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Internal temperature of quantum chaotic systems at the nanoscale
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The extent to which a temperature can be appropriately assigned to a small quantum system, as an internal
property but not as a property of any large environment, is still an open problem. In this paper, a method is
proposed for solving this problem, by which a studied small system is coupled to a two-level system as a probe,
the latter of which can be measured by measurement devices. A main difficulty in the determination of possible
temperature of the studied system comes from the back-action of the probe-system coupling to the system. For
small quantum chaotic systems, we show that a temperature can be determined, the value of which is sensitive
to neither the form, location, and strength of the probe-system coupling, nor the Hamiltonian and initial state of
the probe. The temperature thus obtained turns out to have the form of Boltzmann temperature.
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I. INTRODUCTION

Thermal and statistical properties of small quantum systems
have been receiving lots of attention in recent years, both
theoretical and experimental [1–15]. A key concept in this
field, namely, temperature for such systems, has not been
fully understood yet [6–8]. In particular, for a small quantum
system, which possesses nonweak interactions among its com-
ponents and is approximately isolated from its environment,
the extent to which a temperature can be assigned to it, as an
internal property but not as a property of environment, is still
an open problem. To solve this problem is a challenge to both
theoretical and experimental physics.

On one hand, in the statistical mechanics, temperature
can be defined in several ways, which are equivalent in
the thermodynamic limit, e.g., that by Boltzmann’s entropy
[16] and that by Gibbs’ entropy [17]. But, there is by far
no unique way for extrapolation to small quantum systems
[17–24]. Different understandings of this concept may lead
to diverse predictions; for example, related to the existence of
negative temperature in bounded systems [9–15], debates have
been seen [17,25,26]. And different angles of the approach
to thermodynamic properties of small systems may lead to
different types of definition for temperature [18–21,24,27–30].
To make the situation clarified, a direct consideration of the
dynamics at the microscopic level should be unavoidable.

On the other hand, although at the macroscopic scale
temperature can be detected in a reliable way by a thermometer,
this strategy faces an obstacle when applied to a small system
which is coupled to a small probe, the latter of which can
be measured by measurement devices. The obstacle comes
from the back-action of the system-probe interaction to the
studied system. When the back-action can be neglected, the
temperature can be studied in a standard way [23,27,28];
however, usually, the back-action is non-negligible due to
the smallness of the studied system. A reliable temperature
detection can be achieved, only when the influences of
the following factors can be suppressed, namely, the form,
location, and strength of the system-probe coupling, as well as
the Hamiltonian and initial state of the probe.
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In this paper, we propose a temperature-detection method,
in which the above-discussed back-action can be appropriately
taken into account. The method is based on an analysis of
the dynamical evolution of the system-probe composite and
gives a result insensitive to all the factors discussed above.
A close relationship between the statistical mechanics and
chaos has been perceived for a long time [31–34]. Hence,
we consider possible temperature detection for small quantum
chaotic systems. With a two-level system employed as a probe,
we show that the above-discussed insensitivity can indeed be
achieved in certain situations. Interestingly, it is found that the
Boltzmann temperature can appear in a natural way from the
dynamical evolution of the composite system.

According to recent progresses achieved in the foundation
of quantum statistical mechanics, the so-called typical states
within appropriately large energy shells have many properties
similar to equilibrium states [35–43]. For this reason, we
consider a typical state of the studied system as its initial state,
before it is coupled to the probe. It is found that, to accomplish
the temperature detection, the system-probe coupling should
be appropriately adjusted; specifically, the coupling should
be able to induce chaotic motion of the total system, but it
should be still weak to ensure narrow eigenfunctions of the
total system. The analytical results are tested numerically in
an Ising chain in a nonhomogeneous transverse field.

The paper is organized as follows. In Sec. II, we introduce
the main setup. In Sec. III, we discuss a reliable method of
temperature detection for small quantum chaotic systems and
derive an expression for the temperature thus determined.
Then, we test the analytical predictions by numerical simu-
lations in Sec. IV. Finally, conclusions are given in Sec. V.

II. THE MAIN SETUP

We use S to denote a considered quantum chaotic system
and use |ϕk〉 to denote eigenstates of its Hamiltonian HS ,
HS |ϕk〉 = Ek|ϕk〉. As a quantum chaotic system, its spectrum
has no degeneracy. Initially, the system S lies in a (normalized)
typical state within an energy shell �0, centered at E0

S with
a given width δE, namely, �0 = [E0

S − δE/2,E0
S + δE/2].

Explicitly, the typical state is written as

|�0〉 =
∑

Ek∈�0

Dk|ϕk〉, (1)
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where Dk are Gaussian random numbers with a same variance.
We use N�0 to indicate the number of energy levels in the
energy shell �0.

When a probe is coupled to the system S, the total
Hamiltonian is written as

H = Hp + λHI + HS, (2)

with a parameter λ for adjusting the coupling strength. We use
|m〉 of m = 0,1 to denote eigenstates of the probe Hamiltonian
Hp with eigenvalues em, Hp|m〉 = em|m〉. For brevity, we write
unperturbed states of the total system as |ϕkm〉 with energies
Ekm ≡ Ek + em. Eigenstates of the total Hamiltonian H are
denoted by |ψα〉 with energies Eα , H |ψα〉 = Eα|ψα〉, and are
expanded as

|ψα〉 =
∑
k,m

Cα
km|ϕkm〉 (3)

in the unperturbed basis. The initial state of the total system
is taken as |	0〉 = |�0〉|m0〉, undergoing a unitary evolution,
|	(t)〉 = e−iH t |	0〉.

For it to be possible to use properties of the probe to detect
properties of the system S such as temperature, the motion of
the probe should be sufficiently influenced by that of the system
S. This requires that the probe-system coupling should not be
very weak. Below, we assume that the probe is sufficiently
coupled to the system, such that the total system is also a
quantum chaotic system. (We revisit this point when discussing
numerical results.)

When the total system is a quantum chaotic system, its
energy levels, as well as their spacings, have no degeneracy.
It is known that, in this situation, the distance between
the reduced density matrix (RDM) of the probe, ρ(t) =
TrS(|	(t)〉〈	(t)|), and its long-time average, denoted by ρ,
scales as N

−1/2
�0

[42–48]. This implies that, at large N�0 , if ρ(t)
has a steady state, it should be ρ.

To derive an expression for ρ, we note that, when the RDM
of the probe is measured experimentally, many realizations of
the initial state of the system should be involved. Averaging
over these initial states gives Dk0Dl0 = 1

N�0
δk0l0 . Then, taking

the average over a long time period, direct derivation shows
that (cf., e.g., Ref. [43])

ρmm = 1

N�0

∑
Ek0 ∈�0

∑
k,α

∣∣Cα
k0m0

∣∣2∣∣Cα
km

∣∣2
. (4)

Let us write ρmm as

ρmm =
∑

k

P m0
m (Ek), (5)

where

P m0
m (Ek) = 1

N�0

∑
Ek0 ∈�0

P
k0m0
km , (6)

P
k0m0
km ≡

∑
α

∣∣Cα
k0m0

∣∣2∣∣Cα
km

∣∣2
. (7)

The quantity P
k0m0
km has a simple interpretation; that is, it is

the overlap of two local spectral densities of states (LDOS).
Specifically, defining a LDOS for an unperturbed state |ϕkm〉 as

ρL
km(E) = ∑

α |Cα
km|2δ(E − Eα) [49,50], P

k0m0
km is the overlap

of ρL
km(E) and ρL

k0m0
(E). Although the overlap P

k0m0
km may show

considerable fluctuations with variation of the system’s energy
Ek , the averaged overlap P m0

m (Ek) should show a smoother
feature for N�0 not small.

We note that, for large N�0 , off-diagonal elements of ρ can
be neglected. In fact, applying a result given in Ref. [51] to
the system-probe composite we study here with TrS(HI ) = 0,
one finds that the steady state of the probe should have an
approximately diagonal form in the eigenbasis {|m〉} at λ not
small, with off-diagonal elements scaling as N

−1/2
�0

. In other
words, the eigenbasis of the self-Hamiltonian of the probe is a
preferred basis [52,53].

III. TEMPERATURE DETECTION

For a probe as a two-level system, which has interacted
with the measured system S and has reached a steady state ρ,
one can always get a value of β by fitting the steady state ρ to
the canonical state 1

Z
e−βHp . This value of β reflects a property

of the total system after the interaction. The point is whether
it is possible to determine a certain value of β, which reflects
a property of the initial state of the system S. For this to be
possible, the finally determined value of β should be sensitive
to neither the form, location, and strength of the probe-system
coupling, nor the Hamiltonian and initial state of the probe.

In this section, we show that the above-discussed goal can
be achieved. That is, under appropriate conditions, a value of β

can be obtained, which is insensitive to the factors mentioned
above.

A. Properties of the function P m0
m (Ek)

In this section, we discuss properties of the function
P m0

m (Ek), which are useful in the study of the steady state
ρ in Eq. (5). As mentioned previously, the total system is
assumed to be a quantum chaotic system, which implies that
the eigenfunctions have sufficiently irregular components in
the unperturbed basis. This chaotic feature requires that the
coupling strength λ is not very small. Meanwhile, we require
that λ is not large, such that both eigenfunctions and LDOS
are narrow with wL � δE, where wL is the averaged width
of the LDOS, which is approximately equal to the averaged
width of eigenfunctions for λ not large.

We find that, under the conditions discussed above, the
function P m0

m (Ek) has the following three properties: (i) for a
fixed value of m0, this function with m = 0 and with m = 1
has similar shapes, centered at (ES

0 + em0 − em); (ii) it has a
width approximately equal to δE; and (iii) it is approximately
symmetric with respect to its center.

To show the above-discussed properties, let us first consider
the sum

Xm0 (Eα) ≡
∑

Ek0 ∈�0

∣∣Cα
k0m0

∣∣2
(8)

as a function of the energy Eα . Using this quantity, P m0
m (Ek)

in Eq. (6) can be written as

P m0
m (Ek) = 1

N�0

∑
α

Xm0 (Eα)
∣∣Cα

km

∣∣2
. (9)
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The sum Xm0 (Eα) can be divided into a smoothly varying part,
denoted by Fm0 (Eα), and a fluctuating part denoted by Rα ,

Xm0 (Eα) = Fm0 (Eα) + Rα. (10)

In the case of λ = 0, there is a one-to-one correspondence
between the set {|ψα} and the set {|ϕkm〉}. To indicate this
correspondence explicitly, we write the labels k and m as kα

and mα . It is easy to verify that, at this λ = 0,

Xm0 (Eα) =
{

1 if Ekα
∈ �0 and mα = m0

0 otherwise,
(11)

where Ekα
= Eα − emα

. This implies that

Fm0 (Eα) =
{

ρS (Eα−em0 )∑
m ρS (Eα−em) if Ekα

∈ �0

0 otherwise,
(12)

and

Rα =

⎧⎪⎪⎨
⎪⎪⎩

1 − ρS (Eα−em0 )∑
m ρS (Eα−em) if Ekα

∈ �0 and mα = m0

− ρS (Eα−em0 )∑
m ρS (Eα−em) if Ekα

∈ �0 and mα �= m0

0 otherwise,

(13)

where ρS(E) is the (smoothed) density of states of the system.
We assume that ρS(E) changes slowly in the considered energy
region. As a result, variation of Fm0 (Eα) = ρS (Eα−em0 )∑

m ρS (Eα−em) can
be neglected and one has

Fm0 (Eα) �
{
c if Ekα

∈ �0

0 otherwise,
(14)

where c is some constant. Thus, the function Fm0 (Eα) has
approximately a rectangular shape, centered at E0

S + em0 with
a width δE. In the case that the probe is a single qubit, whose
energy scale is much smaller than that of the system S, one
has ρS(Eα − e1) ≈ ρS(Eα − e0) and c ≈ 1

2 .
At small λ, the smoothly varying part of Xm0 (Eα), namely,

Fm0 (Eα), should have a shape with small deviation from that
of λ = 0 discussed above. Specifically, it should have the
following properties: (i) being approximately symmetric with
respect to a center (E0

S + em0 ), (ii) having a width close to δE,
(iii) varying slowly in the central region of its main body, and
(iv) dropping fast at the edges to quite small values. Moreover,
the main body of Rα should approximately lie in the same
region as that of Fm0 (Eα) discussed above.

Since the total system is a quantum chaotic system, which
has irregular components in the main bodies of its eigenfunc-
tions, the fluctuating part Rα should fluctuate irregularly. Its
contribution to the right-hand side (rhs) of Eq. (9) scales as
1/N

1/2
�0

. Hence, for large N�0 , contribution from the fluctuating
part can be neglected and one gets

P m0
m (Ek) � 1

N�0

∑
α

Fm0 (Eα)
∣∣Cα

km

∣∣2
. (15)

When the coupling is still weak to fulfill the condition
wL � δE, for most of the LDOS ρL

km(Eα), their main bodies
should lie within the slowly varying region of the function
Fm0 (Eα). For these LDOS, when computing the rhs of Eq. (15),
the term Fm0 (Eα) can be approximately taken as a constant.
Then, noting that

∑
α |Cα

km|2 = 1 and the fact that a narrow

LDOS ρL
km(Eα) is approximately centered at Eα = Ekm, from

Eq. (15) one finds that

P m0
m (Ek) � 1

N�0

Fm0 (Eα)|Eα=Ekm
(16)

for most of the energies Ek . The percentage not fulfilling
Eq. (16) is proportional to (wL/δE). Thus, for most of the
LDOS ρL

km(E), the function P m0
m (Ek) has the three properties

stated above.

B. Insensitivity to the coupling

In this section, making use of results given in the previous
section, we show that a value of β can be determined which
is insensitive to the coupling term under the conditions given
previously.

Substituting the expression of P m0
m (Ek) in Eq. (16) into

Eq. (5) and making use of the properties of the function
Fm0 (Eα) discussed above, one finds that, within an error with
an upper bound of the order of (wL/δE),

ρmm � 1

N�0

∑
k

P m0
m (Ek) � 1

N�0

∑
k

Fm0 (Ekm).

If ρS(E) can be approximated by a linear function in the energy
shell centered at E0

S + em0 − em with a width δE, noting the
fact that Fm0 (E + em) is approximately symmetric within the
energy shell with respect to the center, one gets

ρmm � Gλm0 ρS

(
E0

S + em0 − em

)
, (17)

where

Gλm0 = 1

N�0

Fm0

(
ES

0 + em0

)
δE, (18)

being a quantity independent of the label m. The error for
the approximation in Eq. (17) scales as 1/N

1/2
�0

and also as
(wL/δE). Equation (17) predicts that

β � 1

�e

ln
ρS

(
E0

S + em0 − e0
)

ρS

(
E0

S + em0 − e1
) , (19)

where �e = e1 − e0. It is clear that the rhs of Eq. (19) is
independent of the coupling term λHI .

In the case that the eigenfunctions of the total system have
on average a Lorentz shape [54], one can derive an explicit
expression for the function P m0

m (Ek) (see Appendix A),

P m0
m (Ek) ≈ (θ+ − θ−)ρS

(
E0

S

)
πρT

(
E0

S + em0

) , (20)

where θ± = arctan 2x0±δE

2wL
, with x0 = Ek + em − E0

S − em0 ,
and ρT is the density of states of the total system. It is not
difficult to verify that the rhs of Eq. (20) has the three properties
discussed above for P m0

m (Ek).

C. Insensitivity to the probe

The value of β given in Eq. (19) depends on both the initial
state and the Hamiltonian of the probe. In this section, we
determined a value of β which is independent of the these two
factors.
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With the dependence on m0 written explicitly, βm0 in
Eq. (19) has the following explicit expressions:

β0 � 1

�e

ln
ρS

(
E0

S

)
ρS

(
E0

S − �e

) , β1 � 1

�e

ln
ρS

(
E0

S + �e

)
ρS

(
E0

S

) .

(21)

It is seen that the average β = 1
2 (β0 + β1) satisfies the relation

β � βsm, (22)

where βsm is a Boltzmann temperature, given in statistical
mechanics for macroscopic systems from Boltzmann’s entropy
[16],

βsm = ∂ ln ρS(E)

∂E

∣∣∣∣
E=E0

S

, (23)

which is clearly independent of the probe.
Furthermore, Eq. (22) can be obtained under a more generic

initial condition of the probe, namely, for |ψ0〉 = ∑
m cm|m〉

with a random relative phase between c0 and c1. In fact, in this
case, within the second-order expansion of ln ρS with respect
to �e, one can show that (see Appendix B)

β �
∑
m0

∣∣cm0

∣∣2
βm0 . (24)

Then, taking the average over all possible values of |cm0 |2, one
gets the same averaged value of β as in Eq. (22).

To summarize, when the following conditions are satisfied,
a temperature β � βsm can be assigned to a quantum chaotic
system S, which can be detected by a probe qubit: (i) N�0

for the initial state of S is sufficiently large; (ii) the total
system is a quantum chaotic system, whose eigenfunctions
have sufficiently irregular coefficients in the unperturbed basis;
(iii) wL � δE; and (iv) δE is sufficiently small for linear
approximation of ρS(E) within related energy shells.

IV. NUMERICAL TESTS

In this section, we test the results given above, by numerical
simulations performed in an Ising chain composed of N 1

2 -
spins in a nonhomogeneous transverse field. The Hamiltonian
of the system is written as

HS = μx

N∑
i=1

σ i
x + μ1σ

1
z + μ4σ

4
z + μz

N−1∑
i=1

σ i
zσ

i+1
z , (25)

where σx,z indicate Pauli matrices. The probe, with a Hamilto-
nian Hp = ωpσ

p
x , is coupled to the ith spin of the Ising chain,

with an interaction Hamiltonian,

λHI = λσp
z ⊗ σ i

z . (26)

The energy shell for the initial state is chosen to be narrow
but contains a large number of levels. For N = 14, N�0 is
about 500.

The parameters μx , μz, μ1, and μ2 are adjusted, such
that the system S is in a quantum chaotic regime, in which
the nearest-level-spacing distribution P (s) is close to the
Wigner distribution PW (s) = π

2 s exp(−π
4 s2), the latter of

which is almost identical to the prediction of the random
matrix theory (RMT) [32,55]. In order to determine the

FIG. 1. Top: “Distances” to quantum chaos for the total system
versus the coupling strength λ for N = 14. The distance �p (see
the text; open squares connected by dashed line) indicates a measure
given by the statistics of the spectrum, and �f (solid circles connected
by solid line) is for the statistics of eigenfunctions. Bottom: The ratio
wL/δE versus λ.

quantum chaotic regime of the coupling strength λ, we have
studied the distance between P (s) and PW (s), measured by
�p = ∫ |I (s) − IW (s)| ds. Here, I (s) indicates the cumulative
distribution of P (s), I (s) = ∫ s

0 P (s ′) ds ′, and IW (s) is the
cumulative Wigner distribution, IW (s) = ∫ s

0 PW (s ′) ds ′. As
seen in the upper panel of Fig. 1, �p drops quite fast, reaching
a quite small value at λ ≈ 0.025.

As seen in the analytical derivation of temperature given
in the previous section, the property, which has been really
used, is certain irregular behavior of the eigenfunctions. Such
a property of eigenfunctions is not necessarily guaranteed
by properties of the spectrum. Hence, a direct study of
statistical properties of the eigenfunctions is needed. Nu-
merical simulations in several models, including the Ising
chain studied here, show that the following quantity �f is
useful for this purpose [56]: �f = ∫ |f (x) − fRMT(x)| dx.
Here, f (x) indicates the cumulative distribution of rescaled
components in main bodies of the eigenfunctions, with x =
Cα

km/
√

�m(ε), where �m(ε) = 〈|Cα
km|2〉 indicates the average

shape of the eigenfunctions and fRMT(x) is a cumulative
Gaussian distribution predicted by the RMT [55]. As seen in
the upper panel of Fig. 1, �f reaches its lowest-value region
at λ ≈ 0.1. Thus, for λ � 0.1, the eigenfunctions should have
the needed irregular behaviors.

The lower panel of Fig. 1 shows that wL reaches 10% of δE

at λ ≈ 0.25. Thus, the averaged overlap P m0
m (Ek) is expected

to have the three properties stated previously for λ above 0.1
and somewhat below 0.25. Indeed, we found that P m0

m (Ek)
are close to the prediction in Eq. (20) and possess the three
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FIG. 2. Shapes of P m0
m (Ek) for m = 0 (open circles) and m = 1

(triangles), with δE = 0.2 and �e = 0.6, plotted as a function of Ekm

for clearness in comparison. The solid curves represent the analytical
prediction in Eq. (20).

properties in this intermediate regime of λ (as illustrated in
Fig. 2). Consistently, β = β1+β0

2 has been found quite close to
βsm in this regime of λ for N = 14 (Fig. 3).

Figure 3 shows that, decreasing the value of N and, thus,
decreasing the number N�0 for energy levels in the initial
energy shell, the fluctuation of β becomes stronger. In fact,
for N = 8, the fluctuations are quite strong, such that no
reliable temperature detection can be done by the probe.
Furthermore, at quite small λ, even for large N (N = 14),
the fluctuation of β is also quite large, such that there is no
reliable temperature detection. In fact, in this case, the two
systems are not sufficiently coupled; as a result, one cannot get
the temperature of the system S from properties of the probe.
(This point is obvious in the extreme case of zero coupling.)

We have also tested the insensitivity of the measured value
β to the location of coupling, for λ lying in the intermediate

FIG. 3. The difference �β = |β − βsm| versus λ. The value of
E0

S for the initial state corresponds to βsm = 0.3.

FIG. 4. Values of β, when the probe is coupled to the nth spin
of the chain, for λ = 0.15 (solid squares) and for λ = 0.025 (open
circles).

regime discussed above, as illustrated in Fig. 4 for λ = 0.15.
On the other hand, the figure shows that, for quite small
values of λ, say, for λ = 0.025, consistent with the results
shown in Fig. 3, the value of β is sensitive to the location
of coupling. Furthermore, we have studied dependence of the
difference |β1 − β0| on the spin number N . The density of
states, ρS , has approximately a Gaussian shape [57], ρS(E) ≈
A exp(−αE2). This gives |β1 − β0| � 2α�e. Numerically we
found that α ∝ 1

N+c
with c ∼ O(1); hence, |β1 − β0| ∝ �e

N+c
,

approaching zero in the limit N → ∞.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, a method is proposed by which the tempera-
ture of a small quantum chaotic system can be detected by a
probe qubit, which is appropriately coupled to the studied
system. This method appropriately takes into account the
back-action of the probe to the state of the studied system.
The obtained temperature is determined by the derivative of
the logarithm of the density of states of the studied system, in
the same manner as a Boltzmann temperature for macroscopic
systems. The extent to which a temperature can be assigned to
the system has also been studied. Due to the smallness of the
studied system, fluctuations around the obtained results are not
negligible, scaling as N

−1/2
�0

and also as (wL/δE), where N�0

is the number of states in the initial energy shell with a width
δE and wL is the average width of the LDOS. Finally, we note
that the proposed method should be feasible for experimental
study of temperature under today’s technology.

The system studied above initially lies in a pure state as
a typical state in an energy shell, which may be effectively
related to a microcanonical state [35]. In principle, the method
proposed in this paper can also be used to study other types of
initial states, for example, initially lying in a canonical state or
in a nonequilibrium state [30,58,59]. It would be of interest to
study temperature properties for such initial states in the future.
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APPENDIX A: DERIVATION OF EQ. (20)

In this Appendix, we derive Eq. (20), when eigenfunctions
of the total system have on average a Lorentz shape with a
width wL. In this case, one has∣∣Cα

km

∣∣2 ≈ wL

πρT (Eα)

1

(Eα − (Ek + em))2 + w2
L

, (A1)

where the average is taken over neighboring levels [54].
Noting Eqs. (8) and (10), the smoothly varying part Fm0 (Eα)

can be written as

Fm0 (Eα) =
∑

Ek0 ∈�0

∣∣Cα
k0m0

∣∣2
. (A2)

When N�0 is large, the summation in Eq. (A2) can be
approximated by an integration over the energy of the system
S, with

∫
dEρS(E). Substituting Eq. (A1) into the obtained

integration, one gets

Fm0 (Eα) � ρS

(
E0

S

)
wE

ρT (Eα)π

∫ Eα−E0
S−em0 + δE

2

Eα−E0
S−em0 − δE

2

1

x2 + w2
E

dx,

(A3)

where x = Eα − (E + em0 ). Then, noting Eq. (16) and the fact
that Ekm = Ek + em, straightforward derivation shows that

P m0
m (Ek) � ρS

(
E0

S

)
πρT

(
E0

T

)
×

(
arctan

2x0 + δE

2wE

− arctan
2x0 − δE

2wE

)
,

(A4)

where x0 = Ek + em − E0
S − em0 .

APPENDIX B: DERIVATION OF EQ. (24) FOR A GENERIC
INITIAL STATE OF THE PROBE

In this Appendix, we show that Eq. (24) holds, within the
second-order approximation with respect to �e = e1 − e0, un-
der a generic initial condition of the probe, |ψ0〉 = ∑

m cm|m〉
with a random relative phase between c0 and c1. Below, for
brevity, in this Appendix we omit the overline of ρ.

Taking the average over the initial states |ψ0〉, due to the
random relative phase between c0 and c1, one gets

ρmm =
∑
m0

∣∣cm0

∣∣2
ρ(m0)

mm , (B1)

where ρ(m0)
mm indicates the rhs of Eq. (4), with the dependence

on m0 written explicitly. As discussed in the main text, the
averaged RDM has an approximately diagonal form in the

eigenbasis of the self-Hamiltonian Hp. In this basis, the
parameter β in the canonical state 1

Z
exp(−βHp) can written as

β = − 1

�e

ln
ρ11

ρ00
. (B2)

Substituting Eq. (B1) into the above expression of β, one gets

β = − 1

�e

ln
|c1|2ρ(1)

11 + |c0|2ρ(0)
11

|c1|2ρ(1)
00 + |c0|2ρ(0)

00

. (B3)

Making use of the expression of ρ(m0)
mm in Eq. (17), it is not

difficult to find that

ρ(m0)
mm � ρS

(
E0

S + em0 − em

)
∑

m′ ρS

(
E0

S + em0 − em′
) . (B4)

For example, for m = m0 = 1, one has

ρ
(1)
11 � ρS

(
E0

S

)
ρS

(
E0

S

) + ρS

(
E0

S + �e

) . (B5)

Expanding ln ρS(E0
S + �e) in the Taylor expansion and

keeping the second-order term, one finds that

ρS

(
E0

S + �e

) � ρS

(
E0

S

)
exp

(
βsm�e + β ′

sm�2
e

/
2
)
, (B6)

where βsm is defined in Eq. (23): βsm = ∂ ln ρS

∂E
|E=E0

S
. Substitut-

ing Eq. (B6) into Eq. (B5), one gets

ρ
(1)
11 � 1

1 + exp
(
βsm�e + β ′

sm�2
e

/
2
) . (B7)

Similarly, one can compute other elements ρ(m0)
mm .

To simplify the notation, we introduce two quantities χ+
and χ−:

χ+ = exp
(
βsm�e + β ′

sm�2
e

/
2
)
, (B8)

χ− = exp
(
βsm�e − β ′

sm�2
e

/
2
)
. (B9)

It is not difficult to find that

ρ
(1)
11 � 1

1 + χ+
, ρ

(1)
00 � χ+

1 + χ+
,

ρ
(0)
11 � 1

1 + χ−
, ρ

(0)
00 � χ−

1 + χ−
. (B10)

Substituting these expressions into Eq. (B3), after simple
algebra, we get

β � − 1

�e

ln
|c1|2(1 + χ−) + |c0|2(1 + χ+)

|c1|2χ+(1 + χ−) + |c0|2χ−(1 + χ+)

� − 1

�e

ln
1 + |c1|2χ− + |c0|2χ+

|c1|2χ+ + |c0|2χ− + exp(2βsm�e)
. (B11)

When (β ′
sm�2

e) is small, one can write

exp
(
β ′

sm�2
e

/
2
) � 1 + β ′

sm�2
e/2. (B12)

Using this approximation, Eq. (B11) can be further written as

β � βsm

− 1

�e

ln
1 + exp(βsm�e)

[
1 − (|c1|2 − |c0|2)β ′

sm�2
e

/
2
]

1 + (|c1|2 − |c0|2)β ′
sm�2

e

/
2 + exp(βsm�e)

.

(B13)
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Then, using the approximation that

1 ± (|c1|2 − |c0|2)β ′
sm�2

e

/
2 � exp

(±(|c1|2 − |c0|2)β ′
sm�2

e

/
2
)
, (B14)

straightforward derivation gives

β � βsm − 1

�e

ln
1 + exp(βsm�e) exp

(−(|c1|2 − |c0|2)β ′
sm�2

e

/
2
)

exp
(
(|c1|2 − |c0|2)β ′

sm�2
e

/
2
) + exp(βsm�e)

= βsm + (|c1|2 − |c0|2)β ′
sm�e/2. (B15)

Finally, noting that |c1|2 + |c0|2 = 1 and using the expressions of β0 and β1 in Eq. (21), one gets

β � |c1|2(βsm + β ′
sm�e/2) + |c0|2(βsm − β ′

sm�e/2) � |c1|2β1 + |c0|2β0, (B16)

which gives Eq. (24).
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