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Two distinct bifurcation routes for delayed optoelectronic oscillators
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We investigate the coexistence of low- and high-frequency oscillations in a delayed optoelectronic oscillator.
We identify two nearby Hopf bifurcation points exhibiting low and high frequencies and demonstrate analytically
how they lead to stable solutions. We then show numerically that these two branches of solutions undergo higher
order instabilities as the feedback rate is increased but remain separated in the bifurcation diagram. The two
bifurcation routes can be followed independently by either progressively increasing or decreasing the bifurcation
parameter.
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I. INTRODUCTION

Exploring, understanding, and controlling the effects of
delayed feedbacks have become key issues in many areas
of science and engineering [1–11]. In the life sciences, time
delays can arise in the nervous system because of axonal
conduction as in cell biology because of cell maturation times
or in molecular biology because of the time required for
transcription and translation. These delays may contribute to
the generation of robust, clocklike oscillations [12] or, on the
contrary, affect normal physiological functions [13,14]. In the
manufacturing industry, delays in the metal cutting process are
responsible for chatter instabilities characterized by violent
vibrations, loud noise, and poor quality of surface finish
[15]. In nonlinear optics, delayed optical feedbacks resulting
from unwanted reflections are perturbing the normal output of
semiconductor lasers (SLs) [16,17].

Modeling optical devices by delay differential equations
(DDEs) started in 1979 when Ikeda predicted the existence
of chaos in an optically bistable device [18,19]. It was then
observed in a hybrid electro-optical system with computer-
generated delay [20] and later in an all-optical system [21].
From then on, a large variety of long time oscillatory regimes
were observed numerically and experimentally. Since most of
the proposed models were exhibiting a delay much larger than
any other time scale of the device, mathematicians became
interested by the limit of large delays [22–26]. Particular
attention was devoted to the first Hopf bifurcation which
destabilizes the basic steady state. But other Hopf bifurcations
are emerging from the unstable state as we continuously
change our control parameter. A fundamental question is
whether they may lead to stable oscillations past critical
amplitudes. Nizette [27] showed that this is not likely to
appear for the scalar first order DDEs treated by Ikeda and
coworkers. More precisely, he examined the double limit of
small amplitude solutions and large delays and showed that
all primary Hopf branches of solutions except the first one are
unstable. This, however, does not apply for optical systems
described in terms of higher-order DDEs where multiple
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stable oscillations of distinct periods have been identified both
numerically [28–30] and experimentally [31,32]. Of particular
physical interest is the coexistence of stable oscillations with
periods of different magnitudes. Bifurcation mechanisms for
this type of coexistence of periodic solutions of DDEs are not
well understood. For a laser subject to a delayed optical feed-
back, we recently identified two Hopf bifurcation points with
distinct frequencies responsible for one specific bifurcation
scenario [30]. Here, we concentrate on delayed optoelectronic
oscillators (OEOs) showing a similar coexistence of Hopf
bifurcation points but leading to a different bifurcation scenario
[33,34].

An OEO is a closed system capable of delivering a
microwave electromagnetic wave of high spectral purity and
of low electronic noise. Compared to lasers, OEOs are
relatively recent devices [35]. The experimental setup of an
OEO is schematically shown in Fig. 1. The feedback loop
is sourced by means of a semiconductor continuous-wave
laser injecting light into a Mach-Zehnder modulator (MZM).
The nonlinearly modulated optical intensity at the MZM
output is then sent through an optical fiber which is mainly
responsible for the time delay τ . Subsequently, the light enters
the optoelectronic feedback path where intensity fluctuations
are detected by a broadband amplified photodiode (PD).
This PD converts the nonlinearly transformed signal back
into the electrical domain. The electrical signal is amplified
(A), filtered (band-pass filter), and then used to drive the
MZM [RF voltage V (t)], thus closing the feedback loop.
Practically, the band-pass filter limits the overall bandwidth
of the optoelectronic system and is determined by low and
high cut-off times denoted by τL and τH , respectively. The
interaction between nonlinearity and delay is responsible for a
rich variety of dynamical phenomena. Because of the relative
simplicity of the mathematical model and the good quantitative
agreement with experiments, an OEO is a particularly desirable
set up if we wish to explore delay-induced instabilities in
the laboratory [36]. These instabilities and their control have
led to new applications for secure optical communication
[37], radars requiring ultra-pure sources of light [38–40], and
neuromorphic computing [41,42].

For the laser subject to optical feedback [30], the coexis-
tence of fast relaxation and slow square-wave oscillations were
interpreted in terms of a simple harmonic oscillator subject to
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FIG. 1. Schematic of the experimental setup.

a delayed feedback described by

x ′′ + x = r[x(t − τ ) − x], (1)

where r and τ denote the gain and the delay of the feedback,
respectively. We found that the domain of stability of x = 0 is
bounded by two Hopf bifurcations with either a frequency
proportional to the inverse of the delay (ω1 = πτ−1) or
the frequency of the harmonic oscillator (ω2 = 1). Here we
consider another reference model more appropriate for the
OEO oscillations. Specifically, we introduce the following
second-order DDE

εx ′′ + ε2x + x ′ − rx ′(t − τ ) = 0, (2)

where ε � 1 and r is the bifurcation parameter. By examining
the stability properties of the zero solution, we find that the
domain of stability is bounded by two Hopf bifurcation lines
in the (r,τ ) parameter space. In the limit ε → 0, these Hopf
bifurcations are given by

H1 : r0 � 1 + ε2τ

2
, ω0 � ετ−1/2, (3)

H2 : r1 � 1 + ε22π2

τ 2
, ω1 � 2πτ−1(1 − ε), (4)

and are represented in Fig. 2.
The first instability (H1) dominates for low values of τ and

requires progressively larger values of r − 1 as τ increases.
On the other hand, the second instability (H2) takes over for
τ sufficiently large and requires progressively lower values

FIG. 2. The stability of the zero solution is bounded by the Hopf
bifurcation lines H1 and H2 given by (3) and (4), respectively. Stable
and unstable mean that the zero solution is either stable or unstable.

of r − 1. This behavior is typical of many delayed feedback
problems where the Hopf bifurcation is induced by the delay:
increasing the delay allows to reduce the critical feedback rate
for a Hopf bifurcation.

The plan of the paper is as follows. In the next section,
we formulate the equations for an OEO and determine
the two first Hopf bifurcations. For the parameters values
used in Ref. [34], the critical feedback rates of these Hopf
bifurcation points exhibits nearby values and motivates a
two parameter bifurcation analysis close to a double Hopf
bifurcation point. The details are described in Sec. III. In
Sec. IV, we substantiate our analytical results by investigating
numerically the bifurcation diagram from low to large values
of the control parameter. Finally, we discuss in Sec. V earlier
observations of low- and high-frequency oscillations of an
OEO [33].

II. FORMULATION

OEOs are described mathematically by two first-order delay
differential equations of the form (see Ref. [43])

τL

dx

dt
= −

(
1 + τL

τH

)
x − y − β cos2 [x(t − τ ) + φ], (5)

τH

dy

dt
= x, (6)

where x is the normalized output signal representing the
voltage applied to the modulator, β is a dimensionless
parameter which describes the feedback strength of the loop, τ
is the total delay of the feedback signal, and φ is the bias point
of the modulator. τL and τH are time constants describing
the low-pass and high-pass filters [the low-pass cut-off and
high-pass cut-on frequencies are 1/(2πτL) and 1/(2πτH ),
respectively]. By introducing the dimensionless time s = t/τ

and after differentiating Eq. (5) in order to eliminate y, using
Eq. (6), we obtain the following dimensionless equation:

γ x ′′

δ
+ x ′(1 + γ ) + δx = β sin[2x(s − 1) + 2φ]x ′(s − 1),

(7)

where prime means differentiation with respect to s. The
dimensionless parameters γ and δ are defined as γ ≡ τL/τH

and δ ≡ τ/τH . Using the parameters listed in Ref. [34],
namely,

φ = π/4, τ = 22.5 ns, τH = 0.16 μs, and τL = 1.6 ns,
(8)

we find

γ = 10−2 and δ = 0.1411. (9)

Equation (7) with φ = π/4 simplifies as

γ x ′′

δ
+ x ′(1 + γ ) + δx = β cos [2x(s − 1)]x ′(s − 1). (10)

This equation admits a single steady state x = 0. From the
linearized equation, we determine the characteristic equation
for the growth rate σ given by

γ δ−1σ 2 + σ (1 + γ ) + δ − βσ exp (−σ ) = 0. (11)
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FIG. 3. The two first Hopf bifurcations lines H1 and H2 in the β

versus δ stability diagram. They have been obtained by determining
δ = δ(ω) from Eq. (14) and then β using Eq. (13). The two Hopf
bifurcation lines intersect at (δ,β) = (δ∗,β∗) = (0.146,1.079). The
vertical broken line at δ = 0.1411 marks the value used in Ref. [34].
The values of the fixed parameters are φ = π/4 and γ = 10−2. The
first and second Hopf bifurcations are characterized by a frequency
ω1 � 1 and by a frequency ω2 � 2π , respectively. Stable and
unstable mean that the steady state is stable and unstable, respectively.

In order to determine the conditions for a Hopf bifurcation
point, we insert σ = iω into Eq. (11) and separate the real
and imaginary parts. We find the following two conditions for
the bifurcation point in terms of β and the frequency ω of the
oscillations at the bifurcation point

−γ δ−1ω2 + δ = βω sin (ω), (12)

(1 + γ ) = β cos (ω). (13)

By eliminating β, we obtain an equation for ω = ω(δ,γ ) of
the form

−δ2 + δω(1 + γ ) tan (ω) + γω2 = 0. (14)

γ is kept fixed. We treat ω > 0 as a parameter and solve
the quadratic equation (14) for δ and Eq. (13) for β. Figure 3
represents the two first Hopf bifurcation lines in the (δ,β)
stability diagram. We note that the two lines intersect at δ =
δ∗. The critical point (δ,β) = (δ∗,β∗) is a codimension two
Hopf bifurcation point characterized by two distinct pairs of
imaginary eigenvalues (±iω1 and ±iω2). We determine the
coordinates of this point by realizing from Eq. (13) with β =
β∗ that

cos(ω1) = cos(ω2). (15)

The solution of Eq. (15) that is matching our numerical
estimate of ω1 � 0.36 and ω2 � 5.92 is

ω2 = 2π − ω1. (16)

Equation (14) with δ = δ∗ is then evaluated for ω = ω1 and
for ω = 2π − ω1 providing two conditions for ω1

γω2
1 + (1 + γ )ω1δ

∗ tan (ω1) = δ∗2, (17)

γ (2π − ω1)2 − (1 + γ )(2π − ω1)δ∗ tan (ω1) = δ∗2. (18)

FIG. 4. Critical δ∗ for a double Hopf bifurcation point as a
function of γ . It has been obtained by first determining ω1 = ω1(γ )
from Eq. (20) and then by evaluating δ∗ from Eq. (19). The vertical
broken line denotes the value of γ = 10−2 used in Ref. [34].

By subtracting these two equations, we eliminate δ∗2 and find
an expression for δ∗ = δ∗(ω1) which reads as

δ∗ = γ (2π − 2ω1)

(1 + γ ) tan (ω1)
. (19)

Substituting (19) into Eq. (17), and simplifying, we obtain the
following quadratic equation for γ = γ (ω1)

γ 2 + 2γ

{
1 − 2

[
π − ω1

tan(ω1)

]2 1

ω12π − ω2
1

}
+ 1 = 0. (20)

An analysis of the real roots of Eq. (20) indicates that
ω1(γ ) emerges from zero, reaches a maximum at γ = 1
(ω1m = 0.7594) and then decreases as γ is further increased.
Figure 4 represents the critical value δ∗ as function of γ . Since
γ = 10−2 in Ref. [34], the limit γ → 0 is instructive. From
Eq. (20), the leading expression for ω1 is

ω1 = (2πγ )1/3. (21)

If δ < δ∗, then the first Hopf bifurcation is H1 and leads to
low-frequency oscillations because ω1 is small. If δ > δ∗, then
the first Hopf bifurcation is H2 and leads to nearly 1-periodic
oscillations because ω2 = 2π − ω1 � 2π . Our bifurcation
problem is therefore characterized by the interaction of two
time-periodic modes operating on different time scales. This
situation is the same as the one shown in Fig. 2 for our toy
model (2).

III. HOPF-HOPF BIFURCATION

We propose to determine the solutions in the vicinity
of (β,δ) = (β∗,δ∗) by a two-parameter weakly nonlinear
analysis. To this end, we first introduce a small parameter
ε defined as

ε =
√

δ − δ∗

c
, (c = ±1) (22)

and expand β as

β = β∗ + ε2β2 + · · · . (23)
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We next seek a solution of the form

x = εx1(s,θ ) + ε2x2(s,θ ) + ε3x3(s,θ ) + · · · , (24)

where θ ≡ ε2s is defined as a slow time variable. The method
of multiple time scales treats the two times s and θ as
independent variables [44,45]. Consequently, we need the
chain rules

x ′ = xs + ε2xθ + O(ε4),

x ′′ = xss + 2ε2xsθ + O(ε4), (25)

where the subscripts s and θ means partial derivatives. We also
need to expand the delayed variable which now depends on
two times

x(s − 1) = x(s − 1,θ ) − ε2xθ (s − 1,θ ) + O(ε4). (26)

Inserting (22)–(26) into Eq. (10), we equate to zero the
coefficients of each power of ε. We obtain a sequence of linear
problems for the functions xj (s,θ ). The three first problems
are given by

Lx1 ≡ γ δ∗−1x1ss + x1s(1 + γ ) + δ∗x1 − β∗x1s(s − 1) = 0,

(27)

Lx2 = 0, (28)

Lx3 =
[
β2x1s(s − 1) + γ

c

δ∗2
x1ss − cx1

− 2β∗x2
1 (s−1)x1s(s−1) − 2γ δ∗−1x1sθ − x1θ (1 + γ )

+β∗[x1θ (s − 1) − x1sθ (s − 1)]

]
, (29)

Equations (27) and (28) admit the following solutions:

x1 = A1 exp (iω1s) + A2 exp (iω2s) + c.c., (30)

x2 = B1 exp (iω1s) + B2 exp (iω2s) + c.c., (31)

where ω1 and ω2 are the Hopf frequencies at δ = δ∗. A1, A2,
B1, and B2 are four unknown amplitudes which depend of θ .
To find them, we need to explore the higher-order problems
for xj and apply solvability conditions. Because the equations
for xj are scalar, these conditions require that the coefficients
of exp (±iω1s) and exp (±iω2s) in the right-hand side must
be zero in order to avoid secular terms in the solution. From
Eq. (29) with Aj = Rj exp (iφ), these conditions lead to two
ordinary differential equations for R1 and R2 given by

R
′
1 = (−β2a1 + cb1)R1 + 2β∗a1

(
R2

1 + 2R2
2

)
R1, (32)

R
′
2 = (−β2a2 + cb2)R2 + 2β∗a2

(
R2

2 + 2R2
1

)
R2, (33)

where prime now means differentiation with respect to the
slow time θ and

aj = Re

[
iωj exp(−iωj )

cj

]
, (34)

bj = Re

(
γ δ∗−2ω2

j + 1

cj

)
, (35)

where

cj = −2γ δ∗−1iωj − (1 + γ ) + β∗e−iωj − β∗iωj e
−iωj .

(36)

The coefficients aj and bj are evaluated in the appendix. We
demonstrate that

bj = β2j aj /c and aj < 0, (37)

where β2j = β2j (c) comes from the expansion of the Hopf
bifurcation points near β = β∗ (see Appendix). Equations (32)
and (33) may then be rewritten as

R
′
1 = −a1(β2 − β21)R1 + 2β∗a1

(
R2

1 + 2R2
2

)
R1, (38)

R
′
2 = −a2(β2 − β22)R2 + 2β∗a2

(
R2

2 + 2R2
1

)
R2. (39)

Equations (38) and (39) admit four steady states: the zero
solution, two pure mode solutions, and one mixed mode
solution. The pure mode solutions are

(1): R2
1 = β2 − β21

2β∗ � 0 and R2 = 0, (40)

(2): R1 = 0 and R2
2 = β2 − β22

2β∗ � 0, (41)

and the mixed mode solution is

R2
1 = β2 + β21 − 2β22

6β∗ � 0, (42)

R2
2 = β2 − 2β21 + β22

6β∗ � 0. (43)

If c = −1, which is the case in Ref. [34] (δ < δ∗), then
β21 < 0 and β22 > 0 according to (A4). Consequently, (43) is
always positive if β2 > 0 and from (42) we have the inequality

β2 > β23 ≡ −β21 + 2β22 > 0. (44)

The critical point β2 = β23 is a secondary bifurcation point
from the pure mode solution (41) to the mixed mode solution
(42) and (43). The linear stability of all solutions can be
determined from Eqs. (38) and (39). In Fig. 5(a), we represent
the bifurcation diagram of the pure and mixed mode solutions
when c = −1. The pure mode (40), characterized by low
frequency oscillations, emerges from β21 and is noted 1
whereas the pure mode (41) leading to a delay-periodic regime,
emerges from β22 and is noted 2. The mixed mode solutions
[(42) and (43)] are denoted by 1 + 2 and appears for β2 � β23.

A similar bifurcation diagram appears if c = 1 and is shown
in Fig. 5(b). The secondary bifurcation point is now given by

β23 ≡ −β22 + 2β21. (45)

The stability of the different solutions are represented by
broken lines (unstable) and straight (stable) lines. We conclude
that the coexistence between two stable pure time-periodic
solutions is always possible provided β2 � β23.

IV. NUMERICAL SIMULATIONS

We anticipate that the emergence of these two stable
branches of periodic solutions exhibiting different periods are
leading to distinct routes of more complex oscillations. This
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FIG. 5. Bifurcation diagram of the steady-state solutions of
Eqs. (38) and (39). Panels (a) and (b) illustrate the case c = −1
and c = 1, respectively. Both cases allow the coexistence of stable
pure mode solutions through a secondary bifurcation mechanism.

scenario is substantiated by systematic numerical simulations
of Eqs. (5) and (6). Specifically, we numerically investigate the
stable solutions using a fourth-order Runge-Kutta algorithm.
The initial conditions for the first simulation are x = 0.06
and y = 0.41 (−1 < s < 0). The bifurcation parameter is
then progressively increased by small steps using the previous
solution as the initial conditions for the time interval (−1 <

s < 0). The same procedure is applied when we progressively
decrease the bifurcation parameter. By progressively changing
the feedback strength β, we determine the bifurcation diagram

FIG. 6. Bifurcation diagrams of the extrema of x obtained
numerically from Eqs. (5) and (6) by progressively increasing
(black) or decreasing (gray) β. The fixed parameters are φ = π/4,
δ = 0.1411, and γ = 10−2.

FIG. 7. Blow-up of the bifurcation diagrams near the two first
Hopf bifurcations. Branch 1 (black dots) and Branch 2 (gray dots)
correspond to the forward diagram of Fig. 6 (black line) and the
backward diagram of Fig. 6 (gray line), respectively.

for the extrema of x as function of β with the fixed parameters
used in Ref. [34]. See Fig. 6.

By progressively increasing β from 1 to 3 (in black),
a supercritical Hopf bifurcation at β � 1.077 marks the
transition between a stable steady state and stable periodic
oscillations. The single frequency oscillations are observed
until β = 1.66. Increasing further β then leads to multiperiodic
and chaotic regimes. The chaotic oscillations exhibit two
distinct time scales and recall the chaotic breathers studied in
Ref. [33]. Near β � 2.65, the oscillations are getting close to
the unstable zero solution and we observe an abrupt transition
to another attactor.

When we progressively decrease β from 3 to 2.7 (in gray),
the long time numerical solutions are first identical to those
obtained when we increased β from β = 2.7 to 3. Below
β = 2.7, we however follow a different route. If β < 2.45, then
the system exhibits single frequency periodic oscillations until
it shows a transition to a stable steady state near β = 1.077.

Figure 7 is a blow-up of the bifurcation diagram in
the vicinity of the two first Hopf bifurcation points. The
branches denoted by 1 (black) and by 2 (gray) correspond
to the bifurcation diagrams obtained by increasing and then
decreasing β, respectively. As predicted by our analysis [see
Fig. 5(a)], two distinct branches of stable periodic solutions
are emerging from the steady state x = 0. Branch 1 is leading
to low frequency oscillations (P = 15–20) while Branch 2
exhibits oscillations of period close to the delay (P = 1).
The bifurcation points β1, β2, and β3 are defined as βj =
β∗ + ε2β2j where the β2j were documented in the previous
section. They mark the first Hopf bifurcation (β1), the second
primary Hopf bifurcation (β2), and the secondary bifurcation
responsible for the change of stability of Branch 2 (β3). We
note a good quantitative agreement between the analytical and
numerical values of β1 and β3.

V. DISCUSSION

In summary, we found that the bifurcation diagram of a
class of OEOs is organized in terms of two distinct branches
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of solutions each starting from a Hopf bifurcation point with
a different frequency. Both our analysis and simulations were
based on parameters documented by Cohen et al. [34]. Their
values are close to the coordinates of a degenerated Hopf
bifurcation which is the starting point of our weakly nonlinear
analysis. If we deviate from this particular point, we expect that
the bifurcation diagram will remain qualitatively unchanged.
Only the secondary bifurcation points will appear at higher
amplitudes. The toy model Eq. (2) is the linearized equation
of (7). It emphasizes the small values of the coefficients
multiplying the first two terms and their relative scaling. The
direction of bifurcation however depends on the nonlinear
terms which, in the case of Eq. (7), always leads to supercritical
bifurcations.

Earlier work by Chembo et al. [33] showed a similar
bifurcation diagram. Specifically, the first Hopf bifurcation
appears very close to β = 1 and leads to oscillations with a
frequency close to 2π . As soon as β = 1.003, a stable attractor
of frequency close to

√
δ is possible if the initial conditions

were chosen close to the unstable steady state. From their
parameter values, we compute γ = 5×10−6 and δ = 6×10−3.
We find that the two first Hopf bifurcation points coalesce
at (δ∗,β∗) = (9.905×10−4,1.0005) with the two frequencies
ω1 = 0.039 and ω2 = 6.252. Since δ > δ∗, the case c = 1
applies [see Fig. 5(b)]. Our bifurcation analysis predicts that
the low frequency oscillations appears at the second primary
Hopf bifurcation whereas the delay-periodic solution emerges
at the first primary Hopf bifurcation.

Note that the values of δ and γ are much lower than
the values (9) used in Ref. [34]. As observed in Ref. [33]
and explained later in Ref. [43], the low values of δ and γ

are generating slow-fast oscillations if the amplitude of the
oscillations is sufficiently large causing new bifurcations to
hybrid slow-fast oscillations.

The coexistence of branches of solutions exhibiting distinct
periods seems a natural phenomenon for oscillators subject
to a delayed feedback when the delay is sufficiently large.
Both in Ref. [30] and here, we explain this coexistence by
identifying specific Hopf bifurcation points. In Ref. [30], the
first Hopf bifurcation leads to a branch of fast laser relaxation
oscillations and is followed by a branch of slower 2τ -periodic
square waves. However, the problem was mathematically too
complex for analysis and we could not explain why the second
branch becomes stable past a critical amplitude. Here, we
showed how the second primary branch gets stabilized through
a secondary bifurcation mechanism by unfolding a degenerate
Hopf bifurcation point.

ACKNOWLEDGMENTS

L.W. acknowledges the support of Conseil Régional Grand-
Est, of Agence Nationale de la Recherche (ANR) through
the TINO project (ANR12-JS03-005), of Fondation Supélec,
Metz Métropole, Conseil Départemental Moselle, Airbus-GDI
Simulation, and Préfecture de Région Grand-Est, FEDER
through the Chair in Photonics and PIANO (FNADT) project.
T.E. is grateful of the support of the F.N.R.S. This work also
benefited from the support of the Belgian Science Policy Office
under Grant No IAP-7/35 photonics@be.

APPENDIX

We first determine expressions for the primary Hopf
bifurcation points close to (β,δ) = (β∗,δ∗). By inserting

β = β∗ + ε2β2j ,

δ = δ∗ + ε2c,

ω = ωj + ε2�j

into the Hopf conditions (12) and (13), we obtain the following
relations between β2j , c, and �j :[ (

γ δ∗−2ω2
j +1

)
c − β2jωj sin(ωj )

−�j {γ δ∗−12ωj +β∗[sin(ωj )+ωj cos(ωj )]}

]
= 0, (A1)

−β∗ sin(ωj )�j + β2j cos(ωj ) = 0. (A2)

Using (A2), we eliminate �j in Eq. (A1) and obtain an
equation for β2j = β2j (c) given by

(
γ δ∗−2ω2

j + 1
)
c = β2j

β∗ sin(ωj )

[
β∗ωj + γ δ∗−12ωj cos(ωj )

+β∗ sin(ωj ) cos(ωj )

]
.

This equation will be useful when we evaluate bj . The
expression in the square brackets can be simplified. We use
(12) evaluated at (β,δ) = (β∗,δ∗) and eliminate sin(ωj ) in the
bracket. We obtain

β2j = β∗ sin(ωj )
(
γ δ∗−2ω2

j + 1
)
c

β∗ωj + (
γ δ∗−1ωj + δ∗

ωj

)
cos(ωj )

. (A3)

The denominator is always positive since from (13) cos(ωj ) >

0. Therefore the sign of β2j is determined by the sign of
c sin(ωj ). Recall that ω1 < π/2 and ω2 = 2π − ω1. Conse-
quently,

sgn(β21) = sgn(c),

sgn(β22) = sgn(−c). (A4)

We next consider cj defined by Eq. (36) as

cj = −2γ δ∗−1iωj − (1 + γ ) + β∗e−iωj − β∗iωj e
−iωj .

(A5)

From Eq. (11), we find an expression for β∗e−iωj given by

β∗e−iωj = iγ δ∗−1ωj + (1 + γ ) − iδ∗

ωj

,

which allow to simplify cj , given by (A5), as

cj = − iωj

[
γ δ∗−1 + δ∗

ω2
j

+ β∗e−iωj

]
. (A6)

Introducing (A6) into the expression for aj , defined by
Eq. (34), we find

aj = Re

⎡
⎣− exp(−iωj )

γ δ∗−1 + δ∗
ω2

j

+ β∗ exp(−iωj )

⎤
⎦

= −
(
γ δ∗−1 + δ∗

ω2
j

)
cos(ωj ) + β∗

(
γ δ∗−1 + δ∗

ω2
j

)2 + 2β∗(γ δ∗−1 + δ∗
ω2

j

)
cos(ωj ) + β∗2

,
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which is clearly negative since cos(ωj ) = (1 + γ )/β∗ > 0. Similarly, we introduce (A6) into the expression for bj given by
Eq. (35) and find

bj = Re

⎧⎨
⎩ γ δ∗−2ω2

j + 1

−iωj

[
γ δ∗−1 + δ∗

ω2
j

+ β∗ exp(−iωj )
]
⎫⎬
⎭ =

− 1
ωj

β∗ sin(ωj )
(
γ δ∗−2ω2

j + 1
)

(
γ δ∗−1 + δ∗

ω2
j

)2 + 2β∗(γ δ∗−1 + δ∗
ω2

j

)
cos(ωj ) + β∗2

.

Using (A3), we can rewrite this equation as

bj = −[
β∗ + (

γ δ∗−1 + δ∗/ω2
j

)
cos(ωj )

]
β2j /c(

γ δ∗−1 + δ∗
ω2

j

)2 + 2β∗(γ δ∗−1 + δ∗
ω2

j

)
cos(ωj ) + β∗2

= ajβ2j /c.
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