
PHYSICAL REVIEW E 96, 032208 (2017)

Front propagation in weakly subcritical pattern-forming systems
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The speed and stability of fronts near a weakly subcritical steady-state bifurcation are studied, focusing on
the transition between pushed and pulled fronts in the bistable Ginzburg-Landau equation. Exact nonlinear front
solutions are constructed and their stability properties investigated. In some cases, the exact solutions are stable
but are not selected from arbitrary small amplitude initial conditions. In other cases, the exact solution is unstable
to modulational instabilities which select a distinct front. Chaotic front dynamics may result and is studied using
numerical techniques.
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I. INTRODUCTION

In this paper we are interested in the speed with which
a nontrivial pattern invades either a stable homogeneous
state or an unstable one. These types of problems arise
frequently in applications [1–5] but the speed selection process
remains imperfectly understood despite much effort. This is
because in the former case the speed is inevitably selected
by nonlinear processes (the pushed front case), while in the
latter case selection may be via linear processes (the pulled
front case), although nonlinear selection may survive well
into the supercritical regime. Moreover, the selected speed
depends in general on the initial condition, and in particular
on the steepness of the front connecting the pattern to the
homogeneous state at the initial instant.

In order to present a unified discussion of both processes, we
focus here on the bistable Ginzburg-Landau equation [6–13]

At = μA + Axx + ia1|A|2Ax + ia2A
2Āx

+ d|A|2A − |A|4A. (1)

This amplitude equation describes the evolution of the complex
amplitude A(x,t) on a slow spatial scale x and a slow time
scale t in systems undergoing a weakly subcritical steady-state
bifurcation to a patterned state with wave number kc at R = Rc,
where R is the bifurcation parameter. Thus, the physical field
of interest takes the form

u(x,t) = εA

(
x

ε2
,

t

ε4

)
eikcx + c.c. + h.o.t., (2)

where ε is a small parameter measuring simultaneously the dis-
tance from the primary bifurcation at R = Rc (R = Rc + ε4μ)
and the degree of subcriticality (b = ε2d > 0). Thus, A �= 0
corresponds to a stripe pattern with wave number kc while
A = 0 corresponds to the homogeneous state. Here, b is the
coefficient of the cubic term in the standard Ginzburg-Landau
description of the primary bifurcation; its smallness requires
a rescaling of the spatial and temporal scales, as indicated
above, and leads to the appearance of the three new terms in
Eq. (1), viz., the two terms with (real) coefficients a1 and a2,
and of the quintic term whose coefficient has been scaled to
−1 (stabilizing quintic term). It follows that either μ or d can
be set equal to +1 by a suitable choice of ε. In the following,
we set d = 1 and use μ as the bifurcation parameter.

Equation (1) has the symmetries

A(x,t) → Ā(−x,t), A(x,t) → A(x,t) eiφ, (3)

inherited from the assumed invariance of the original system
for u(x,t) under spatial reflections and translations with respect
to the fast spatial scale. In the absence of spatial forcing on
scales of order O(ε−2), the equation is also invariant under
spatial translations with respect to the slow spatial scale x. The
equation possesses a Maxwell-type point μ = μM at which a
multitude of stationary spatially localized structures of varying
widths is present [12]. This point exists even when a2 �= 0,
i.e., when the equation lacks gradient structure. In the latter
case, μM corresponds to the presence of a heteroclinic cycle
connecting the trivial state A = 0 to a stationary nontrivial
state RMeiqMx given by

RM = 12

16 − (3a1 − 5a2)(a1 + a2)
, (4)

qM = 3(a1 + a2)

(3a1 − 5a2)(a1 + a2) − 16
(5)

and back again.
Past studies of Eq. (1) focused mostly on the existence and

stability of periodic solutions and coherent structures, but a
few also examine the well posedness of the Cauchy problem.
The existence and local stability of rotating wave solutions
is treated in [8,11–13] while nonlinear stability criteria are
provided in [9]. The existence of pulses and fronts was
examined in [8], and the persistence of front solutions when the
coefficients acquire a small imaginary part was studied in [10].
In the case a2 = 0 a free energy can be defined and it is known
that the energy is bounded from below provided |a1| < 4√

3
[12]. This is a necessary condition for well posedness of
solutions of Eq. (1) when a2 = 0. In the general case (a2 �= 0),
the condition |a1 − a2| < 2 is known to be sufficient for
global existence of solutions of the Cauchy problem [14].
The same condition is required for the global existence of
periodic solutions of Eq. (1) and it was suggested though not
proved that in this case the bound is sharp [15]. However, the
necessary and sufficient condition on the coefficients a1, a2 for
the global existence of general solutions of Eq. (1) remains an
open problem.

In this work we are interested in the properties of traveling
fronts that are present when μ �= μM . Since the system is
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bistable, two types of fronts are possible: pushed fronts
describing the elimination of the nontrivial state by an invading
trivial state (μ < μM ) or vice versa (μM < μ < 0), and pulled
fronts describing the invasion of a linearly unstable trivial state
by a stable nontrivial state (μ > 0). In fact, as first pointed out
by van Saarloos [16] the transition between these two types
of fronts does not take place exactly at μ = 0, even when
a1 = a2 = 0, and this transition is of particular interest in this
work as well.

The paper is organized as follows. In Sec. II we obtain a
three-parameter family of exact traveling front solutions of
Eq. (1) and study the stability of these solutions in the relevant
parameter region. This solution set is a special case of that
derived in [17]. The dynamic nature of these fronts is closely
related to the stability of the asymptotic states at either end. In
Sec. III we review the two basic regimes of front propagation
distinguished by the stability properties of the background
A = 0 state, and discuss the associated theoretical understand-
ing of velocity selection in each case. Sections IV and V
describe case studies of these two front propagation regimes,
focusing in Sec. IV on the case in which A = 0 is stable and
in Sec. V on the case in which it is unstable. In the latter case,
the “marginal stability criterion” of Dee and Langer [18] can
be applied to characterize the motion of the front, subject to
certain restrictions on the initial conditions [19]. Section V also
investigates the stability of the state deposited by the moving
front with respect to spatial modulation. Brief conclusions
follow in Sec. VI.

II. NONLINEAR FRONT

A procedure for finding exact coherent traveling structures
of the Ginzburg-Landau equation has been outlined by van
Saarloos and Hohenberg [20,21]. Such traveling solutions
inform bifurcation structure as well as dynamics and are thus
of significant value. One of the most famous such examples
is the one-parameter family of Nozaki-Bekki hole solutions
for the complex Ginzburg-Landau equation which have been
shown to play an important role in its dynamics [22]. In this
section, we derive an exact traveling front solution to Eq. (1)
with fully general parameter dependence and study the region
of existence and stability of the solution. These put restrictions
on the parameter values for which the exact front is valid and
dynamically relevant.

A. Spatial dynamics

If we restrict attention to traveling solutions, Eq. (1) can
be rewritten in the form of three real first order ordinary
differential equations [20] in a traveling frame with coordinate
ξ ≡ x − vt . To do this we write

A(x,t) = W (ξ )e−iωt , (6)

where ω is a constant, and W (ξ ) ≡ a(ξ )eiφ(ξ ). In addition, we
introduce the quantities q ≡ φ′ and κ ≡ a′

a
, where the prime

denotes differentiation with respect to ξ . This procedure yields
the real-valued equations

a′ = aκ, (7)

q ′ = −(a1 + a2)a2κ − q(v + 2κ) − ω, (8)

κ ′ = a2[(a1 − a2)q − 1] + a4 − μ + q2 − vκ − κ2. (9)

The traveling front solutions that we seek correspond to
heteroclinic orbits between fixed points (a,q,κ) = (aN,qN,0)
(the nontrivial state) and (0,qL,κL) (the trivial state). Given
arbitrary values of the parameters μ,a1,a2, these heteroclinics
may exist only for certain values of v, ω. If a heteroclinic orbit
exists only for discrete values of v and ω (for each set of
μ, a1, a2), it will be known as a “discrete front”; otherwise it
is a “k-parameter front” where k indicates the number of free
parameters.

We suppose, without loss of generality, that the front
solution approaches (aN,qN,0) as ξ → −∞ (the source
or upstream state) and (0,qL,κL) as ξ → ∞ (the sink or
downstream state). It follows that the former must be unstable
in the space variable ξ while the latter must have at least
one stable eigendirection. An upper bound on the number of
free parameters within a family of such heteroclinic solutions
is therefore determined by the dimensions of the unstable
manifold of the source fixed point and the stable manifold of
the sink [21]. If the source has n unstable eigendirections, then
the solution curve must lie in the corresponding n-dimensional
unstable manifold. This condition restricts the number of
degrees of freedom of the solution curve by 1 leaving n − 1
degrees of freedom. Adding the two free parameters v,ω,
the total number of degrees of freedom becomes n + 1. A
necessary condition for the existence of a heteroclinic between
the source and sink is that the solution curve also lies in
the stable manifold of the sink. If the sink has l unstable
eigendirections, this requirement generically requires that l

variables are fixed, thereby leaving k ≡ n − l + 1 variables
free. If k > 0, the solution curve corresponds to a k-parameter
front, if k = 0 it is a discrete front, and if k < 0 no heteroclinic
orbit exists between the two fixed points. A complete analysis
of the fixed points of Eqs. (7)–(9) and the dimensions of the
associated stable and unstable manifolds is carried out in [8].

We follow [20] in using the ansatz

q = qN + e0
(
a2 − a2

N

)
, κ = e1

(
a2 − a2

N

)
, (10)

and suppose that the resulting front travels with speed v = vN .
This front is a discrete front, i.e., k = 0, and both ω and
v are determined by the system parameters. Differentiating
the ansatz and using Eq. (7), we find that q ′ = 2e0a

2κ and
κ ′ = 2e1a

2κ . Next, we eliminate q and κ from Eqs. (8) and
(9), obtaining a pair of polynomial identities in a. In order
for these to be satisfied identically, each coefficient of the
polynomials must vanish. These conditions produce a set
of algebraic equations sufficient to determine the constants
aN,qN,e0,e1,vN ,ωN . There are generically two sets of values
of the constants that solve these equations due to a fold
bifurcation in the μ < 0 region. The explicit form of the front
can be found by recalling the definition of κ and solving the
second relation in Eq. (10) as a first order differential equation
for a:

W (ξ ) ≡ aNeiqN ξ
(

1 + e2a2
N e1ξ
)− 1

2 −i
e0
2e1

. (11)

Here, e1 > 0 since we choose fronts that decay to zero as
ξ → ∞. Figure 1 shows a sample plot of the solution (11)
with (a1,a2) = (2,3) and μ = 0. The front solution connects
the rotating wave state A = aNei(qN ξ−ωN t) as ξ → −∞ to the
trivial state A = 0 as ξ → ∞.
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FIG. 1. The nonlinear front with parameters (a1,a2) = (2,3) and
μ = 0 shown at a fixed time. (a) The real (green) and imaginary
(red) parts of the solution A(ξ,·) along with its amplitude |A| in blue.
(b) A three-dimensional representation of the solution in (a).

We now exhibit the explicit ansatz parameters for (a1,a2) �=
(0,0). For simplicity of presentation we first introduce the
auxiliary parameters

� = 16 − (3a1 − 5a2)(a1 + a2),

� = 16 − (a1 + a2)
[
4a1 − 3a3

2 − a1a
2
2 + 2

(
a2

1 − 10
)
a2
]
,

ϒ = 8 − (3a1 − 7a2)(a1 + a2),


 = 2 + a2(a1 + a2), (12)

yielding e0 = − 1
4 (a1 + a2), e1 = 1

4

√
�
3 , ωN = −qNvN , to-

gether with

a2
N± = 2(5
 − 6) ± 2ϒ

√
(2
 + μ�)/�

�
,

qN± = a1 + a2

�
[−2
 ± (6 − 
)

√
(2
 + μ�)/�],

vN± =
√

�

3


 − 6 ± √
(2
 + μ�)�

�
. (13)

One of these solutions (±) is stationary at the Maxwell-type
point μ = μM (a1,a2) ≡ − 3

�
[12]. Depending on the sign of

the quantity 
 − 6 the stationary front may be located on
either the aN+ or the aN− branch. These branches meet at
a fold at 2
 + μ� = 0. In addition, since ωN + qNvN = 0,
the source state is always stationary in the original frame.
The coefficients for the ansatz shown here may be obtained
from the more general solution derived in [17] that uses this
ansatz in a quintic Ginzburg-Landau equation with complex
coefficients.

The ansatz yields well-defined solutions even when � = 0,
despite the vanishing denominators in Eqs. (13), although there
is now only one solution rather than two (up to an overall sign):

a2
N = μϒ2 − 9(a1 + a2)2

(6 − 5
)�
,

qN = a1 + a2

4
�

[
μ(6 − 
)2 − 6


]
,

vN =
√

�

3

(μ� + 3)

2(6 − 
)
. (14)

Here, e0 and e1 are as above but all the auxiliary variables are
understood to be restricted to the curve � = 0. There is now
only one branch of fronts with positive aN and no fold in the
branch. The Maxwell point is still given by − 3

�
. This case is

not discussed in [17].
In the special case a1 = a2 = 0 we recover the result of

[16,23]. The front solution (11) then takes the form

W (ξ ) ≡ aN√
1 + e2a2

N ξ/
√

3
(15)

with

a4
N − a2

N − μ = 0, vN = 4a2
N − 3√

3
, (16)

provided μ > − 1
4 . The polynomial equation for a2

N in Eq. (16)

has two real roots. A front with a2
N = 1+√

1+4μ

2 connects a
stable constant amplitude state to the stable trivial state and
travels with speed vN = 2

√
1+4μ−1√

3
. Such a front moves in

the positive ξ direction when μ > − 3
16 and in the negative

ξ direction when − 1
4 < μ < − 3

16 . The Maxwell point is
at μM = − 3

16 . The other solution, which only exists when
− 1

4 < μ < 0, always travels in the negative ξ direction as it
connects an unstable constant amplitude state to the stable
trivial state.

In fact, the general case (13) reduces to Eq. (16) along
the whole line a1 = −a2, along which all of the constants
�,�,ϒ,
 become independent of both a1 and a2. This
reduction results because, in this case, the quantity ia1

(
ĀAx −

AĀx

)
is real. As a result the ansatz (10) becomes independent

of a1.
For strongly nonlinear front propagation problems it is

useful to develop a characterization of the intrinsic length
scale in the model. In view of the exact front solution (11),
it is natural to define this length scale, hereafter λ, as the
inverse spatial decay rate of the front envelope, i.e., λ ≡ 1

e1a
2
N

.

We show this length scale, evaluated at the Maxwell point
μ = μM (a1,a2), in Fig. 2. The figure shows that in the case of
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FIG. 2. The length scale λ ≡ (e1a
2
N )−1 at the Maxwell point μ = μM (a1,a2) for fronts on (a) the aN+ branch and (b) the aN− branch.

Regions colored dark red represent values �8. The solution that lies below the fold on the branch of front solutions has a smaller amplitude
and decay rate as compared to that above the fold.

aN+, increasing |a1| leads to front steepening, while increasing
|a2| leads to broadening. Unsurprisingly, the aN− solution has
both a smaller amplitude and a smaller spatial decay rate than
its sibling above the fold. Specifically, when a2 > 0 the aN−
front steepens for decreasing a1 and broadens for increasing
a2 throughout the bulk of the parameter regime.

B. Existence conditions for the nonlinear front

The ansatz (10) does not always generate a front solution.
For this to be the case, the coefficients in Eqs. (13) must be
real and the amplitude of the nontrivial asymptotic state must
be positive, i.e.,

� > 0, a2
N > 0, 2
 + μ� > 0. (17)

These conditions place restrictions on the allowed values
of a1, a2, and μ. We remark that � > 0 implies 
 > 0, a
result that follows from the identity � = 8
 − 3(a1 + a2)2.
Verifying these conditions requires an understanding of the
allowed values of μ, which we examine next.

The front solutions typically bifurcate from the trivial state
in a subcritical pitchfork bifurcation, leading to the coexistence
of the trivial state with the two front solutions, a = aN±. This
bifurcation is located at μ = μP ≡ 9(a1+a2)2

ϒ2 � 0 and the initial

front amplitude scales as aN ∝ |μ − μP | 1
2 unless 5
 = 6 in

which case aN ∝ |μ − μP | 1
4 and the pitchfork is degenerate.

As a consequence, when �(5
 − 6) > 0 a fold bifurcation is
present at μ = μF ≡ − 2


�
. This fold lies to the left (right)

of the pitchfork bifurcation when the pitchfork is subcritical
(supercritical) and no fronts of the assumed form are present
μ < μF (μ > μF ), with only one front present for μ > μP

(μ < μP ). Note that μP = 0 along the line a1 = −a2.
The imposition of the requirements (17) leaves distinct

generic parameter regimes within which the nonlinear front
(11) exists. These depend on the values of �, ϒ , and 
. The

first of these that we shall consider depends on the signs of �

and 5
 − 6. Most of the parameter space is covered by � > 0,
but there is a sliver near the boundary of the existence region
where � < 0 (Fig. 3). While the former case displays expected
behavior, the latter complicates the validity of the ansatz and
in many cases only one of the solutions in Eqs. (13) remains
valid. In the following analysis, we shall consider the effects
of passing through the sign change in the auxiliary variables
by increasing a1. Since 5
 > 6 whenever � > 0 there are
three possible regimes encountered as a1 increases from 0: (1)
� > 0 and 5
 > 6, (2) � < 0 and 5
 > 6, and (3) � < 0
and 5
 < 6. As a1 increases from 0, � decreases towards zero
and μF → −∞. When � = 0 there is no fold bifurcation on
the front branch: the branch of exact fronts bifurcates from the
trivial state at μ = μP and extends to μ = −∞. This behavior
persists into the region � < 0 and 5
 > 6 in which only the
aN+ solution is valid. Finally, if |a2| > 1√

5
, then a third regime

becomes accessible in which � < 0 and 5
 < 6. At 5
 = 6,
the pitchfork switches from subcritical to supercritical and
in so doing regenerates a fold at μF , now to the right of the
pitchfork. For μP � μ � μF , both solutions of Eqs. (13) are
valid.

The remaining degenerate parameter regimes involve ϒ

and 
 (Fig. 3), and have direct physical interpretation as a
result of their effect on the μ dependence of the solutions.
First, as ϒ → 0 from both above and below μP → ∞. When
ϒ = 0, � is always positive and 5
 > 6 so both solutions in
Eqs. (13) are valid but have the same μ-independent amplitude
a2

N = 2(5
−6)
�

. A similar phenomenon occurs in the case 
 = 6
when the deposited wave number qN becomes independent of
μ and takes the same value for both solutions in Eqs. (13).
That is, the nonlinear front leaves the same patterned state in
its wake regardless of the forcing μ. Because μ represents the
bifurcation parameter that pushes the system into the pattern-
forming regime, a dependence of aN and qN on μ is to be
expected. The fact that this expectation fails in these subcases
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FIG. 3. The existence regions for aN± when (a) μ = −0.1, (b) μ = 0, (c) μ = 0.1. The dark gray indicates existence of both solutions,
light gray indicates existence of only aN+, black indicates existence of only aN−, while white implies nonexistence of both solutions. The lines
� = 0 (red), 
 = 6 (blue), 5
 = 6 (magenta), ϒ = 0 (green), and � = 0 (orange) are shown restricted to the region � > 0, required for the

validity of the ansatz (10). The dots indicate the locations (a1,a2) = (±3,±1),
(
±√

5,∓ 1√
5

)
on the curve � = 0.

is indicative of a nontrivial front selection mechanism and a
nongeneric balance among the cubic nonlinear terms of Eq. (1).
These effects are new and cannot be seen in the well-studied
case a1 = a2 = 0.

Bifurcation diagrams for the amplitude of the front solu-
tions for sample parameters are shown in Figs. 4 and 5 in which
we plot ‖W‖∞ = aN versus the parameter μ. First, Fig. 4(a)
demonstrates the generic behavior of the nonlinear fronts for
a2 = 0, while Figs. 4(b) and 4(c) show nongeneric behavior
that arises when the remaining key coefficients ϒ and � pass

through zero. Since ϒ = 0 at a1 =
√

8
3 while � = 0 at a1 = 2,

we separate Fig. 4 into three diagrams around a1 = 0,

√
8
3 ,

and 2. In the bulk of the parameter space, the generic case
with a1, a2 �= 0 shares the same qualitative characteristics as
the cases in Fig. 4 with the corresponding signs of �, ϒ ,
and 
. Second, Fig. 5 focuses on the regime 5
 − 6 ≈ 0,
only realizable for |a2| > 1√

5
. Here, the pitchfork bifurcation

responsible for the branch of fronts switches from subcritical
to supercritical (at 5
 = 6). The resulting solution branch
moves towards the left with decreasing a1 until
the ansatz fails at a1 = − 7

3 ≈ −2.33 where
� = 0.

C. Stability of exact front solutions

We analyze the linear stability of a front by linearizing
Eq. (1) about such a front, i.e., writing A = W (ξ )e−iωt [1 +
δ(ξ,t)], |δ| � 1. This yields

δt = δξξ + Uδξ + ia2

∣∣W ∣∣2δ̄ξ + V
(
δ + δ̄

)
, (18)

where

U (ξ ) ≡ v + 2W−1Wξ + ia1|W |2,
V (ξ ) ≡ |W |2 − 2|W |4 + i

(
a1W̄Wξ + a2WW̄ξ

)
. (19)

The quantities U (ξ ) ≡ Ur + iUi and V (ξ ) ≡ Vr + iVi may be
computed from the identities

|W |2 = a2
N

1 + e2a2
N e1ξ

,

W−1Wξ = iqN + (e1 + ie0)
(|W |2 − a2

N

)
. (20)

We search for temporal eigensolutions of the form δ(ξ,t) =
eσ t (δ1 + δ2) + eσ̄ t (δ̄1 − δ̄2), where δ1 and δ2 are functions of
ξ alone, leading to the eigenvalue problem

σ

(
δ1

δ2

)
=
(

∂ξξ + Ur∂ξ + 2Vr i
(
Ui − a2|W |2)∂ξ

i
(
Ui + a2|W |2)∂ξ + 2Vi ∂ξξ + Ur∂ξ

)(
δ1

δ2

)
≡ L

(
δ1

δ2

)
. (21)

The spectrum of the operator L consists of a point
spectrum σp and the essential spectrum σc. However, this
operator is non-normal: it does not commute with its adjoint.
Non-normal operators do not obey the spectral theorem,
may not have orthogonal eigenfunctions, and can have a
point spectrum with high sensitivity to perturbations [24,25].
Such operators arise, for example, in the study of spatially
varying fluid flows [25,26]. Conclusions about stability from
point spectra of non-normal operators are complicated by the

possibility of transient growth and we opt in this work to
treat only the essential spectrum of L, which can be computed
analytically.

The essential spectrum for a front solution consists of the
union of the essential spectra of the ξ → ±∞ states. The
trivial state (at ξ → ∞) is only stable when μ is negative. In
the notation of [13], infinitesimal perturbations of the periodic
state present at ξ → −∞ have the growth rate

σ (q) = ivq − (g + q2
)±

√
g2 + q2(2g − f ), (22)

032208-5



PONEDEL, KAO, AND KNOBLOCH PHYSICAL REVIEW E 96, 032208 (2017)

FIG. 4. The front amplitudes aN+ (blue) and aN− (red) for (a) ϒ > 0, � > 0, (b) several values of ϒ ≈ 0 while � > 0, and (c) for several

values of � ≈ 0 while ϒ < 0. The parameter values in each of these plots are a2 = 0 and (a) a1 = (0,0.7,1), (b) a1 =
(

1.6,

√
8
3 ,1.65

)
, and

(c) a1 = (1.92,2,2.1) as indicated in the panels. The special cases ϒ = 0 and � = 0 are shown in black.

where q is the perturbation wave number and

g ≡ 2
(
μ − q2

N

)+ [1 + qN (a2 − a1)]a2
N, (23)

f ≡ (
4 + a2

2 − a2
1

)
a4

N − 2[1 + qN (a2 + a1)]a2
N − 4q2

N .

(24)

We call a solution linearly stable if its spectrum is contained
in the left half of the complex plane. In [13] it was shown
that this rotating wave state is stable if and only if f and
g are both non-negative. Thus, the essential spectrum of the
front is stable provided f,g � 0 and μ < 0. It was further
shown in [13] that there are two distinct regimes by which
the rotating wave can go unstable: (I) f < 0 and f � g

or (II) g < 0 and f > g. The first is characterized by a
marginal wave vector with nonzero real part and the latter
by one with zero real part. Although a complete analysis of
the point spectrum is not included here, we can calculate
the eigenfunctions of the zero eigenvalue analytically. This
eigenvalue has double multiplicity: translation symmetry gives
rise to a zero eigenvalue “Goldstone mode” [27] δ(ξ,t) =

W−1Wξ while rotation symmetry generates the zero eigenvalue
phase mode δ(ξ,t) = i.

Although the rotating wave states of Eq. (1) form a
one-parameter family of states (for fixed system parameters)
[12,13], the front solution computed here selects one particular
rotating wave in the asymptotic limit ξ → −∞. This reduction
enables us to plot the stability in the (a1,a2) plane for fixed μ.
In Figs. 6 and 7 we exclude the spectrum of A = 0 and plot the
stability of the rotating wave selected by the nonlinear front
ansatz in the two qualitatively distinct regimes μ ≶ 0. For
μ < 0, the aN+ branch is stable in a region of parameter space
surrounding the line a1 = −a2, while the aN− branch is rarely
stable. For μ > 0, the aN+ branch is stable in a significantly
larger parameter region while the aN− branch remains mostly
unstable. Despite the large regions of instability revealed in
the figure, the dynamical significance of an unstable rotating
wave in the wake of the front solution is more subtle. Because
we are concerned with the asymptotic dynamics of the front as
t → ∞, instabilities behind it are only relevant provided that
they propagate to the right with a speed not less than that of
the front, i.e., to have an effect the instability must be absolute

FIG. 5. The front amplitudes aN+ (blue) and aN− (red) as functions of μ for a2 = 1 and a1 = −2.3,−1.9,−1.85,− 9
5 ; the latter branch,

corresponding to 5
 = 6, is shown in black.
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FIG. 6. Stability of the rotating wave selected in the wake of an aN+ front (a) and an aN− front (b) in the (a1,a2) plane at μ = −0.1. Stable
regimes are indicated in dark gray, unstable regimes in light gray, and regions with no front solutions in white. The lines � = 0 (red) and the
lines 
 = 6 (blue) and � = 0 (orange) in the region � � 0 are also shown.

in the frame of the leading edge. The propagation speeds of
these instabilities and their effect on the front are computed
and analyzed in Sec. V B below.

The stability of the deposited rotating wave is particularly
relevant at the Maxwell point μ = − 3

�
at which the front

is stationary. This front is associated with the branch aN+
when 
 − 6 < 0 and aN− when 
 − 6 > 0. We show the
stability of the rotating wave selected by the stationary front
in Fig. 8. It is easy to see from the figure that the region of
stability is contained in the intersection of �(a1,a2) > 0 and

(a1,a2) < 6, so the rotating wave selected at the Maxwell
point is only stable for fronts on the aN+ branch. The instability
of the aN− fronts is always of type II and has been confirmed
using direct numerical simulation. The stability at μ = μM of

the other branch of the ansatz for which vN �= 0 can also be
studied. The rotating wave selected by this branch is always
unstable. When 
 − 6 < 0, the instability can be either of type
I or II depending on parameters, but for 
 − 6 > 0 it is always
of type II.

III. FRONT DYNAMICS

We now turn to the following question: “At what speed
does a front between the patterned state and the trivial state
propagate?”, a phenomenon known as “spreading.” It turns
out that in many cases, physically relevant initial conditions
evolve into a front whose profile and “spreading” speed as
t → ∞ depend only on the system parameters and not on the

FIG. 7. Stability of the rotating wave selected in the wake of an aN+ front (a) and an aN− front (b) in the (a1,a2) plane at μ = 0.1. Stable
regimes are indicated in dark gray, unstable regimes in light gray, and regions with no front solutions in white. The lines � = 0 (red), 
 = 6
(blue), and � = 0 (orange) in the region � � 0 are also shown.
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FIG. 8. Stability of the rotating wave selected in the wake of the
stationary front at the Maxwell point μ = − 3

�
in the (a1,a2) plane.

The relevant solution branch is determined by the sign of the quantity

 − 6. Stable regimes are indicated in dark gray, unstable regimes
in light gray, and regions with no front solutions in white. The lines
� = 0 (red), 
 = 6 (blue), and � = 0 (orange) in the region � � 0
are also shown.

initial data. Indeed, in many systems these asymptotic front
speeds are unique for a large class of sufficiently localized
initial conditions [28,29].

Front propagation into a trivial state may arise in one of
two qualitatively different ways. When μ < 0 and the primary
pattern-forming instability is subcritical, as assumed here, the
system exhibits bistability between a stable trivial state and
a stable nontrivial state, implying that the heteroclinic orbit
between them corresponds to a front propagating into a stable
state. This type of front is known as a “pushed” front. In
systems with gradient structure (here a2 = 0), the speed of
such fronts is determined by the energy difference between
the two stable states connected by the front. Propagation
favors the state with lowest energy and the front velocity
vanishes when the energy difference vanishes, i.e., at the
Maxwell point. More generally (a2 �= 0), a stationary front
of the ansatz (10) corresponds to a Maxwell-type point
and the front speed v in the vicinity of this point satisfies
v ≈ vM ≡ 3(μ−μM )

2(−μM )
3
2

[4 − a2(a1 + a2)]−1 [13]. In contrast to this

picture, when μ > 0 the trivial state is unstable and the speed
of the resulting “pulled” front is frequently (but not always)
determined by the properties of the linearization of Eq. (1)
about A = 0. This change in the speed selection mechanism
is a consequence of the growth of infinitesimal perturbations
of the A = 0 state ahead of the front [18].

Problems of front propagation into unstable states have been
known in the plasma physics community since the 1950s [30],
but the term “marginal stability” was not proposed until 1983
by Dee and Langer [18]. The marginal stability conjecture is

based on the idea that the front propagating into an unstable
state that is selected at large times is marginally stable in the
comoving frame. In practical terms, this means that in the co-
moving frame of the selected front instabilities of the unstable
state ahead of the front are neither advected to ξ = −∞ behind
the front nor grow into a faster front. This description is closely
related to the notions of convective and absolute instability in
systems with imposed flow. A system is said to be convectively
unstable if sufficiently spatially localized perturbations grow
but do not spread upstream rapidly enough to overcome the
imposed flow. It is called absolutely unstable if the perturbation
can spread upstream against the flow. In the former case, the
perturbation at any fixed position ultimately decays, while in
the latter case instability is ultimately observed at all locations
in the domain. The marginal stability condition corresponds to
the transition between convective and absolute instabilities in
the comoving frame.

When the state A = 0 ahead of the front is unstable, growth
of small amplitude perturbations ahead of the leading edge is
governed by the linearization of the partial differential equation
(1) around A = 0. We assume that the front speed is deter-
mined by the growth of these perturbations as described by
the marginal stability conjecture. According to this conjecture,
the spreading speed can be computed from the linear evolution
equation At = LA via the dispersion relation for linear waves
of the form A = A0e

σ (q)t+iqx , where q = qr + iqi . Consider
a compactly supported initial perturbation of the system and
express the solution in terms of its Fourier decomposition
A(x,t) = ∫R Â(q)eσ (q)t+iqxdq. By shifting into the frame of
the right edge of this perturbation and applying a saddle-point
analysis in the limit t → ∞, one finds that the group speed
must vanish. Moreover, the perturbation must be neutrally
stable in this frame. These requirements are summarized by
the conditions [4]

Re[σ ′(q)]=0, −Im[σ ′(q)] = Re[σ (q)]

Im[q]
= v∗, Im[q] > 0

(25)

from which one may compute the complex-valued wave
number q∗ and the linear spreading speed v∗ = Re[σ (q∗)]

Im[q∗]
that characterize the leading edge of the front [19]. The
reader is referred to [4] for a comprehensive review of the
derivation of this criterion and its applications. Although this
criterion relies on linearity, it provides accurate predictions
for many nonlinear front propagation problems when the front
propagates into an unstable state. The criterion is also known
to apply to systems that do not admit uniformly traveling
profiles, such as the supercritical Swift-Hohenberg equation
[21]. These ideas have been employed extensively in the
context of fluids [31–33], plasmas [30,34], and biological
systems [35]. In contrast, the speed of propagation into a stable
state is determined by a nonlinear mechanism and bears no
relation to the stability of the state ahead of the front.

In the next two sections, we apply these ideas to front
propagation in Eq. (1). To validate theoretical predictions, we
study the evolution of either a localized pulse in the stationary
frame or a half-pulse in the moving frame. Specifically, we
take two types of initial half-pulses (reflecting in x to get a
localized pulse): A(ξ ) = �(−ξ − �) (Heaviside), where �(ξ )
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FIG. 9. The velocity vN± of the exact front solution is shown in blue and red, respectively. The parameters (a1,a2) are indicated next to each
curve and dashed lines represent instability of the essential spectrum. The line v = 0, shown as a black dotted line, is included for reference.

is the Heaviside function and � is a constant, and A(ξ ) =
γ1(ξ )eiγ2(ξ )�(−ξ − �) (random Heaviside), where γ1,γ2 are
chosen randomly from uniform distributions on (0.7,2) and
(0,2π ), respectively. The latter initial condition is constructed
so that it does not select any wave number or amplitude
preferentially but still has sufficient amplitude not to decay.
Details about the numerical schemes that are used can be found
in Appendix C.

IV. FRONT PROPAGATION INTO A STABLE STATE

We turn first to the regime in which the asymptotic state
A = 0 ahead of the front is stable (μ < 0). We are concerned
with the time evolution of localized initial conditions. Since
the state A = 0 is stable in this regime, the initial condition
must be of sufficient amplitude so as to avoid immediate decay
back to A = 0. When the pitchfork bifurcation to the branch
of front states is subcritical and μ < μF , all initial conditions
collapse towards A = 0. When μF < μ < 0, initial conditions
of sufficiently large amplitude typically evolve in their bulk
towards one of the stable rotating wave states of Eq. (1)
generating a pair of fronts connecting the interior rotating
wave at either end to A = 0. After an initial transient, the fronts

travel at a constant speed and in opposite directions. When the
pitchfork bifurcation is supercritical, the fold always occurs
at μ > 0 and the dynamical picture depends more strongly on
the parameters. We address specific cases capturing the distinct
behaviors that result next.

We find empirically that the selected speed from Heaviside
but not random Heaviside initial conditions is correctly
predicted by Eqs. (13) in many cases, provided that the
corresponding solution is stable and the system is known
to be well posed. In Fig. 9 we plot the speed of the two
possible fronts, vN±, as a function of the parameter μ in the
subcritical regime for a series of values of the coefficients
(a1,a2). Figure 9(a) shows the classical case a1 = a2 = 0 and
similar behavior is obtained when one of a1 or a2 is increased
to 1. For these parameters, Heaviside initial conditions evolve
on a fast time scale towards the rotating wave corresponding
to the stable branch indicated in a continuous blue line and
then a pair of fronts propagate outwards at speed vN+ > 0
expanding the structure, or inwards if vN+ < 0 contracting
the structure. Random Heaviside initial conditions in contrast
typically do not approach a fully developed front and instead
decay. The red (dashed) part of the velocity curves below the
fold corresponds to vN− and these fronts are unstable since
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they connect to an unstable rotating wave. These findings
extend previous results for (a1,a2) = (0,0).

In Fig. 9(b) we show that the rotating wave selected by
Eqs. (13) need not be stable. For μ < 0, the curve with
parameter values (a1,a2) = ( 9

2 ,4
)

is always unstable while
the (a1,a2) = (0,4) solution restabilizes at a finite negative
value of μ. In the former case, the initial value problem is
well posed and initial conditions appear to decay to A = 0.
For the (0,4) solution it is not known whether the initial
value problem is well posed, but when the wave selected by
Eqs. (13) is stable we observe that Heaviside initial conditions
converge to a steady front solution with velocity vN+ and
random Heaviside initial conditions do not. Also shown in this
plot is the case (a1,a2) = (0,2) in which the Maxwell point
is located at the fold on the branch of fronts of Eqs. (13).
Time-stepping simulations suggest that solutions initiated at
the Maxwell point on this branch are not stable and decay to
A = 0. Moreover, since the Maxwell point coincides with the
fold, there is no parameter region in which fronts can contract;
amplitude decay occurs when μ < μF and expansion when
μ > μF .

We next turn to some of the cases in which � < 0 and only
one branch of the front solution exists, persisting for all μ < 0.
This branch may be either stable or unstable. In Fig. 9(c), this
is the + branch of the ansatz and it is stable below some
finite μ < 0. For (a1,a2) = (−2,1) and when the predicted
velocity vN+ > 0, we find convergence to the ansatz solution
from both Heaviside and random Heaviside initial conditions.
When (a1,a2) = (2.2,0) and the solution is unstable, both types
of initial conditions converged to a solution with wave number
and speed near but not equal to the ansatz prediction. In
contrast, when the front is predicted to be stable and vN+ > 0,
we do not observe convergence to this solution unless initial
conditions of the form A(ξ ) = eiqN ξ�(−ξ − �) are adopted. In
both cases, when vN+ < 0 neither Heaviside nor random Heav-
iside initial conditions evolve towards a steady front. We are
able to realize a front moving at speed vN+ < 0 only with the
initial condition A(ξ ) = eiqN ξ�(−ξ − �). In Fig. 9(d) a similar
bifurcation structure is present but all initial conditions adopted
immediately collapsed to A = 0. This behavior supports the
conjecture of [21] that whenever vN < 0, the selection process
is more complex and depends strongly on initial conditions.
Furthermore, the behavior in the (a1,a2) = (2.2,0) case for
which a stable front with a positive velocity is predicted
suggests that the system may select a different front solution
even when the predicted front is stable. Moreover, the fronts
in Figs. 9(c) and 9(d) persist as μ → −∞, while the fronts
computed in [12] do not. This is because each is computed for a
fixed wave number, whereas the exact front computed here has
a wave number that is μ dependent. In this case, all sufficiently
large amplitude initial data with wave number near qN result
in dynamics associated with the + branch of the exact front
solution.

V. FRONT PROPAGATION INTO AN UNSTABLE STATE:
SPREADING AND MARGINAL STABILITY

When μ > 0, the state A = 0 ahead of the front is unstable.
In the case of Eq. (1), the spreading speed is easy to calculate
but its interpretation is complicated by the nonlinear terms.

An application of Eq. (25) to Eq. (1) linearized about the state
A = 0 leads to the prediction

v∗ = 2
√

μ, q∗ = i
√

μ, σ ∗ = 2μ. (26)

This result implies that the leading edge of a pulled front takes
the form e2μt−√

μx but does not predict the nonlinear state that is
left in its wake. The simplest possibility is that the front moves
at a constant speed in which case A ≡ A(x − v∗t). A necessary
condition for this to be the case is that the traveling wave
A = R eiq(x−v∗t)+iIm(σ ∗)t solves the full nonlinear problem for
some amplitude R but trails the leading edge of the front
[21]. This is distinct from the “node-counting” argument
of [18], which is automatically satisfied for fronts that are
uniformly propagating. In the present case Re(q) = 0 and
R2 = 1

2 (1 + √
4μ + 1), so this front moving with speed v∗

would deposit a zero wave number. This front is excluded,
however, whenever a1,a2 �= 0: at the location of the front inter-
face ia1|A|2Ax,ia2A

2Āx �= 0 and Eq. (1) cannot have a purely
real solution. In the following, we show that dynamics at the
leading edge of the front nonetheless results in the deposition
of a state with zero wave number in the wake of a pulled
front.

A. Pulled versus pushed: Nonlinear selection

In certain cases, the selected asymptotic velocity for
fronts propagating into unstable states cannot be predicted
by the marginal stability criterion and a nonlinear mechanism
produces velocities that differ from the linear prediction. This
phenomenon, known as “nonlinear selection,” was first pointed
out in the work of [36]. Nonlinear selection is extensively
reviewed in [16] where Eq. (1) is proposed as the most
general model for the dynamics near a subcritical steady-state
bifurcation. In [16] nonlinear selection is defined as follows: if
there exists a front solution with velocity v† and spatial decay
rate κ† that satisfy

v† > v∗, κ† > κ∗, (27)

then this front is established as t → ∞ from localized initial
conditions. That is, only under these conditions is a “pulled
front” moving at speed v∗ not selected and a “pushed front”
moving at speed v† is selected instead. In [21] van Saarloos
and Hohenberg conjecture that for a specific class of Ginzburg-
Landau equations including (1) the pushed front is precisely
that corresponding to Eq. (10) such that v† = vN and κ† = κN .
This conjecture also requires that the initial conditions have a
spatial decay rate not less than max (κ†,κ∗). These criteria
for nonlinear selection are lent mathematical credence by
the work of [37]. Specific cases of nonlinear selection are
studied rigorously in [29] and lower bounds on front speeds
quantifying violations of linear speed selection are derived in
[38,39] among others. Although a general result characterizing
the speed v† is not known, the wide applicability of the
linear criterion determining v∗ makes it relatively easy to test
the hypothesis in (27) numerically. Here, vN and κN have
been computed exactly and we analyze all possible selection
regimes analytically in Appendix B.

Figure 10 shows standard behavior of the front speeds
predicted from Eq. (27). The case (a1,a2) = (0,0) is well
studied [19,23] and is shown in Fig. 10(a). Here, the transition
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FIG. 10. Front speed vN (blue) relative to the linear spreading speed v∗ (red) for parameters (a1,a2): (a) (0,0), (b)
(− 8

5 , 1
2

)
, (c)

(√
8
3 ,0
)

.

The selected (not selected) speed is indicated by a solid (dashed) line according to Eq. (27). The black dots represent speeds calculated
by time-stepping Heaviside initial conditions with FD in the stationary frame and tracking the motion of the front. The space and time
discretizations are �x = 0.05 and �t = (�x)2; further details are contained in Appendix C. The deterministic corrections as a result of the
FD approximation (computed in Appendix C) are shown using error bars on the data points.

from pushed to pulled as determined by (27) occurs at
μ = 3

4 . Although vN � v∗ for all μ > 0, the linear decay rate
surpasses κN at μ = 3

4 and remains above it as μ → ∞. This
behavior is typical and validates the intuitive prediction that at
high enough forcing all fronts will be pulled. The data points
shown in the figure are computed with a finite difference (FD)
code and are plotted with an error bar indicating an associated
deterministic correction to the speed. Details of this correction
and its interpretation can be found in Appendix C. As shown in
Figs. 10(b) and 10(c), vN and κN depend strongly on a1,a2 and
vN need not supersede v∗ at large μ. We mention that despite
the continuity in the speed at the pushed-pulled transition, the
selected wave number of the deposited state in the wake of the
front is generally discontinuous. This “structural instability”
has been observed previously in the cubic-quintic complex
Ginzburg-Landau equation [21] and appears here generically
with the inclusion of either a1 or a2.

Figure 11 shows some nonstandard predictions of Eq. (27)
when a2 �= 0. In Fig. 11(a) the nonlinear front possesses a
speed and decay rate that always exceed the linear one. This
serves as a counterexample to the suggestion [21] that the
linear front will always be selected at sufficiently large μ.
In this particular case, the decay rate of the selected front is
quite small when μ ≈ 0. Consequently, a very large domain
is needed to measure the front speed accurately, significantly
larger than our standard domain length L = 300. The best
results were obtained for Gaussian initial conditions and a
spectral method with a domain size L(μ) determined by the
decay rate λ(μ), here L = 400λ(μ) so that L(0) ≈ 1100. In
Fig. 11(b) the nonlinear front has a negative velocity for all μ >

0 where it exists. In this case, Eq. (27) does not apply and the
asymptotically selected front depends more strongly on initial
conditions. We have found that initial conditions in the form
of a sharply peaked Gaussian pulse undergo blowup in finite

FIG. 11. Front speed vN (blue) relative to the linear spreading speed v∗ (red) for parameters (a1,a2,±), where the symbol ± specifies
the front: (a) (−15,16,+), (b) (4,1.86,−), (c) (−2,1,+). The selected (not selected) speed is indicated by a solid (dashed) line according to
Eq. (27). The black squares represent speeds calculated in a domain of length L = 400λ by time-stepping Gaussian initial conditions in the
stationary frame using a spectral method with parameters �t = 0.01, Nx = 4096, and ε = 10−8 (Appendix C). The black dots represent speeds
calculated by time-stepping Heaviside initial conditions in the stationary frame using a finite difference code with space and time discretizations
�x = 0.05, �t = (�x)2, and tracking the motion of the front (Appendix C). The deterministic corrections as a result of the FD approximation
(computed in Appendix C) are shown using error bars on the data points.
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time, while Heaviside initial conditions decay immediately
to A = 0. We conjecture that in this parameter regime the
Cauchy problem is not well posed. In Fig. 11(c) the nonlinear
front ansatz fails at some finite μ > 0. When μ is larger than
this value, it is not clear whether the nonlinear terms in the
equation saturate for all initial conditions or not. Whereas
the case in Fig. 11(b) suffers from blowup we have found
that fronts initiated beyond the μ value where the ansatz fails
are well behaved. After an initial transient, Heaviside initial
conditions evolve with a leading edge moving at the pulled
front speed and deposit a rotating wave with a finite wave
number in their wake.

B. Benjamin-Feir instability and secondary fronts

Further complicating the selection problem is the fact that
the dynamically realized front may suffer from secondary
instabilities. The deposited rotating wave in the wake of the
front can undergo two types of instabilities [13] that may
interfere with the propagation of the front. One such possibility
is a Benjamin-Feir (BF) instability that generates a state of
nonzero wave number. If this instability propagates with a large
enough velocity that it overtakes the leading edge of the front,
phase slips and spatiotemporal chaos can occur [2,18,21,40].

If the deposited state is unstable to the BF instability,
then a secondary front inside the deposited state can result.
This front is a pulled Kuramoto-Shivashinsky front [4]. In
this case, there are two regimes corresponding to whether
or not the secondary front speed vBF is less or greater than
the primary one v. If vBF < v, then the deposited pattern
behind the primary front grows in size at a rate v − vBF and
the instability is advected away from the leading edge. This
leads to a double-front structure in the profile of the solution
in which the distance between the primary and secondary
fronts grows with time [3]. In the second case, vBF > v,
the instability catches up with the leading edge producing a
front whose asymptotic character depends on the existence of
stable rotating waves. If the primary front is pushed and the
secondary instability deposits a stable rotating wave then a
different pushed front results. If the primary front is pulled and
the secondary instability deposits a stable rotating wave, then
phase slips at the leading edge must take place in order that
the rotating wave be deposited in the wake of the front. If no
stable rotating waves exist, then the pulled front may become
incoherent [21]. We have searched a variety of regimes in
which all rotating waves are unstable but have not observed
incoherent pulled fronts. On the other hand, incoherent front
dynamics can occur for pushed fronts provided the deposited
state with wave number qN is unstable. In the following, we
elaborate on these notions for both pulled and pushed fronts.

Pulled fronts suffer from secondary instability to phase-
winding states with nonzero wave number. The dispersion
relation for disturbances to a generic rotating wave state in the
stationary frame is provided by Eq. (22) with v = 0 and the
instabilities only occur when one or both of f, g is nonpositive
[12,13]. As shown at the beginning of Sec. V, the leading
edge of pulled fronts coincides with that of the front that
deposits a state of constant amplitude R and zero wave number.
Although these fronts cannot be the true pulled fronts for
generic values of a1 and a2, our observation is that pulled fronts

FIG. 12. Speeds v∗ (red), vN (green), and vBF (blue) for pulled
fronts as a function of the variable h defined in Appendix A 3
for (a1,a2) = ( 5

2 ,1
)
. Increasing h corresponds to increasing μ. The

parameters corresponding to μ = 0,∞ are indicated with dotted lines
and the region in which pulled fronts are selected and vBF > v∗ is
delimited by blue shading. The transition from pushed to BF-unstable
pulled fronts, and subsequently from BF-unstable to BF-stable pulled
fronts is marked by black dots.

nonetheless deposit a rotating wave with approximately zero
wave number in their wake and the necessary phase gradient θx

(where A = Reiθ ) takes the form of a strongly localized pulse
at the leading edge. Consequently, the prediction of vBF for
the zero wave number rotating wave is a good estimate for the
speed of pulled fronts undergoing this secondary instability.

The zero wave number rotating wave has
f = (4 + a2

2 − a2
1

)
R4 − 2R2, g = 2μ + R2, where R2 =

1
2

(
1 + √

4μ + 1
)
. When μ > 0 one can show that g > 0

always but f > 0 only if a2
1 − a2

2 < 2. The state suffers
from instability when a2

1 − a2
2 � 4 for any positive μ, and

when 4 > a2
1 − a2

2 > 2 for 0 � μ <
2
(
a2

1−a2
2−2
)(

4−a2
1+a2

2

)2 . Applying

the marginal stability criterion to the dispersion relation for
the secondary instabilities produces a prediction for the front
speed, wave number, and frequency of the secondary front.
This calculation is shown explicitly at the end of Appendix A.
We discuss an application next.

As an example, we consider the case (a1,a2) = ( 5
2 ,1
)

and
plot the speeds v∗, vN , and vBF in Fig. 12. In this figure we
plot speeds as a function of a variable h which is an order-
preserving one to one reparametrization of μ and depends on a1

and a2. The choice of h(μ) arises naturally in the calculation of
vBF and is defined in Appendix A. In this plot, the BF velocity
corresponds to instabilities of the zero wave number rotating
wave and not the rotating wave left in the wake of the nonlinear
front. The rotating wave for the nonlinear front ansatz is stable
for μ � 5, throughout the pulled-pushed crossover. After the
transition occurs from pushed to pulled at μ ≈ 0.072 (left
black dot), vBF > v∗ and the pulled front is unstable. This
is shown in Fig. 13 for μ = 0.4 (for clarity, larger than the
threshold) and the prediction of the leading edge motion based
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FIG. 13. Space-time plot of the evolution of (a) |A(x,t)| and (b) Re[A(x,t)] from Heaviside initial conditions in the stationary frame for
(a1,a2) = ( 5

2 ,1
)

and μ = 0.4 computed using FD. The calculation is done on a domain [−100,100] with Dirichlet boundary conditions on both
Re(A) and Im(A) and only half of the simulation window is shown. The space and time discretizations are �x = 0.2 and �t = 0.0025. In this
regime after an initial transient the front is pulled, traveling at speed v∗ to a good approximation. An offset line representing propagation at
speed v∗ is shown in red.

on the speed v∗ is shown in red. After a transient, the front
propagates at the linear spreading speed but deposits a nonzero
wave number approximately equal to qN . This is enabled by
phase slips at the leading edge. By μ ≈ 0.55 (right black dot),
the pulled front restabilizes as its speed exceeds that of the
BF instability for the zero wave number rotating wave. This
phenomenon is pictured in Fig. 14 (μ = 1) in which the speeds
v∗ and vBF are shown in red and blue, respectively. The primary
front deposits a state with near-zero wave number followed by
a secondary front that generates a larger amplitude asymptotic
state with a different wave number in its wake, but still close
to qN . The separation of the primary and secondary fronts
hearkens to the double front structure observed in [3].

Figures 13 and 14 also reveal two features at the leading
edge that we cannot predict theoretically. First is the periodic
nucleation of amplitude holes or “grooves” whose profile is
shown in Fig. 15. These holes increase and then decrease in

depth as time passes, eventually merging with the otherwise
homogeneous amplitude state left in the wake of the front. In
the case of Fig. 13, the time scale on which the holes anneal is
much longer than the time scale for the front propagation and
the holes therefore grow in number as the front propagates.
In the case of Fig. 14 the holes vanish on a comparable time
scale to the primary front and thus only one is present at any
given time. This phenomenon can also be seen in Figs. 16
and 17 at the secondary front interface and has been verified
using both FD and Fourier discretizations. This feature has
also been observed in [3] in a nonvariational case, although
there the holes, once nucleated, do not disappear. The second
feature visible in both figures is the presence of phase slips.
These occur at the leading edge of the front in Fig. 13 and at the
edge of the secondary front (which we suspect is also pulled)
in Fig. 14. These phase slips occur at the spatial location of the
holes and at the time when the holes reach their greatest depth.

FIG. 14. Space-time plot of the evolution of (a) |A(x,t)| and (b) Re[A(x,t)] from Heaviside initial conditions in the stationary frame for
(a1,a2) = ( 5

2 ,1
)

and μ = 1 computed using FD. The calculation is done on a domain [−100,100] with Dirichlet boundary conditions on both
Re(A) and Im(A) and only half of the simulation window is shown. The space and time discretizations are �x = 0.1 and �t = 0.005. In this
regime after an initial transient the front is pulled, traveling at speed v∗ and a secondary front separates from the leading edge traveling at a
speed vBF. Offset lines representing propagation at speeds v∗ (red) and vBF (blue) are also pictured.
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FIG. 15. Solution A(x,t = 35) computed from Heaviside initial
conditions in the stationary frame using FD for (a1,a2) = ( 5

2 ,1
)

and
μ = 1, showing Re(A) (green), Im(A) (red), and |A| (blue) on half of
the computation domain. The discretization parameters are �x = 0.1
and �t = 0.005.

These locations correspond to the darkest points along the hole
trajectory in a space-time plot of |A(x,t)|. The phase slips are
not a surprise since the leading edge dynamics for pulled fronts
is set by the linearization about the unstable state, and these
may not generate in their wake a stable solution to the nonlinear
problem. The eventual wave number that is deposited by the
passage of the front is near qN throughout the domain but
modulated on a much larger length scale.

Turning now to pushed fronts, we compute the velocity of
propagation for the BF instability around an arbitrary phase-
winding state deposited in the wake of the front in Eq. (10).
Although this analysis was carried out in [13], we generalize

it and show that there are additional solutions to the marginal
stability equations for type I instabilities that have not been
previously reported. The details of this calculation are included
in Appendix A. There are two broad instability regimes for
pushed fronts depending on whether the far-field marginal
wave number has a nonzero (type I) or zero (type II) real part.

We first discuss the case of instability to perturbations
with a wave number of finite real part at onset, type I. This
case includes the parameter values (a1,a2) = ( 5

2 ,1
)

of the
previous discussion but not near μ = 0 where a pushed front is
predicted. In order to find finite wave number instability near
μ = 0 we must choose parameters in the region � < 0 and so
select (a1,a2) = (−2, 1

2

)
. The corresponding far-field rotating

wave is unstable for μ ∈ (−0.1888,0.5184]. An evolution plot
for Heaviside initial data at μ = 0 is shown in Fig. 16 in a frame
moving at speed vN . The initial data are immediately unstable
to a traveling wave which is advected leftwards relative to the
primary front moving at speed vN to the right. Simultaneously,
the leading edge of the front generates a distinct rotating wave
with a wave number exactly equal to qN as can be seen from
Fig. 17 in which we plot the amplitude Ã(ξ,t) that omits the
wave number of the primary rotating wave (Appendix C).
The resulting secondary front between these two rotating
waves is slower than the primary one, indicating that the
secondary front instability is convective in the frame moving
at speed vN and so separates from the leading edge. Our
prediction for the secondary front speed vBF can be checked
by transitioning to a frame moving at that speed as shown in
Fig. 17. Because the rotating wave in the wake of the primary
front has not been restored in this plot, the secondary front
can be clearly distinguished. After a transient, the secondary
front is stationary in this frame and generates a rotating wave
behind the primary one with a different wave number.

The case of instability with respect to perturbations with
asymptotically zero wave number (type II) is realized when
(a1,a2) = ( 9

2 ,5
)
. The corresponding far-field rotating wave

exhibits instability for μ ∈ [−0.0283,0.1087). When μ < 0,
Heaviside initial data decay to A = 0 but for μ > 0 a front
subsists. A space-time plot is shown in Fig. 18. Initially, a
rotating wave born at the front interface invades the initial

FIG. 16. Space-time plot of the evolution of (a) |A(ξ,t)| and (b) Re[A(ξ,t)] from Heaviside initial conditions in the moving frame for
(a1,a2) = (−2, 5

2

)
and μ = 0. The speed of the moving frame is vN and the front is pushed. In this simulation, we use time step �t = 0.01,

number of Fourier modes Nx = 6144, and cutoff ε = 10−10.
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FIG. 17. Space-time plot of the evolution of (a) |Ã(ξ,t)| and (b) Re[Ã(ξ,t)] from Heaviside initial conditions in a frame moving at speed vBF

for (a1,a2) = (−2, 5
2

)
and μ = 0. In this simulation, we use time step �t = 0.005, number of Fourier modes Nx = 6144, and cutoff ε = 10−10.

condition to the left, leaving an amplitude gradient across
the structure. The invasion is largely complete by t ≈ 500
and the resulting state persists over a long time scale, until
t ≈ 1000. At this point, an amplitude perturbation grows to
such an extent that it triggers an abrupt collapse of the structure.
Since μ > 0, the A = 0 solution is unstable, and the remnant
of the front near the leading edge generates a sequence of
traveling pulses that break up into an interval of spatiotemporal
chaos (1000 � t � 1800). Near t ≈ 1800, the chaos abruptly
subsides and most of the original front is restored. This state
persists for a few hundred time steps or so before it collapses
again. The longer time series shown in Fig. 19 shows that
this is part of a recurrent process with alternating coherent
and incoherent episodes. The space-time plots demonstrate
that the primary front travels at the predicted speed vN when
the deposited state is coherent but that the front is slightly
delayed when the deposited state is incoherent. We cannot

predict the front speed in these chaotic intervals. Figure 20
provides another perspective on the chaotic behavior shown in
Fig. 19. The figure shows the time series |A(ξ = 100,t)| and
highlights the abrupt collapse episodes towards |A| ≈ 0 that
trigger the intervals of spatiotemporal chaos, before the system
returns to coherence. It is noteworthy that even in the coherent
phase, the amplitude |A| always initially overshoots the target
amplitude aN and thereafter decreases, ultimately triggering a
collapse episode.

Since the secondary instability is of type II, we can easily
compute vBF ≈ 1.878 using the methods in [13]. This speed
is much greater than both the frame speed vN ≈ 0.3623 and
the linear spreading speed v∗ ≈ 0.3162 and so the secondary
instability quickly catches up with the front. The speed vBF

is indicated in Fig. 19 as an offset blue line and shows
good agreement with the observed speed at which large
amplitude perturbations impact the front triggering the onset of

FIG. 18. Space-time plot of the evolution of A(ξ,t) from Heaviside initial conditions in the moving frame for
(
a1,a2

) = ( 9
2 ,5
)

and
μ = 0.025. The speed of the moving frame is vN and the front is pushed. In this simulation, we use time step �t = 0.01, number of Fourier
modes Nx = 3072, and cutoff ε = 10−5.
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FIG. 19. Continuation of the space-time plot in Fig. 18 over a longer time interval with an initial condition of different amplitude. Offset
lines representing propagation at speed vBF (blue) are also pictured.

incoherent front propagation. In contrast, the speed between
the A ≈ 0 amplitude holes behind the leading edge and the
spatiotemporally chaotic state is also well defined but cannot
be predicted with our methods. It is also worth noting that in
the intervals of incoherent motion the leading edge of the front
propagates neither at vN nor v∗. If the episodic breakdown of
the front exhibited in Fig. 19 persists for all time, it would
generate a counterexample to the nonlinear marginal stability
conjecture of van Saarloos and Hohenberg that the front must
in the long time limit propagate at the predicted speed vN [21].

FIG. 20. Time series of |A(ξ0,t)| (red) and ln |A(ξ0,t)| (blue)
representing a vertical slice of the evolution shown in Fig. 19 at
ξ0 = 100. The amplitude A = aN is plotted with a thick dashed line
(black) and A = 0 is also shown for reference.

We were unable to find parameter regimes for which
vBF > vN in the pushed front regime and the secondary
instability was of type I. This would be an interesting case
since it is not clear what would happen to the speed of the
primary front. In the pushed case, the front speed depends on
a nonlinear mechanism and is affected by the rotating wave
in the wake of the front. If an instability overtakes the front
thereby changing it to one outside of the family described
by the ansatz, would the speed change? The search for this
situation is nontrivial because for every different choice of
(a1,a2) one must recompute and invert the function h(μ) whose
branches must in general be chosen by hand (Appendix A),
evaluate vBF on the appropriate elliptic curve, and write vN in
terms of h on each branch. As a result, it is not straightforward
to scan parameter space.

VI. DISCUSSION

In this paper we analyze in some considerable detail the
properties of fronts connecting a stripe pattern to a spatially
homogeneous state. For this purpose we use the generic ampli-
tude equation describing a weakly subcritical bifurcation to the
pattern state. For μ < 0 (the subcritical regime), this equation
exhibits bistability between the pattern and the homogeneous
state, implying that the speed of the front is determined by
nonlinear processes. Fronts of this type are called pushed
fronts. In contrast, in the supercritical regime (μ > 0), the
homogeneous state is unstable and the marginal stability
criterion of Dee and Langer [18] then suggests that sufficiently
localized initial conditions evolve into an invasion front whose
speed is selected by linear processes. Such fronts are pulled.

To examine these predictions and the transition between
them as the bifurcation parameter μ varies, we construct a class
of exact nonlinear front solutions with an explicit expression
for the front speed. In the subcritical regime this speed vanishes
at an analog of a Maxwell point, corresponding to the presence
of a heteroclinic connection between the stripe state and the

032208-16



FRONT PROPAGATION IN WEAKLY SUBCRITICAL . . . PHYSICAL REVIEW E 96, 032208 (2017)

homogeneous state. These exact solutions extend into the
supercritical regime and the question arises therefore as to
when the marginal stability criterion prevails. This question is
addressed already in the work of van Saarloos [16] (see also
[23]) but only for the special case when the coefficients (a1,a2)
both vanish, and the system exhibits gradient dynamics. This
early work highlighted the fact that pushed fronts, propagating
at vN , do indeed persist well into the supercritical regime and
are dynamically selected by localized initial conditions. Our
work extends this result to cases where (a1,a2) are nonzero
and shows that (i) the linear stability mechanism does indeed
prevail for sufficiently large μ and most values of (a1,a2),
i.e., that for 0 < μ � μ‡(a1,a2) nonlinear speed selection
does indeed take place while the speed is selected by linear
processes only for μ > μ‡(a1,a2), and that (ii) there exist
parameters (a1,a2) for which μ‡(a1,a2) = 0 and others for
which μ‡(a1,a2) = ∞. Examples of these degenerate cases are
shown in Figs. 11(a) and 11(b). In Appendix B, we show that
options (i) and (ii) are the only ones that can occur and obtain
the conditions on (a1,a2) for the presence of the degeneracies
mentioned above. These conditions are complicated, but can
in principle be replotted in the (a1,a2) plane. In particular, we
show that the speed selection inequalities do not allow the
selection of a nonlinear front after the first transition from
pushed to pulled [μ > μ‡(a1,a2)].

In fact, the details of the transition from pushed to pulled
fronts are complex since the selection process depends on the
steepness of the initial solution profile, and the stripe state
deposited in the wake of the moving front may or may not
be stable. We emphasize that the wave number of this state
is selected dynamically and is not in general the equilibrium
wave number kc of the underlying pattern. As a result, the
deposited state is susceptible to secondary instabilities. These
are of Benjamin-Feir type and may be convective or absolute in
the frame of the front [2]. The former do not disrupt the stripe
state since the growing perturbations are advected away from
the front, but in the latter case the instability manifests itself
in the vicinity of the front and may lead to its disruption. We
have exhibited several examples where the front undergoes
episodic complex time dependence that we attribute to this
process. Specifically, we have identified four distinct processes
that bear on the wave number of the invading stripe state:

(i) The wave number becomes kc + εqN if the front is
pushed and the rotating wave with this wave number is stable.

(ii) The wave number remains kc when the front is pulled
and vBF < v∗, where vBF corresponds to the secondary
instability of the invading kc state.

(iii) We do not have an analytical prediction of the wave
number if the front is pulled and vBF > v∗ and the secondary in-
stability interacts with the original kc front, although it appears
to remain near kc + εqN despite the presence of phase slips.

(iv) We do not have an analytical prediction of the wave
number if the front is pushed and vBF > vN , where vBF is
now the speed of the secondary front generated by instability
of the kc + εqN front; in the example shown in Fig. 19, the
intermittent dynamics of the front precludes the selection of
an asymptotic wave number.

Our work provides a detailed discussion of the different
regimes that may be encountered as one traverses the (a1,a2)
parameter space. We believe that some of the conditions
required for the applicability of the ansatz (10) are likely

related to the conditions for well posedness of the nongradient
system a2 �= 0. We have not, however, studied instabilities
associated with unstable point eigenvalues in the spectrum
of the front but note that these, if present, may lead to rich
dynamics localized at the front. Evidently, much remains to be
learned about problems involving the invasion of one state by
another, even in situations as simple as that studied here.
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APPENDIX A: BENJAMIN-FEIR INSTABILITY

This Appendix is devoted to finding all solutions of Eq. (25)
obtained from the dispersion relation for perturbations of
nonlinear rotating wave solutions of Eq. (1). Because the
marginally unstable wave number q∗ is generically complex,
the dispersion relation can exhibit branch cuts and complicated
dependence on the phase of the radicand. These properties
render the task of solving the marginal stability equations
analytically in their standard form intractable and their
numerical solution unstable. In this appendix we instead
transform these equations into polynomial equations and show
that after appropriate transformations, all the solutions lie
along a unique elliptic curve. We thus provide an explicit
parametrization of the solution curves and a numerically
tractable route to computing the desired front speed. The
entirety of the calculation is done in the stationary frame and
we are particularly interested in the speed vBF selected by
secondary (Benjamin-Feir) instabilities.

Before analyzing the generic case, we note that there are two
nongeneric situations that can occur, corresponding to 2g −
f = 0 and g = 0, respectively. When g = 0, the dispersion
relation reads as σ = ±

√
−f q2 − q2 and for each sign of the

root there are four cases to consider depending on the sign of
f and the quadrant of q. In each case, we solve the marginal
stability equations in the original variables to verify that q

lies in a consistent quadrant. In the table below, we take the
positive root:

sgn(f ) Quadrant of q σ Solution of Eq. (25)

−1 1, 4
√|f |q − q2 q∗ =

√|f |
2 (1 ± i)

−1 2, 3 −√|f |q − q2 q∗ =
√|f |

2 (−1 ± i)

1 1, 2 −i
√|f |q − q2 q∗ = 0

1 3, 4 i
√|f |q − q2 q∗ = 0

As shown in the table, the first two cases are consistent while
the second two are not. Since the case of the negative root is
obtained by switching the dispersion relations and q values
of rows 1 ↔ 2 and 3 ↔ 4, there is no consistent case and
hence no solution for the branch with negative root. In the
case 2g = f , the dispersion relation is σ = ±|g| − g − q2

and the condition Re[σ ′(q)] = 0 implies qr = 0 so that q∗ =
i
√|g| − g.
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In the general case (f �= 2g, g �= 0), we work in terms
of the parameters c = g

2g−f
, d = 1

cg
and we define θ (q) via

the relation σ (q) = θ(q)+c−1
cd

. We also introduce the shorthand
notation sz ≡ sgn(z). The condition (25) becomes

Re[θ ′]=0, −Im[θ ′]Im[q] = Re[θ ] + c − 1, Im[q] > 0,

(A1)

along with the obvious requirement Re[σ ] > 0. With the
introduced parameters and relation (22) we have

θ = ±sg

√
dq2 + 1 − c(dq2 + 1),

θ ′ = ±sg

dq√
dq2 + 1

− 2cdq. (A2)

To resolve the branches in
√

dq2 + 1, consider the holo-
morphic substitution q = 2t√|d|(sd−t2)

which parametrizes both
branches in t but double counts the physically irrelevant point
q = 0 at t = 0 and ∞. With this substitution the argument
of the square roots becomes the square of sd+t2

sd−t2 . Letting
t = x + iy, where x,y ∈ R, it becomes clear that x and y

always appear squared in the relevant parts of Eq. (A1). Thus,

we are free to choose their sign such that Im
[

sd+t2

sd−t2

]
> 0.

Eliminating the square roots produces

sgθ =
1
2

h+sd

h−sd

(
t2 + sd

)2 ± (1 − t4)(
t2 − sd

)2 ,

sgθ
′

√|d| =
{

4t
h−sd

h+t2

1−t4 (+),
4sd t

h−sd

1+ht2

1−t4 (−),
(A3)

where h is a real variable defined by

h ≡ 2|c| − sd

2|c|sd + 1
.

Since the factor
√|d| cancels out in the equation for Im[θ ′],

the change of variables reduces a four-parameter problem
(q,f,g) into a three-parameter problem (t,h) with eight cases
depending on sd and sg and the sign of the root.

1. First condition

We are now prepared to begin resolving the condition
Re[θ ′] = 0 and focus first on the positive root. In the (t,h)
variables this reduces to

Re

[
t
(
h + t2

)
1 − t4

]
= 0. (A4)

We now proceed by clearing all denominators under the
assumption that they do not vanish and return to nongeneric
points like t = √

i later. Setting t = x + iy, relation (A4)
expands to

x
{
h
(
x4 − 2x2y2 − 3y4 − 1

)+ (x2 + y2
)3 − x2 + 3y2

}
= 0.

(A5)

Note that the trivial condition x = 0 results in a purely
imaginary t and this is the well-known solution with purely
imaginary q [13]. In addition to this solution, there is a set

of solutions with nontrivial x and it is those solutions that we
consider in what follows.

When x �= 0, Eq. (A5) is a polynomial in even powers of x

and y. Introducing u = x2 and v = y2 we obtain

u = 1

4

(
h − k3

hk − 1
+ 3k

)
(A6)

with k = u + v. The case h = ±1 in which there are extra
solutions k = ±1 is included in the set of nongeneric cases
that are discussed at the beginning of this Appendix.

As for the negative root, the relation Re
[

t(1+ht2)
1−t4

]
= 0 gives

x

{
3y4
(
hx2 − 1

)+ y2
[
3h
(
x4 + 1

)− 2x2
]

+ (x4 − 1
)(

hx2 + 1
)+ hy6

}
= 0. (A7)

Ignoring the case x = 0, the other factor may be written in
terms of (u,k) as

u = 1

4

(
hk3 − 1

h − k
+ 3k

)
. (A8)

From here we work in the (h,k) variables where k remains to
be set by the second condition in Eq. (A1).

2. Second condition

The second condition in Eq. (A1) for the positive root can
be written as

− 8sg

h − sd

Im

[
t
(
h + t2

)
1 − t4

]
Im

[
t

sd − t2

]

= sgRe

⎡
⎣ 1

2
h+sd

h−sd

(
t2 + sd

)2 + (1 − t4
)

(
t2 − sd

)2
⎤
⎦+ c − 1, (A9)

where c can be eliminated in favor of h. Depending on the signs
sd and sg , there are four cases, each generating an equation in
t and h. We proceed with each by clearing denominators and
writing the expressions in the form of polynomials.

After writing relation (A9) in the variables defined in
Appendix A 1 and imposing the relation (A6), we obtain the
polynomial equation

P(h,k) ≡ (
h2 − 1

)(
k2 + 1

)2
(k − sd )2 + sg(hk − 1)

×
{
h
(
k4 + 3

)
k − 3k4 − 1

− 2sd

(
k3 + k

)
(hk − 1)

}
= 0. (A10)

This equation must be solved along with constraints u,v > 0.
The solution curves of different sd and sg are plotted in red
in Fig. 21 along with the region in which both u,v > 0 and
Re[σ ] > 0 (also written in h, k variables) in blue. Intersections
of the red curve with the blue regions correspond to secondary
solutions of Eq. (25) in which q is not purely imaginary.

The polynomial equation P = 0 can be transformed into
a simpler form, the Weierstraß form. Since P is quadratic in
h, we write the equation in the form (Ah + B)2 = m(k)2n(k)
where m is quadratic or cubic in k and n is quartic in k. We then
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FIG. 21. Four cases of the Re[q] �= 0 generic solutions to the
Benjamin-Feir stability equations for the positive root: (a) g > 0, d >

0, (b) g > 0, d < 0, (c) g < 0, d > 0, (d) g < 0, d < 0. Here, the
zero level set of Eq. (A10) is plotted in red and the region u,v > 0
and Im[σ ] > 0 is plotted in blue. The solutions correspond to the
intersections of the red curve with the blue regions.

define h′ = Ah+B
m(k) so the equation takes the form (h′)2 = n(k).

Using standard techniques to put the curve into Weierstraß
form, we choose the point k = 1 and compute the quadratic
�(k) that is triply tangent to

√
n(k). The quantity �(k) has a

second intersection with the original curve at kc. We define

l = k − 1

h′ − �(k)
, p = (k − 1)(k − kc)

h′ − �(k)
,

which takes the original curve to an elliptic curve in (l,p).
Subsequently, we take L = A(p)l + B(p) choosing A,B so
that the L2 term has unit coefficient and the term linear in L

vanishes. Next, take P = Cp + D where C,D are chosen to
set the P 3 coefficient to 4 and the P 2 coefficient to 0. The
resulting elliptic curve can be parametrized by the Weierstraß
℘ function. After a final rescaling of both L,P to clear
denominators, the first case sd = sg = 1 reduces to

L2 = 4P 3 − 435P + 1081,

whose solutions are parametrized by a particular Weierstraß ℘

function with elliptic invariants (g1,g3) = (435,1081). In fact,
all four cases of different (sd,sg) have solution curves that can
be parametrized by the same Weierstraß ℘ function, albeit in
different variables. We thus provide an explicit description of
the solution curves.

FIG. 22. Four cases of the Re[q] �= 0 generic solutions to the
Benjamin-Feir stability equations for the negative root: (a) g >

0, d > 0, (b) g > 0, d < 0, (c) g < 0, d > 0, (d) g < 0, d < 0.
Here, the zero level set of Eq. (A10) is plotted in red and the region
u,v > 0 and Im[σ ] > 0 is plotted in blue. The solutions correspond
to the intersections of the red curve with the blue regions.

The second condition in Eq. (A1) for the negative root can
be written as

− 8sgsd

h − sd

Im

[
t
(
1 + ht2

)
1 − t4

]
Im

[
t

sd − t2

]

= sgRe

⎡
⎣ 1

2
h+sd

h−sd

(
t2 + sd

)2 − (1 − t4
)

(
t2 − sd

)2
⎤
⎦+ c − 1 (A11)

and reduces to another polynomial equation

P(k,h) ≡ (
h2 − 1

)(
k2 + 1

)2
(k − sd )2 + sg(h − k)

×
{

3hk4 + h − (k4 + 3
)
k

− 2sd

(
k3 + k

)
(h − k)

}
= 0. (A12)

The solutions of this equation in each of the four cases are
plotted in red in Fig. 22. This case can also be reduced to the
same Weierstraß ℘ function.

3. Velocity

The analysis above shows that there is in general either
one or two solutions to the marginal stability equations for the
Benjamin-Feir instability. The solution with qr = 0 is given in
[13] and here we show that there is also a solution qr �= 0. The
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secondary solution with nontrivial wave number qr only exists
under certain conditions and never coexists with the qr = 0
solution. For each pair sg,sd the values of h for which there is
instability are restricted to the following intervals

Parameters Instability conditions qr �= 0 qr = 0

d > 0, g > 0 h ∈ (−1,0) All h Nowhere
d > 0, g < 0 h ∈ (−1,1) h ∈ (−1, 7

9

)
h ∈ ( 7

9 ,1
)

d < 0, g > 0 Stable
d < 0, g < 0 h ∈ (−∞,−1) ∪ (1,∞) Nowhere All h

based on the instability requirements derived in [13]. The
qr = 0 speed was computed in [13] but can be written in h,d

variables for the two relevant cases when g < 0:

vBF =

⎧⎪⎨
⎪⎩

(5−√
9h2+2h−7−3h)

3
2√

2d(h+1)(
√

h+1−√
9h−7)

, d > 0
√

(h−1)(9h+7)sh+1+3h+5√
(h−1)(9h+7)sh+1+1−h

√√
(h−1)(9h+7)sh+1+3h+5

2d(1−h) , d < 0.

(A13)

The speed for solutions with nonzero qr may be written

vBF =
⎧⎨
⎩

8k(sdh−1)
(k2+1)(h2−1)

√
(hk−1)(h+k)

|d|(k2−1) (+),

8k(h−sd )
(k2+1)(h2−1)

√
(k−h)(hk+1)

|d|(k2−1) (−).
(A14)

The signs (±) correspond to the two different branches of the
dispersion mentioned at the beginning of this section and k

is to be evaluated on the curves of solutions obtained above.
Once a pair (a1,a2) has been selected h and d are functions
of μ only, although it is typically more convenient to plot the
results in terms of h. When plotted in this fashion, the h values
corresponding to μ = 0,∞ depend on a1 and a2.

To apply the above results, we consider the instability of a
rotating wave with wave number 0, as is observed in the wake
of pulled fronts. Recall that these fronts exist along the entire
line a1 = −a2 for all μ and at discrete values of μ off it. The
expressions for f,g take the form

f = (4 + a2
2 − a2

1

)
R4 − 2R2, g = 2μ + R2,

where R2 = 1
2

(
1 + √

4μ + 1
)

and thus g > 0. Based on the
results above, these are unstable to BF instability when d >

0 and the instability deposits a fixed nonzero wave number
qr �= 0. With α ≡ a2

2 − a2
1 , the expression for c yields a relation

between μ and h:

μ = 2(h − 1)[(α − 2)h + α + 2]

[(α − 4)h + α + 4]2
. (A15)

Next, d can be written in terms of h by first passing to μ

variables:

√
|d| =

√∣∣∣∣ α

4μ + 1

∣∣∣∣ =
∣∣∣∣α + (α − 4)h + 4√

α(h + 1)

∣∣∣∣. (A16)

It is now clear that with this parametrization h = 2+α
2−α

corre-
sponds to μ = 0 and h = 4+α

4−α
to μ = ∞ and v†, v∗ and vBF

can all be plotted in terms of h as in Fig. 12.

APPENDIX B: NONLINEAR SELECTION INEQUALITIES

In this appendix, we determine the selection pattern dictated
by the inequalities (27) governing the selection of the pushed
front, referred to as the nonlinear marginal stability criterion
(NMS). By selection pattern we mean the intervals of μ ∈
[0,∞) in which the pair of inequalities is either satisfied
(N, nonlinear selection) or not (L, linear selection). The
boundaries of these intervals, generically a set

{
μ‡(a1,a2

)}
,

occur when at least one of the inequalities becomes an equality
and define the selection pattern (e.g., N–L–N or N–L, . . . ,
etc). In the original variables, the (a1,a2) dependence of the
inequalities (27) is far from obvious and the expressions
are manifestly unwieldy. Numerical examination of these
inequalities in all three parameters is difficult to carry out,
let alone visualize. To overcome this difficulty, we focus only
on determining possible selection patterns and not the explicit
values

{
μ‡(a1,a2

)}
; thus we seek general conditions on (a1,a2)

independent of μ that are required for a given selection pattern.
To proceed, we introduce changes of variables to show

that (27) may be recast as a pair of quadratic inequalities. In
order to determine which selection patterns are possible, we
reduce these to finite cases of inequalities that only depend
on a1,a2 and not on μ. After sufficient simplification, these
logical statements can be verified analytically using a computer
algebra system (Mathematica). We consider all possible
selection patterns and show either that a particular pattern
is not possible or provide a pair (a1,a2) for which it occurs.

We first determine which root in Eqs. (13) is appropriate
for NMS. The inequalities (27) can be rewritten as

√
�

2
√

3


 − 6

�
± �

2
√

3�

√
2


(
1 + s�

μ|�|
2


)
>

√
μ, (B1)

√
�

2
√

3

(5
 − 6)

�
± ϒ

2
√

3�

√
2


(
1 + s�

μ|�|
2


)
>

√
μ.

(B2)

Here, s� denotes the sign of �. To apply the marginal stability
criterion we select the sign (±) in the inequalities (B1) and (B2)
corresponding to faster spatial decay rate and larger velocity
and both must be positive at μ = 0 [21]. In particular, in order
for the front speed to be selected by NMS, either


 − 6 ±
√

2�
 > 0,
√

�(5
 − 6) ± ϒ
√

2
 > 0,

� > 0 (B3)

or


 − 6 ±
√

2�
 < 0,
√

�(5
 − 6) ± ϒ
√

2
 < 0,

� < 0 (B4)

must hold and the root with larger velocity and faster decay
rate must be chosen. When �,ϒ > 0, this always corresponds
to the positive root, which always exists. When � > 0 and
ϒ < 0, the positive root always exists with positive velocity
while the negative root has negative velocity whenever it
exists. Thus, the positive root is selected. For � < 0 and
ϒ > 0, both roots violate the conditions in Eq. (B4). For
� < 0 and ϒ < 0, the positive root always satisfies the NMS
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TABLE I. The selected root of Eqs. (13) for nonlinear marginal
stability near μ = 0. The case �,ϒ < 0, marked by ∗, is complicated
at larger values of μ because the two decay rates and the correspond-
ing velocities are oppositely ordered (see text).

ϒ > 0 ϒ < 0

� > 0 + +
� < 0 NMS does not apply +∗

conditions while the negative root never does. These results
are summarized in Table I.

It is further possible to show that when μ > 0, both of
the selections in the � > 0 cases remain valid. When � < 0
neither solution ever exists with positive velocity for ϒ > 0,
while for ϒ < 0 the selection can be quite complicated. As
shown in Fig. 5, for 5
 − 6 < 0 the negative sign solution
exists for μ sufficiently large and this solution has positive
velocity. In fact, it is easy to see from Eqs. (B1) and (B2) that
when both solutions exist with positive velocity, their decay
rates and velocities will be oppositely ordered: vN+ < vN− and
κN+ > κN−. Because of this it is not clear that NMS applies in
this μ range and which solution to choose if it does. We check
whether either choice results in the selection of a nonlinear
front according to the NMS inequalities.

We now proceed to reduce Eqs. (B1) and (B2) to polynomial
inequalities. Because we consider μ > 0, we define μ̃ ≡ μ|�|

2


which is strictly positive and also the constants

b1 = s�

(
 − 6)

2
√

3

√
�

2
|�| , b2 = s�

�

2
√

3|�| ,

b3 = s�

(5
 − 6)

2
√

3

√
�

2
|�| , b4 = s�

ϒ

2
√

3|�| (B5)

so that the pair of inequalities takes the form bi ±
bi+1

√
1 + s�μ̃ >

√
μ̃ for i = 1,2. To eliminate the square

roots we introduce a holomorphic substitution μ̃ = f (t) with
t ∈ (0,1) (see Table II) chosen to be bijective on the full domain
μ̃ ∈ [0,∞) so that the arguments of both roots are squares
of positive quantities. After this substitution, each inequality
reduces to an inequality quadratic in the parameter t .

At this point, the question of selection can be reduced to
one of solving quadratic equations in t in the interval (0,1).
In the generic case, each of the inequalities (B1) and (B2)
loses validity at μ values for which an inequality becomes an
equality, or the square root of the quadratic terms in Table II
becomes zero. That is, the intervals on which the selection
is either N or L are separated by points at which at least

TABLE II. Substitutions that eliminate both square roots in
Eqs. (B1) and (B2). The root signs have been chosen to match s�

according to the relevant roots classified in Table I. The quantity μ̃ is
defined in the text. In both cases, t ∈ (0,1).

s� μ̃ 1 + s�μ̃ μ̃ domain bi ± bj

√
1 + s�μ̃ >

√
μ̃

1 4t2

(1−t2)2
(1+t2)2

(1−t2)2 μ̃ ∈ (0,∞) (bj − bi)t2 − 2t + (bi + bj ) > 0

−1 4t2

(1+t2)2
(1−t2)2

(1+t2)2 μ̃ ∈ (0,1) (bi ∓ bj )t2 − 2t + (bi ± bj ) > 0

one of the inequalities becomes an equality. The nongeneric
case in which a double root occurs is of higher codimension
and is dealt with separately. Thus, we can determine selection
patterns by tracking the roots obtained when Eqs. (B1) and
(B2) are equalities. Each of Eqs. (B1) and (B2) corresponds to
a single quadratic equation which may have 0, 1, or 2 roots in
(0,1), so there are 19 possible arrangements of the roots, each
of which could be a different selection pattern. In what follows,
we show that the only possible selection regimes are N, L, and
N–L. Thus, the set

{
μ‡(a1,a2

)}
reduces to a single member

where μ‡(a1,a2) is either 0 (L), finite (N–L), or ∞ (N).
To proceed, we derive t-independent conditions on the co-

efficients of the quadratic equations that determine properties
of their roots. We organize this discussion based on various
properties of the root arrangements. To simplify the discussion,
we introduce two polynomials

h1(t) = αt2 − 2t + β, h2(t) = γ t2 − 2t + δ (B6)

to represent the two polynomials inherited from Eqs. (B1)
and (B2). We assume β > 0 based on the qualification in
[21] that NMS holds when the nonlinear velocity is positive
at μ = 0. Without loss of generality, we also assume that
Eq. (B2) is satisfied at m = 0 because it is proportional
to a2

N so δ > 0. We use the standard logical notation for
“AND,” A ∧ B, to represent the condition that A and B are
both true. Note that since the conditions generally depend on
parameters, the joint condition ∧iAi is only false when it fails
for all parameter values. Recall that both �,
 are positive
and the conditions (� > 0) ∧ (ϒ > 0) ∧ (5
 − 6 < 0) and
(� > 0) ∧ (ϒ < 0) ∧ (
 − 6 > 0) are false.

1. Number of roots

In subcritical systems, Eq. (27) is typically satisfied at
μ = 0, so if both equations (B6) have an even number of roots,
the inequalities will also be satisfied for μ → ∞. This is un-
physical since at a sufficiently large forcing the linear dynamics
usually take over [21]. In order to translate this property to one
of the quadratic roots consider h1. If h1(0) > 0, then the equa-
tion has an even number of roots in (0,1) provided h1(1) > 0
(recall that we exclude the nongeneric case of double roots) or

β > 0 and α − 2 + β > 0

with a similar statement for h2. In order to distinguish between
the polynomial having zero or two roots, we also check the
discriminant and the derivative at t = 1. If the polynomial
has positive discriminant, then it has two roots. If there are
two roots, because both polynomials have derivative −2 at
t = 0, then both roots are in (0,1) if and only if the derivative
is positive at t = 1. These conditions (for two roots) are

αβ < 1 and α > 1. (B7)

Applying this procedure to the equations from Table II yields
the conditions in Table III.

a. Case �, ϒ > 0

The conditions for an even number of roots are(
�2 > 12|�|) ∧

(

 − 6 > −

√
2
�

)
,

(
ϒ2 > 12|�|) ∧

[
(5
 − 6)

√
� > −ϒ

√
2

]

(B8)
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TABLE III. Conditions for each of Eqs. (B1) and (B2) to have
an even number of points of equality. In the case � < 0, the positive
root was selected.

s� Even No. of roots Two roots

1 bj > 1 and bi > −bj b2
j − b2

i < 1 and bj − bi > 1
−1 bi > 1 and bi > −bj b2

i − b2
j < 1 and bi − bj > 1

which can be true individually or both together. The conditions
for two roots are[

2
�2 − (
 − 6)2� < 24�

]

∧
[
2
√

3
√

2
� < �
√

2
 − (λ − 6)
√

�
]
, (B9)[

2
ϒ2 − (5
 − 6)2� < 24�

]

∧
[
2
√

3
√

2
� < ϒ
√

2
 − (5λ − 6)
√

�
]
. (B10)

The first of these Eq. (B9) can be true or false but Eq. (B10)
is false for all parameters so h1 always has 0 or 1 roots. A
summary of all possible scenarios is provided in Table IV
along with sample parameters when possible. These results
rule out 12 of the possible 19 root arrangements.

b. Case � > 0, ϒ < 0

The conditions for an even number of roots of h1 are the
same as those above but must now be checked along with
ϒ < 0 instead. For h2 it is easy to see that the condition bj > 1
or ϒ > 2

√
3� fails and it therefore always has a single root.

As before, the allowed possibilities are summarized in Table V
and a total of 14 root configurations are ruled out.

c. Case � < 0, ϒ < 0

In this section we only treat the positive root of Eqs. (B1)
and (B2) and leave the case where both roots exist to
Appendix B 4. The conditions for an even number of roots
are [

(
 − 6)2� > 24
|�|] ∧ [(
 − 6)2� > 2
�
]
,[

−(5
 − 6)
√

� > 2
√

3
√

2
|�|
]

∧
[
−(5
 − 6)

√
� > ϒ

√
2

]
, (B11)

where we used the fact that 
 − 6 is negative in this regime
to simplify the expressions. The latter set of inequalities is

TABLE IV. Summary of the possible numbers of roots for
�, ϒ > 0. When the condition can be satisfied, an example (a1,a2)
for which this is possible is shown. All of the parameters except
the zero-zero case satisfy the known condition sufficient for global
existence of solutions to the Cauchy problem.

h1(t)
Zero One Two

h2(t) Zero (−15,16)
(
3, 9

2

)
Impossible

One Impossible (2,2)
(
0, 1

2

)
Two Impossible Impossible Impossible

TABLE V. Summary of the possible numbers of roots for � > 0,

ϒ < 0. When the condition can be satisfied, an example (a1,a2) for
which this is possible is shown. All of the parameters satisfy the
known condition sufficient for global existence of solutions to the
Cauchy problem.

h1(t)
Zero One Two

h2(t) Zero Impossible Impossible Impossible
One Impossible

(
2, 1

5

) (− 7
4 ,0
)

Two Impossible Impossible Impossible

always false, so h2 always has a single root. The condition for
two roots of h1 is[

(
 − 6)2� − 2
�2 < 24
|�|]
∧
[
−(
 − 6)

√
� + �

√
2
 > 2

√
3
√

2
|�|
]
. (B12)

Checking the three remaining cases produces the results in
Table VI .

2. Root ordering

Next, we derive conditions to determine the root ordering
for the two polynomials. This dictates whether or not the
selected velocity can jump discontinuously. If selection of
either L or N changes three times, there will generically be
a discontinuous jump in the selected velocity. The analysis in
Appendix B 1 does not rule this out because in the case that h1

has two roots and h2 has one, both roots of h1 may be smaller
than that of h2. Thus, when the root of h2 is encountered (as μ

is increased), the predicted velocity will jump discontinuously.
We assume that h2 has a single root in the interval because the
case in which both quadratics have two roots in (0,1) was ruled
out in Appendix B 1. Another possible cause of discontinuity
in the selected velocity occurs if Eq. (B2) breaks first, before
Eq. (B1), since both inequalities are satisfied at μ = 0. Given
the previous results, this can only occur in the case that h2 has
one root in (0,1) that is smaller than any of the roots of h2 in
the interval.

We now derive a condition that is implied by the two root
orderings mentioned above, thus indicating whether or not they
can occur. First, it is possible to show that δ > β > 0 regardless
of the parameter values. Because of this ordering, it is clear that
for either of the two properties mentioned above to occur, h1

and h2 must cross and the common value must be positive. In
the former case tcross is greater than both roots of h1, and in the

TABLE VI. Summary of the possible numbers of roots for � < 0,

ϒ < 0. When the condition can be satisfied, an example (a1,a2) for
which this is possible is shown. None of the regimes fall in the known
global existence region.

h1(t)
Zero One Two

h2(t) Zero Impossible Impossible Impossible
One Impossible

(−2, 1
2

)
(−2,1)

Two Impossible Impossible Impossible
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latter case tcross is smaller than any roots of either polynomial.
It is easy to see that the difference of the polynomials (h2 −
h1)(t) = (γ − α)t2 + (δ − β) has either zero roots or two roots
of opposite signs. Since h2(0) > h1(0), then the root of h2 is
smaller than those of h1 if and only if h2 − h1 has a root
tcross ∈ (0,1) such that (h2 − h1)(tcross) > 0. These conditions
are equivalent to the conditions

γ + δ < 2, h2 has one root in (0,1)

γ − α < 0, h2 − h1 has a root

δ − β < γ − α, tcross ∈ (0,1)

(γ − α)(δ − β) + δ − β > 0, (h2 − h1)(tcross) > 0.

We have verified that these conditions cannot be satisfied
which shows that the selected velocity cannot suffer discon-
tinuous jumps.

3. Case of double roots

Each double root in either of the quadratic inequalities
generically drops the dimension of parameter space by one. In
order for a double root to exist, the discriminant must vanish,
either αβ = 1 or γ δ = 1. In each case, these conditions factor

(a1 + a2)� = 0, (B13)

[16 + (a1 + a2)(3a1 + 11a2)]� = 0, (B14)

and each case can be reduced to a one-parameter space of
solutions. It can be shown that 16 + (a1 + a2)(3a1 + 11a2) =
0 is incompatible with the requirement � > 0, so the second
case can be reduced further to � = 0. Interestingly, if there are
two double roots, the solutions are still described by a single
parameter specified by � = 0. As mentioned in Sec. II B, when
� = 0 the ansatz solutions that are used here cease to be
valid and a different analysis has to be conducted using the
appropriate solutions. We omit this step.

Excluding the case � = 0 we analyze the root structure
for a single double root of h1. When a1 = −a2, then h1

has a double root and all of the coefficients collapse to

h1(t) = √
3
(
t − 1√

3

)2
, h2(t) = −2

(
t − 1√

3

)
. The roots are

independent of parameters and coincide. This is the classic
case that arises when a1 = a2 = 0 and hereby extends along
the whole line a1 + a2 = 0.

4. Case ϒ,� < 0 with both solutions of the ansatz

In this case, the negative root solution to Eqs. (13) exists for

μ ∈
(

1 − �(5
−6)2

2
ϒ2 ,1
]

and corresponds to a positive velocity.

Although this solution does not exist at μ = 0, this velocity
can be compared to the linear prediction. Because we know
that κN+ > κN− and κN− = 0 at μ = 1 − �(5
−6)2

2
ϒ2 , we focus
on h2 in order to see if Eq. (B2) can ever be satisfied. First, one
can check that γ + δ < 2, which means that h2 is negative at
1. Since we know that h2 is negative at μ = 1 − �(5
−6)2

2
ϒ2 , this
means that it has either zero or two roots. Then, one can check
that γ δ < 1 (h2 has roots) and γ < 0 (h2 is positive between
the roots) cannot both be satisfied. Thus, the aN− branch is
never relevant.

APPENDIX C: NUMERICAL METHODS

Time-stepping simulations were carried out using two
numerical approximation schemes. The first is a Fourier
collocation method with suitable dealiasing and the time-
stepping scheme ETD4RK [41]. Depending on the initial
data and the possible types of front propagation behavior,
the simulations are either performed in a frame at rest or
in one moving at constant speed. In the moving frame, the
spatially extended front solutions typically have a nontrivial
wave number qN �= 0 in the limit ξ → −∞. To overcome the
difficulty of approximating the boundary condition for this
state, we write A(x,t) = Ã(ξ,t)ei(qN ξ−ωt) = Ã(ξ,t)eiqNx and
solve the following equation instead:

Ãt = (
μ − q2

N

)
Ã + (v + 2iqN

)
Ãξ + Ãξξ

+ i
(
a1|Ã|2Ãξ + a2Ã

2 ¯̃Aξ

)
+ [1 + qN (a2 − a1) − |Ã|2]|Ã|2Ã (C1)

subject to Neumann (Dirichlet) conditions on the real (imag-
inary) part of the solution at both boundaries. After an initial
dealiasing, Heaviside initial conditions generate continuous
initial data.

We also employ a finite difference (FD) method using
implicit Euler for the time discretization. The FD simulation
is carried out in the stationary frame with Dirichlet boundary
conditions imposed on both real and imaginary parts of the
solution. We study the evolution of localized Heaviside initial
data originating in the center of the domain. The scheme takes
the form

A
j+1
i − A

j

i

�t
= L

(
A

j+1
i−1 ,A

j+1
i ,A

j+1
i+1

)+ N
(
A

j

i−1,A
j

i ,A
j

i+1

)
,

(C2)

where u
j

i is the solution value at spatial point i and time
step j and centered differences are used for all of the spatial
derivatives. The operators L and N indicate the linear and
nonlinear terms in the evolution equation, respectively.

When μ > 0, the A = 0 state is unstable resulting in the
amplification of any numerical instabilities that occur ahead
of the front. Growth of such instabilities interferes with
the propagation of the leading edge and renders a velocity
measurement of the initial leading edge impossible. For the
FD code, this is not a problem since solution values initialized
at 0 remain 0 until the leading edge reaches them. However,
the Fourier scheme propagates small errors in each mode
throughout the spatial domain and can nucleate instabilities
ahead of the front. To prevent this, we set A(x) = 0 for any x

such that |A(x)| < ε at every time step. If ε is small enough,
this has the effect of quenching instabilities ahead of the front
before they can grow but leaves the front at amplitude above ε

intact. The required magnitude of ε depends on both the time
step and the value of μ and is chosen to be as large as feasible.
Values of ε used here vary from 10−12 to 10−4.5. The smaller
ε is, the smaller is its effect on the speed of the front. Because
it quenches the instability of the leading state, the speed of
pulled fronts is reduced. This makes the computation of the
front velocity difficult and typically produces a speed less
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than the analytical prediction. Consequently, we use almost
exclusively the FD method to measure front speeds.

In order to measure the speed of fronts numerically, we
select a fixed height h and calculate the trajectory xf of
the level set |A(xf )| = h. After an initial transient the front
reaches a constant velocity and we measure its speed ẋf by
a linear fit to xf (t). We keep h as small as possible to avoid
behavior that occurs behind the leading edge. The prescription
for computing the data in Figs. 10 and 11 is as follows:

(i) Initialize Heaviside initial data of extent 50 at the center
of the domain of length 300. Run a simulation with �x = 0.05
and �t = (�x)2.

(ii) The simulation is run for time T = 100
2
√

v∗�t
and the

location of the front is measured by the level set with h = 0.01.
This allows the front to remain a distance >50 away from
the boundary throughout the experiment. For simulations near
μ = 0, where v∗ = 0, the simulation time is taken to be in the
range [30 000,50 000] such that a stable velocity is achieved
and h = 0.0001.

(iii) A line is fitted to the second half of the data xf (t)
(i.e., t > T

2 ) to measure the front speed. This ensures that we
discard the transient associated with the initial condition and
measure the front speed only for a well-developed front.

It is pointed out in [42] that for an FD scheme an
exact prediction of the errors in the linear spreading speed
in terms of the FD discretization can be derived. Letting
An

m = εeσFD(n�t)−iqFD(m�x) in (C2) and keeping lowest order
terms in ε yields the FD dispersion relation σFD(qFD) which
solves the transcendental equation

1 − e−σFD�t

�t
= μ −

[
2

�x
sin

(
�xqFD

2

)]2

. (C3)

In the limit �x,�t � 1 we can apply the marginal stability
criterion and determine that

v∗
FD = 2

√
μ + 2μ

3
2 (�t) + 5μ

5
2

3
(�t)2 + μ

3
2

12
(�x)2

+O(�t,�x)3 ,

q∗
FD = i

[√
μ − μ

3
2 (�t) + 5μ5/2

6
(�t)2 − μ3/2

8
(�x)2

]

+O(�t,�x)3 ,

σ ∗
FD = 2μ + 4μ3

3
(�t)2 − μ2

6
(�x)2 + O(�t,�x)3 (C4)

by solving linear algebraic problems order by order. Since
�x,�t are assumed to be positive, the signs of the resulting
corrections are determined. Here, we assume that the errors do
not cause the spreading wave number to become complex. We
have not seen any evidence in our numerics that this should
be the case and it greatly simplifies the calculation. Because
the time integration uses a first order method, the resulting
velocity has an error of first order in �t . However, since we
impose the constraint that �t = (�x)2 in every simulation the
error is O[(�x)2].

FIG. 23. Front speed vN (blue) relative to the linear spreading
speed v∗ (red) for parameters (a1,a2) = (0,0). The selected (not
selected) speed is indicated by a solid (dashed) line according to
Eq. (27). The navy (�x = 0.1) and orange (�x = 0.05) circles rep-
resent speeds calculated by time-stepping Heaviside initial conditions
using FD in the stationary frame and tracking the motion of the front
with �t = (�x)2. The squares represent the values of the speeds after
subtracting the corrections identified in Eq. (C4).

Assuming that the method for measuring the velocity from
simulations is accurate and a pulled front occurs, then the
measured front velocity is biased deterministically by the
corrections in Eq. (C4). We can interpret the analytically
predicted corrections in two ways. We can either compare
simulation results directly to v∗

FD and not v∗ or we can
subtract the deterministic correction v∗

FD − v∗ from the data
and compare it to v∗. In this work, we have chosen to plot
the simulation data with an error bar showing the unbiased
quantity because we do not have any result concerning
the corrections to vN due to FD (Figs. 10 and 11). The
corrected value effectively eliminates the discretization error
caused by the finite differences approximation but does not
mitigate any other errors that could be introduced by the
simulation parameters or implementation. A comparison of
these corrections for simulations with varying discretizations
�x is shown in Fig. 23. Here, the measured data are shown
as circles and the corrected data as squares. The collapse
of the data after corrections have been subtracted supports
the robustness of the corrections in Eq. (C4) and suggests
that there is an additional slowing of the velocity below the
expected v∗ value. This slowing is almost certainly due to
the imposed Dirichlet boundary conditions in the simulation
which artificially pin the leading edge of the front. The effect
of boundary conditions and finite domain size is studied in
[42] and is known to lead to this type of slowing down.
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