ωt + G cos �t. (25)

Numerical integration of Eq. (25) is performed in the over-
damped regime using a fourth-order Runge-Kutta scheme with
step size �t = 0.01 over a simulation time interval Ts = nT ,
with T = 2π

ω
being the period of the oscillation, where ω is the

low-frequency input signal and n (=1,2,3, . . .) is the number
of complete oscillations. We used zero initial conditions and a
relaxation time of 100T and fixed the values of the potential
amplitude and drive parameters at V0 = 1, F = 0.1, ω = 0.65,
and � = 13. These choices ensure that the system is in the
overdamped regime in which only periodic or quasiperiodic
motion is admissible. The other parameters γ , λ, and φ are
chosen within a regime so as to optimize the emergence of VR
for n = 200.

A. Occurrence of VR

Our main objective here is to solve for the response
amplitude at frequency ω, because it provides an idea of how
the low-frequency signal is amplified by the high-frequency
signal, thereby characterizing VR. The response is computed
from the amplitudes Bs and Bc of the Fourier spectrum of the
output signal, where Bs and Bc are

Bs = 2

nT

∫ nT

0
x(t) sin ωt dt,

Bc = 2

nT

∫ nT

0
x(t) cos ωt dt. (26)

Conventionally, the amplitude is given by

A =
√

B2
s + B2

c (27)

and the phase shift as

 = tan−1

(
Qs

Qc

)
. (28)

The response amplitude is thus given as

Q = A

F
=

√
B2

s + B2
c

F
. (29)

We begin by examining the dependence of frictional
inhomogeneity on the occurrence of VR. Shown in Fig. 2
is the response amplitude Q as a function of the amplitude
of the high-frequency signal for five values of the dissipation
parameter λ. The values of Q calculated analytically from
Eq. (24) (marker points and dashed lines) are compared
with numerical values (solid curves) computed from Eq. (29)
for λ = 0, 0.9, 1.9, 3.5, and 5.0. Note that the case for
λ = 0, reproduced here for comparison and consistency, was
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FIG. 2. Dependence of the response amplitude Q on the control
parameter G for five values of λ (from bottom to top against the
ordinate axis, λ = 0,0.9,1.9,3.5,5.0). The other parameters are γ0 =
1.2, φ = 0.1, k = 1.0, F = 0.1, ω = 0.65, and � = 13. Continuous
curves represent the numerically computed Q from Eq. (29) using
Eq. (25), while the analytically calculated Q from Eq. (24) are
indicated by marker points and/or dashed lines.

reported earlier by Rajasekar et al. [57]. Whereas at lower
values of λ (0, 0.9, and 1.9) the agreement is excellent, as λ

becomes large (e.g., λ = 3.5 and 5.0, as shown) the theoretical
and numerical results no longer agree so well, although the
essential features of the curves, including the shape and trend,
remain in good agreement. In order to ascertain the limit of
validity of the theoretical approach, we plot in Fig. 3 the
numerical and theoretical response curves Q as functions of
the nonlinear dissipation coefficient λ, where λlim denotes the
theoretical limit of validity. For λ < λlim = 1.3, the curves
are in excellent agreement, whereas for λ > λlim = 1.3, the
deviation of the numerical Q from the theoretical Q grows.
This discrepancy may be attributed to the approximation of

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.25  0.5  0.75  1  1.25  1.5

Q

λ

λlim=1.3

Numerical
Theory

FIG. 3. Comparison between theory and numerics for the depen-
dence of the response amplitude Q on the coefficient of nonlinear
dissipation λ for G = 15. The other parameters are γ0 = 1.2, φ =
0.85, ω = 0.65, and � = 13. The red solid curve represents the
numerically computed Q from Eq. (29) using Eq. (25), while the
theoretically calculated Q from Eq. (24) is indicated by the blue
dotted line with marker points.
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FIG. 4. Dependence of the response amplitude Q on the control
parameter G for four values of phase shift, from bottom to top, φ = 0,
0.1, 0.3, and 0.5. The other parameters are γ0 = 1.2, λ = 0.9, k =
1.0, F = 0.1, ω = 0.65, and � = 13. The solid and dashed curves
represent the numerically computed Q from Eq. (29) using Eq. (25),
while the corresponding analytically calculated Q from Eq. (24) are
indicated by marker points (closed shapes) of the same color.

the damping term in Eq. (22), where we had dropped the
nonlinear component of the damping [γ0λk|J0|]Y Ẏ to obtain
the linear equation given by Eq. (23). Intuitively, the low-
dissipation regime of λ for which agreement exists corresponds
to the experimentally significant regime where better device
response could be obtained at high-frequency signals [11]. In
general, low dissipation is desirable, since it allows for more
device efficiency and sensitivity as well as less susceptibility
to mechanical noise and wear [58]. A remarkable feature is the
occurrence of multiresonance for varying G in the presence of
the slow signal even when the system is linearly damped [57],
that is, for λ = 0 as shown Fig. 2. However, the increase in
the strength of the nonlinear dissipation coefficient λ produces
a monotonic enhancement in the system’s response at each
resonance point. Here resonances occur for small values of
Qmax for ω = 0.65, � = 13, F = 0.9, k = 1, and φ = 0.1.
Moreover, the trend of Q curves for the nonlinearly damped
system (λ > 0) compared with the linearly damped system
(λ = 0) shows that as the strength of nonlinearity is increased,
the difference between maxima of the response amplitude is
magnified and the effect becomes more evident at lower values
of G.

Further evidence for the possibility of enhancing Qmax by
variation of a dissipation parameter is presented in Fig. 4 for
the response amplitude(s) Q as a function of the amplitude
of the high-frequency signal for four values of phase shift φ

between the nonlinear dissipation and the periodic potential
(φ = 0, 0.1, 0.3, and 0.5). The numerical noncomputed Q

from Eq. (29) using Eq. (25) (solid and broken curves) and
their corresponding analytically calculated Q from Eq. (24)
(closed shapes) are in agreement as clearly depicted by
the close proximities of the location of the point markers
(analytic values) to their corresponding (of the same color)
solid lines. Monotonic enhancement in the system’s response
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FIG. 5. Dependence of the response amplitude Q on the control
parameter k for three amplitudes of fast forcing (a) G = 250, (b)
G = 350, and (c) G = 650. The other parameters are γ0 = 1.2,
λ = 0.9, φ = 0.1, F = 0.1, ω = 0.65, and � = 13. The solid curves
represent the numerically computed Q from Eq. (4), while the
corresponding analytically calculated Q from Eq. (24) is shown as
open circle (marker) points.

to modulation of the amplitude of the fast drive at resonance,
similar to the effects produced by variation of λ, is observed
for a good choice of values of the driving signal parameters ω,
�, and F . The value of Qmax increases with increasing φ, with
the effect being more pronounced at low G. Since the damping
is nonlinear at φ = 0, the response curve at φ = 0 bears close
resemblance to the behavior of Q at very weak values of
the parameter λ shown in Fig. 2. For φ > 0 presented in
Fig. 4, increasing the phase difference φ produces a significant
monotonic increase in Qmax, the effect being more pronounced
at lower values of the amplitude G of the fast drive. Though
multiresonance is produced by varying G in the presence of
the slow signal, the system’s response at resonance can be
enhanced or suppressed by adjustment of the phase φ. This
shows that the dissipation parameters can indeed be used to
control the system’s response at resonance: The dissipation
parameters λ and φ are evidently able to control the resonance,
as shown in Figs. 2 and 4.

That the system’s potential and dissipation are both periodic
in k implies that resonance can be induced by adjustment of the
parameter k. The roles played by the ratio of the parameters of
the fast signal in the occurrence of VR [57] can be performed
or enhanced by k in a multiplicative fashion based on the
ratio k G

�
in Eq. (16), even when the parameters of the fast

signal are fixed. Finally, for fixed values of G and ω and
with variation of k, the system can be driven into resonance
as shown in Fig. 5 for three values of G, namely, G = 250,
350, and 650. We have plotted in Fig. 5 the analytic response
(closed circles) as obtained from Eq. (24) superimposed on
the numerical response (29) obtained from Eq. (25) (curves)
to demonstrate the good agreement. In addition, multiple
resonance peaks occur at larger values of G as observed in
Fig. 5.
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FIG. 6. Three-dimensional plot showing the dependence of the
response amplitude Q on the fast signal amplitude G and the
dissipation parameter λ for a phase shift of φ = 0.85. Notice that
small values of G also produce some low peaks in the regime marked
in deep blue, while the largest peaks occur at higher G and lower λ.

Exploring the VR landscape in parameter space gives
a convenient view of the range of system parameters for
which one can achieve a strong system response, which is
significant for experimental applications. Figure 6 shows the
response Q as a function of both the dissipation parameter
λ and the amplitude G of the fast signal in the parameter
range (λ,G) ∈ [(0.0,3.0),(0.0,500)], with φ = 0.85 and other
parameters fixed as before. Figure 6 shows in red and green
the regimes of strong resonance that can be obtained with
weak dissipation (typically, λ < 2.0) and high amplitudes
of the fast signal (typically, G > 200). Elsewhere, however,
weak resonance peaks can also appear and are indicated in
blue.

B. Origin and mechanism of VR

We can now seek to understand the origin and mechanism
of VR by exploring the underlying dynamics and, in particular,
the bifurcation structure and attractors in a Poincaré section.
Proceeding as before, we calculated the time-asymptotic
motion of the system (25), visualizing the trajectories as
a series of points in (x,v) phase space, where v = ẋ, and
recording only one point per period of the external drive,
i.e., a point is plotted when ωt = δ + n 2π , where δ is the
Poincaré phase. Using a parameter of the nonlinear dissipation,
in this case λ, as the bifurcation parameter, we first examine
the bifurcation structure. It is well known that in nonlinear
systems, resonance curves are closely linked to the underlying
bifurcation structure [27,53,59,60]. In particular, Kozłowski
et al. [60] and Roy-Layinde et al. [53] have shown that
symmetry-breaking bifurcations occur between resonances.
Here we report a dynamical transition mechanism associated
with resonance. Figure 7 shows the forward bifurcation
diagram (red dotted line) obtained by increasing the value of λ

from 0 to 4, the corresponding numerically computed response
curve Q (blue dashed line), and the maximal Lyapunov
exponent λmax (green line) for G = 15. There is a clear
and striking correlation between the Q plot and λmax at
λthr ≈ 1.30 just before the Hopf bifurcation takes place for
increasing λ. Preceding the Hopf bifurcation transition point
H (i.e., λ ≈ 1.66), the system appears to be in a quiescent
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FIG. 7. Bifurcation diagram (dotted red) of the displacement x,
the corresponding response curve Q (blue), and maximal Lyapunov
exponent λmax (green) for G = 15. The other parameters are set as
follows: γ0 = 1.2, k = 1.0, φ = 0.85, V0 = 1.0, F = 0.1, ω = 0.65,
and � = 13.

state wherein the strength of periodic nonlinear dissipation is
incapable of exciting it into resonance. Within this regime,
λmax changes values from λmax < 0 (periodicity) to λmax ≈
0 (quasiperiodicity) at λthr ≈ 1.30, a threshold dissipation
above which the system is excited into resonance, thereby
signaling the onset of VR as shown, with the first resonant
peak appearing at λ ≈ 1.85 and in the neighbourhood of the
Hopf bifurcation; thereafter, several resonance peaks emerge.
Evidently, for λ > λthr ≈ 1.30, Q first increases exponentially
and then experiences a sudden jump at the Hopf bifurcation
point H . Thus, the jump in Q signaling VR clearly originates
from the Hopf bifurcation, thereby strongly suggesting that
VR is linked to the bifurcation of the attractors.

To complete the picture, Fig. 8 illustrates the dynamical
mechanism accompanying the bifurcation leading to VR,
which shows the dynamics emerging from a periodic orbit
for λ = 0 to enlarged quasiperiodic orbits as λ increases. We
have plotted the orbits for five different values of λ to illustrate
that a further increase in λ leads to a monotonic increase in
the attractor size for other values of λ > 0. It is precisely the
growth in attractor size of the attractor with λ that is responsible
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FIG. 8. Transition from periodicity to quasiperiodicity accompa-
nying the onset of VR with variation of the dissipation parameter λ:
periodic orbit for λ = 0 (red) and monotonic quasiperiodic attractor
enlargement for λ = 1.35 (green), λ = 1.4 (blue), λ = 1.5 (magenta),
and λ = 2.0 (cyan). The other parameters are set as G = 15, γ0 = 1.2,
k = 1.0, φ = 0.85, V0 = 1.0, F = 0.1, ω = 0.65, and � = 13.

for the occurrence of VR, as characterized by the monotonic
enhancement of peaks seen in Fig. 2 for increasing values
of λ.

V. CONCLUSION

We have investigated the role of nonlinear dissipation in
relation to VR in an inhomogeneous system characterized
by a symmetric, spatial, periodic potential and subjected to
nonuniform state-dependent damping and a biharmonic signal.
The contributions from both the parameters of the frictional
inhomogeneity and the fast signal in the resonant state were
first identified based on the computed effective potential and
the effective dissipation terms, from which we deduced that
these could be employed to induce and control resonances in a
manner similar to the roles played by delay terms reported
earlier [46,61]. In contrast to the case of linearly damped
systems, where the effective stiffness is the parameter of inter-
est, we examined theoretically and confirmed numerically the
contributions of the parameters of the high-frequency signal
to the system’s effective dissipation. We found that, within
an appropriate parameter regime, VR can be significantly
enhanced by varying the nonlinear dissipation parameters and
that it can be induced by a parameter that is commonly shared
by the damping inhomogeneity and the system potential.
Scanning the system in the (λ,G) two-parameter plane, we
found that the regions of optimal resonance correspond to
low values of dissipation (λ < 2.0) and high values of the fast
signal amplitude (G > 200), while elsewhere weak resonances
occur. The underlying dynamics revealed that the origin of
the nonlinear-dissipation-enhanced resonance could be linked
to monotonic attractor enlargement arising from a Hopf
bifurcation taking place near the onset of VR.

We remark that certain features of vibrational resonance
have potential industrial applications including for output
filtering, control and enhancement, signal detection, extraction
or separation, noise reduction, and highlighting specific ele-
ments of a signal. More specifically, advanced technological
applications exhibit better performance and efficiency when
ratchetlike devices such as sensors, nonlinear mixers, filters,
atomic-scale imaging, and amplifiers are operated in resonant
modes, possibilities that can be fully explored in the near fu-
ture. In controlling the motion of tiny particles in nanoscience
or microscale or macroscale oscillators [27], one could explore
the optimal choice of dissipation parameters and of the fast
input signals functioning as controllers in order to dictate the
direction of particle transport and maximize the flux. Finally,
we comment that our model could immediately be realized
experimentally in an electronic circuit including a Josephson
junction with its external drives modeled as input voltage and
current sources.
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