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Stochastic Kuramoto oscillators with discrete phase states
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We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase
increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic.
We study the effects of phase discretization on the synchronization and precision properties of the coupled system
both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and
the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit
of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a

Markov chain setting.
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I. INTRODUCTION

The dialectic of synchronization has become a powerful
conceptual tool in theoretical physics—rooted in the descrip-
tion of coupled oscillators and clocks [1], it has been extended
to phenomena that bear only structural resemblance to coupled
oscillators such as the collective behavior of bird flocks [2] and
magnetic systems [3]. Hence, it is not surprising that probably
the most prominent theoretical paradigm for synchronization,
the celebrated Kuramoto model of coupled phase oscillators
and its multifarious variants [4-7], have been applied to
problems as different as neutrino oscillations [8], embryonic
body axis segmentation [9-11], electric power grids [12—
14], epileptic seizures [15], and quantum entanglement [16].
The Kuramoto model is a time-continuous, phase-continuous
system of coupled differential equations [5-7],

de; al
ar =wi+Kj;CijF(¢j — &), (D
where ¢; is the phase of oscillator i = 1,...,N and w; is

its intrinsic frequency, « is the coupling strength, I" is a 27-
periodic coupling function, and ¢;; is the coupling topology
matrix where ¢;; > 0 indicates that the dynamics of oscillator i
couples to the dynamics of oscillator j and ¢;; = 0 otherwise.
For appropriate choices of I' and ¢;;, the coupling term alters
the dynamic frequency d¢;/dt in such a way that the system
tends to synchronize, given that coupling can overcome the
spread in frequencies [17].

Whether a phase-continuous model is a viable description
depends on the system at hand. Biochemical oscillators, for
instance, operate through chemical and/or genetic feedbacks
between different molecule species and are often characterized
by small numbers of molecules which are subject to fluctua-
tions [18-22]. Another prominent example from biology is
the cell cycle, which, while going through well-defined states,
can exhibit considerable period variations [23]. Often, it is
desirable to represent such processes on a coarse-grained level,
e.g., by Markov chain models, when only their core features
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are to be retained. This is especially interesting if coupled
oscillatory processes are part of a more complex system
involving interactions with nonoscillatory parts. The latter is
often the case in biology, where periodic processes interact
with cell fates, intercellular signaling systems, and/or tissue
growth [11,24,25]. In recent years, there has been an extensive
interest in the behavior of discrete-state models of uncoupled
and coupled oscillators [20,26-33]. Recently, for instance, the
question has been investigated whether discrete-state models
can capture the behavior of the noisy Kuramoto model with
all-to-all coupling and homogeneous frequencies [34].

In this paper, we study a generalization of the Kuramoto
model in which each oscillator transitions between discrete
phase states with defined transition rates. This renders all parts
of the model inherently stochastic, including the coupling
dynamics between oscillators. We investigate the effects
of phase discretization on the dynamics of systems with
homogeneous and inhomogeneous frequencies, in particular
their synchronization behavior, their phase-coherence, and
their period fluctuations. In Sec. II we introduce the description
of a single phase-discretized oscillator and characterize its
stochastic properties such as its effective frequency and
its quality factor. In Sec. III we introduce a stochastic
generalization of the coupled Kuramoto model with arbitrary
coupling topology and coupling function and discuss variants
of this generalization. In Sec. IV we study the case of two
coupled oscillators and investigate the effects of coupling on
synchronization and precision both analytically and numeri-
cally. In Sec. V we consider the case of many oscillators with
homogeneous frequencies and present numerical results on
their synchronization behavior and their collective precision.
Moreover, we study the onset of synchronization in a system
with inhomogeneous frequencies. Finally, in Sec. VI we briefly
summarize our results, discuss their relevance, and suggest
directions for further studies.

II. A SINGLE PHASE-DISCRETIZED OSCILLATOR

We start by considering a single phase-discretized oscilla-
tor. We discretize the phase interval [0,2) into m states and
allow the oscillator to advance by discrete phase increments of
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FIG. 1. (a) Schematic depiction of a phase-discretized oscillator
with phase increment e = 27 /m withm € IN and transition frequency
w. (b) Stochastic trajectories of the phase ¢ = e¢ and the oscillatory
signal Re x = cos ¢ for a single oscillator for different values of m.
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size ¢ = 2w /m, so that its state is given by the discrete phase
variable ¢ € Z [Fig. 1(a)]. The discrete state ¢ is associated
with a phase ¢ = ¢ € R and the corresponding oscillatory
signal x = exp(ip).
The stochastic dynamics of the oscillator is governed by
a master equation for the probability P = P(¢p,t) that the
oscillator has the discrete phase ¢ at time 7. Introducing
a transition frequency w > 0, we describe the transition
¢ — ¢ + 1 as a Poisson process with transition rate w/e for
a given discretization m [Fig. 1(a)]. This ensures that the
average duration of one revolution is given by 27 /w. The
corresponding master equation is given by
oP
EW =wP(p — 1,t) — wP(p,t). 2)
The solution to Eq. (2) for the initial condition P(¢,0) = §y
is a Poisson distribution [35],

P(p.t|¢',0) = Poisson(wt /e, — ¢'), (3)

where Poisson(A,n) = A"e~*®(n)/n! with ® being the Heavi-
side function. Figure 1(b) shows examples of stochastic
trajectories for different phase discretizations m, obtained from
a standard stochastic simulation algorithm [36].

To determine the dynamical frequency of the oscillator
and the frequency fluctuations introduced by stochasticity,
we compute the temporal autocorrelation function G(t) =
(x(#)x*(0)) of the associated oscillatory signal, where the star
denotes the complex conjugate. For the system specified by
Eq. (2), it assumes the form G(¢) = exp(i@t — kt), where the
effective frequency @ and the decorrelation rate k are given by

sine 1 —cose

o= w, k=
€ €

4)

Note that both the effective frequency and the decorrelation
rate are proportional to @, which is the only (inverse) time
scale in the system. Notably, the effective frequency & is
systematically smaller than the transition frequency w. This
difference is due to a “stroboscopic” effect: Starting from a
defined state ¢’ at time 0, Eq. (3) implies that the discrete
phase increment Ap = ¢ — ¢ att > 0 is Poisson-distributed
with mean and variance depending on m through ¢. For coarse
phase discretizations m, the tail of the Poisson distribution
can considerably extend into regions with phase increments
Ag@ > m; that is, for a given elapsed time interval, there is a
nonvanishing probability for the oscillator to advance by more
than one complete cycle. However, since the oscillatory signal
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x is m-periodic in ¢, a phase increment A¢ larger than m
leads to the same signal as the increment (A modm) < m,
implying that in this case, the oscillator seemingly goes more
slowly. As expected, in the limit of a continuous phase ¢ — 0,
we recover @ — w and k — 0.

Frequency fluctuations are commonly characterized by the
quality factor Q = @/(2mk) [18,37], which is independent of
the absolute frequency scale and corresponds to the number of
oscillations over which the oscillatory signal stays correlated,

1
~ 27 tan(e/2)’

For large phase discretizations m, the quality factor quickly
approaches the asymptotic behavior

Q )

0= -~ 1 om™) ©)
272 6m "

and becomes effectively linear in m. Hence, even to achieve a
very low quality factor of Q = 1, about m = 20 internal states
are required.

To make the connection to the Kuramoto model Eq. (1),
we derive the Langevin equation describing the system in the
large-m limit by a system size expansion [35]; see Appendix A.

This yields
do 2w
et — (D), (7
t m

where n is Gaussian white noise with (n(¢)) =0 and
(n(t)n(t")) = 8(t — t’). The noise strength grows with the
transition frequency w, a reflection of the fact that the quality
facto—which in the case of the Langevin equation (7) is
given by the linear term in Eq. (6)—depends only on the phase
discretization m but not the transition frequency w, which
provides the only time scale in the system and, therefore,
cannot affect any dimensionless physical quantity.

III. DESCRIPTION OF OSCILLATOR COUPLING

While the formalization of an uncoupled phase-discretized
oscillator seems straightforward, introducing coupling to such
a system opens a plethora of different possibilities, even
if coupling processes are constrained to a set of Poisson
processes running in parallel. A general formulation of
oscillator coupling inevitably introduces backward jumps of
the phase since the coupling strength may exceed the intrinsic
frequency of an oscillator and may therefore lead to a negative
dynamic frequency. While different stochastic formulations
can produce the same mean-field dynamics and/or the same
phase-continuous limit m — oo, fluctuations depend on the
details of the stochastic dynamics, e.g., whether for each
oscillator, (i) forward or backward jumps of the discrete phase
are independent processes running in parallel or (ii) whether,
at a given point in time, only forward or only backward
processes can occur depending on the phase relation to other
oscillators. We give a brief discussion of different possibilities
in Appendix B.

A. Stochastic Kuramoto model with discretized phases

With these different possibilities in mind, we can now write
a specific stochastic formulation of coupled phase-discretized
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oscillators. The probability P = P(¢y, ... ,pn,t) of N oscil-
lators with discrete states ¢y, ...,py € Z is governed by the
master equation

P . .
EEZZ wi+’<zci1ru(<ﬂj—<p;) P, (8

J

where the operators @; and f‘,— ; describe the stochastic dynam-
ics of intrinsic oscillations and coupling, respectively. As in the
Kuramoto model Eq. (1), ¥ > 0 denotes the coupling strength
and ¢;; is the adjacency matrix determining the coupling
topology. The intrinsic frequency operator @; assumes the
generic form

@ = oy (9,75 = 1), 9)

where w; is the transition frequency of oscillator i and where
we have used the ladder operator notation (f)ii, defined by [35]

PP (g, ... on.1). (10)

For a given 2 -periodic coupling function I'(¢) taking values
between —1 and 1, we define the coupling operator as

1+ T(lp+1D
— " o -
2
n 1 —T(ely 1D¢’;~+-
2

This specific formulation of the coupling term corresponds to
a biased discrete diffusion process on the discretized phase
space, where the bias dynamically depends on the phase
difference through the coupling function I'(¢); i.e., depending
on the phase difference, one of the processes ¢; — ¢; + 1 or
¢; — ¢; — 1 is favored. Note that the coupling operator given
by Eq. (11) does not explicitly depend on the index j of the
sending oscillator as compared to other discretization schemes;
see Appendix B.

Note that in Eq. (8), the expression in parentheses formally
resembles the r.h.s. of the Kuramoto model Eq. (1) with
parameters and functions promoted to Liouville operators. In
general, the phase discretization leads to two major differences
to the classical Kuramoto model Eq. (1): (i) oscillator dynamics
is now inherently stochastic and (ii) the coupling function is
sampled at discrete readout points determined by the phase
discretization.

,(pN,t)IP((pl,...,(pi:tl,...

ﬁij(¢) = 1

(1)

B. Linear noise approximation

To establish a connection to the classical Kuramoto model
Eq. (1), we carry out a system size expansion of the system
described by Egs. (8)—(11), formally interpreting the phase
discretization m as the system size. This enables to write down
a linear noise approximation (LNA) for the corresponding
stochastic governing equations for the physical phases ¢; =
e@;. Details on the derivation are given in Appendix A. The
resulting linear noise approximation for the physical phase is
given by

2 ~1
¢i(t) = O;(1) + ?Ei(t)'i‘ O(m™), (12)
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where ®; is a “macroscopic” phase variable obeying the
deterministic Kuramoto dynamics
do,;

L +”;%F<¢j — @) (13)

[cf. Eq. (1)], and §; is a random variable which is governed by
the Langevin equation
d§;

E=/c;c,~jI"(<I>j—q)i)(éj—fi)-i-«/mﬂi(t), (14)

where T is the derivative of the coupling function, n; is
Gaussian white noise with (n;(t)) =0 and (n;(t)n;(")) =
8;;6(t —t'), and p; is the effective noise strength for oscil-
lator i, given by

Hi = |wi| +«c;, (15)

where ¢; = Zi c;j is the total coupling weight of the oscil-
lators coupled into oscillator i. Equation (15) illustrates that
in our formulation of the phase-discretized system, noise has
two sources: the intrinsic oscillatory dynamics, as indicated
by the intrinsic transition frequency w; and already shown in
Eq. (7), but also coupling which, as an inherently stochastic
process, inevitably contributes noise to the system. For a
given oscillator i, coupling to each connected oscillator j
is an independent process; therefore, the total contribution
from coupling to its noise strength is proportional to the
total coupling weight c;. Hence, the net effect of coupling
on the synchronization and precision properties of the coupled
system are not immediately obvious. Note that in the limit of a
continuous phase m — 00, the phases behave as ¢; — ®; and
the classical Kuramoto model Eq. (1) for the physical phases
¢; is recovered.

Note also that for the master equation of the single
oscillator, Eq. (2), which has state-independent transition rates,
the derived linear noise approximation is exact up to second
order in the moments [38]. On the other hand, it is not a
priori obvious under which circumstances the linear noise
approximation Eqs. (12)—(15) is a good approximation for
the full model Egs. (8)—(11), as it involves (i) nonlinearly
state-dependent transition rates and (ii) entails an expansion
of the coupling function I', suggesting that its viability is
constrained to the vicinity of states for which I' is approxi-
mately linear around the occurring phase differences. In Sec. V
we demonstrate its effectiveness in describing steady-state
properties by numerical simulations.

IV. DYNAMICS OF TWO COUPLED OSCILLATORS

To gain some insights into the stochastic behavior of the
coupled system, we first investigate the simplest case of two
coupled oscillators without self-coupling, N =2 and ¢;; =
1 — ;. For concreteness, we consider the generic class of
coupling functions of the Kuramoto-Sakaguchi type in the
following [39]:

['(¢) = sin(¢ — ¢o), (16)

where ¢y € [0,27) is a constant phase shift. First, we ad-
dress the transient behavior of the oscillators approaching
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synchrony, followed by an analysis of the synchronization and
precision properties of the steady state.

A. Synchronization transient

The time-dependent phase coherence of the two oscillators
can be monitored via the Kuramoto order parameter, defined

by [5]

1 N
V@O =) x), (17)

i=l1

where N is the number of oscillators and x;(¢) = €¢#® is
the oscillatory signal associated with oscillator i, as before.
Usually, one considers the magnitude ||, which takes values
from O to 1 with || = 1 indicating perfect phase coherence
and |W| < 1 indicating the existence of phase lags between
oscillators. Here we focus on the squared magnitude ||,
which basically has the same interpretation but simpler
analytical properties. For two oscillators, the cross correlation
x(#) = {x1(t)x;(t)) contains the expectation value of [W|? in
its real part,

_ 1+Rex(t)
— .

Since | W |? is bounded, a value of p close to 1 indicates not only
a small average phase difference but also small fluctuations in
the phase difference. Figure 2 shows both p(z) as well as
Im x(¢#) (which together carry the same information as the
full cross correlation x) for different phase discretizations m
for two oscillators with unequal frequencies and an initially
maximally desynchronized state. After an initial transient,
the system approaches a steady state with a constant order
parameter and cross correlation

p(t) = (W @)) (18)

R = lim p(¢), X = lim (1), (19)
—>00 —>00
which depend on m.

Even though coarser phase discretizations typically entail a
lower degree of synchrony at steady state, such systems tend to
initially synchronize faster than system with a finer discretiza-
tion [see Fig. 2(a)]. To illustrate this behavior, we define, for a
system starting from the completely desynchronized state with
maximum phase difference, as two complementary quantities
the time 1, it takes for the order parameter to reach the absolute
value 1/2 and the time 7, it takes to reach a relative fraction v
of the steady-state order parameter R,

Th = min{z | p(r) > 1/2}, (20)

T, = min{t | p(t) > vR}. 20

Figure 3 shows the synchronization times as a function of
the phase discretization m for different values of v and
reveals an interesting behavior: The time to reach the absolute
order parameter p = 1/2 tends to decrease for coarser phase
discretizations even though the transition frequencies wj;
and the coupling strength « are kept constant [Fig. 3(a)].
In contrast, the time to reach a relative fraction of the
steady-state order parameter attains a distinct maximum for
finite discretizations [Fig. 3(b)]. Therefore, coarser phase
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FIG. 2. Synchronization transient for different values of m for
two coupled oscillators. (a) Kuramoto order parameter o, defined
in Eq. (18); (b) imaginary part of the cross correlation x(¢) =
(x1(t)x3(1)). Dots show averages over stochastic trajectories of the
phase-discretized model Eq. (8) with the coupling function Eq. (16);
the red solid line shows the result for the classical Kuramoto model
Eq. (1); and dashed horizontal lines show the exact steady-state
solutions, given by Eqgs. (24) and (C6), respectively. Parameters are
w =0.75 0w, =125,k =1,¢9 =0.

discretizations can facilitate faster initial synchronization even
though they eventually reach a smaller phase-coherence and
take a longer time reach the vicinity of their steady state.

B. Steady-state phase coherence

How does the steady-state phase coherence depend on
the phase discretization? And how does this compare to the
synchronized state of two coupled Kuramoto oscillators with

0.0

L | el MR 0 faram| el L n
10" 102 108 10" 102 108
m m

FIG. 3. Synchronization time towards the steady state as a
function of the phase discretization m for two coupled oscillators.
(a) Time 71, it takes to reach the order parameter 1/2, defined by
Eq. (20); (b) time T, it takes to reach a fraction v of the steady-state
order parameter R, defined by Eq. (21). System parameters as in
Fig. 2.
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FIG. 4. Phase coherence of the two-oscillator system for different phase discretizations. Plots show the expectations values of the steady-state
order parameter R and the imaginary part of the cross correlation X for different configurations. Solid lines show the exact solutions, given by
Egs. (24) and (C6), respectively; dots show time averages of simulated stochastic trajectories of length 7 = 2000; dashed and dotted horizontal
lines show the corresponding results for the classical Kuramoto model. (a, a") Zero intrinsic frequencies: w; = w, =0, k = 1, ¢o = 0; (b, b')
Equal intrinsic frequencies: w; = w, = 1, ¢y = 0, for k = 1 (dark) and « = 0.25 (light); (c, ¢’) Unequal frequencies: w; = 0.75, w, = 1.25,
¢o = 0 with ¥ = 1 (dark) and ¥ = 0.2 (light); (d, d) Nonzero phase shift: w; = 0.75, w, = 1.25, k = 1, for ¢y = 7 (dark) and ¢y = 7 /4
(light). Insets show the corresponding exact solutions for a larger range of the phase discretization m (note the logarithmic scale of the m axis).

detuning? Let us briefly recapitulate some results from the
classical Kuramoto model [40,41]. There, the system assumes
a phase-locked steady state if coupling is strong enough to
overcome the frequency difference between the oscillators,
that is, if |y| < 1 where

o —

= — 22

2K COS ¢y 22)
In this case, the order parameter is given by
1 + sign(y)y/1 — 2

R = 3 . (23)

Hence, in terms of the intrinsic frequencies, the order pa-
rameter is determined by the absolute frequency difference
|w; — w,| in a monotonic way. For |y| > 1, both oscillators
phase drift with respect to each other and the time average of
the order parameter is 1/2.

In the case of the phase-discretized model, nonlinear cou-
pling combines with stochasticity and therefore, an analysis
is more involved. Nevertheless, an exact solution for the
steady-state order parameter R and the cross correlation X
[Egs. (19)] can be constructed; see Appendix C for a derivation.
Without loss of generality, we consider the case w; > 0,
wy = 0 for which the resulting order parameter is given by

m—1
1
R=-[1+R A, — A,

(24)

where A, can be represented as the continued fraction

m—1 1
Ap=—K A =- ; (25)
= )\'l‘l + )Ln+l+ !
g
Am—1
with
hy = (w1 + wy + 2x) tan(rn/m) — i(w; — a)z). 26)

K COS ¢

Interestingly, the order parameter R depends not only on
the frequency difference w; — w; but also on the frequency
sum w; + w, through A,. This reflects the fact that in
the stochastic system, the degree of noise depends on the
frequency scale [cf. Eq. (7) and the discussion below]. Due
to its combinatorial complexity, the exact solution given by
Egs. (24)—-(26) is somewhat opaque; therefore, we give a
few explicit expressions for small phase discretizations m in
Appendix C.

Figure 4 shows the order parameter R and the imagi-
nary part of the cross correlation X as a function of the
phase discretization m for different frequency detunings
and coupling strengths, both from numerical simulations of
stochastic trajectories (dots) and the exact solutions given by
Egs. (24) and (C6) (solid lines). For many generic parameter
combinations, the order parameter monotonically increases
with finer phase discretizations. However, in a few cases, the
behavior of the order parameter and the cross correlation show
some remarkable features. First, even at coupling strengths
below the classical critical value that ensures || < 1 we detect
partial synchrony, i.e., an order parameter R > 1/2 [bright
curve in Fig. 4(c), corresponding to y = 1.25], indicating that
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FIG. 5. Steady-state order parameter R as a function of the phase
discretization m for different coupling strengths « for two coupled
oscillators, as given by Eq. (24). Dashed lines show the Kuramoto

limitm — oo, given by Eq. (23). The other parameters are w; = 0.75,
wy; = 1.25, ¢o = 0 as in Fig. 4(c).

the system spends a larger time in regions with small phase
differences. Second, while in all cases the order parameter
approaches the Kuramoto value in the limit m — oo, the
convergence is not always monotonic. In fact, there are phase
discretizations m for which the degree of partial synchrony
becomes maximal. This is exemplified by the bright curve
in Fig. 4(c) and in Fig. 5, where the order parameter is
displayed for different coupling strengths and up to very fine
phase discretizations. The curves below the critical coupling
strength k. = |w; — w,|/2 exhibit a nonmonotonic behavior
with a distinct maximum for a finite phase discretization.

This behavior can be illuminated as follows: In the
deterministic case m — 00, the phase difference Y = ¢ — ¢»
of both oscillators is governed by the Adler equation dy//dt =
—dv/dyr with v(Y) = —(w; — W) — 2k cos ¥ [40], where
for simplicity, we have considered the case of zero coupling
phase shift, ¢y = 0. Therefore, the phase difference ¥ can
be interpreted as the position of an overdamped particle
moving in the tilted washboard potential v(y) [42,43]. The
dynamic drift velocity —dv/dy is symmetric around phase
differences ¥, = (2n + 1) /2 with n € Z, which correspond
to an order parameter of p = 1/2. Therefore, if averaged
over time, contributions from order parameters larger and
smaller than 1/2 exactly cancel out. In the case of finite
phase discretizations m, the system is stochastic and it tends
to spend a larger time in states with p > 1/2. The reason
for this can be understood by considering the Adler equation
in the presence of noise and interpreting it as the governing
equation of an overdamped Brownian particle in the potential
v(1). (In the case of the phase-discretized system, we may
think of a “discrete” potential whose increments determine the
transition rates between states with different discrete phase
differences.) For subcritical coupling strengths x < k., the
potential v is (i) monotonic in ¥, (ii) convex in regions with
o > 1/2, and (iii) concave in regions with p < 1/2; the latter
can be seen by rewriting its second derivative as a function of
the order parameter, d>v/dy> = 4k (p — 1/2). Therefore, the
particle leaves regions with p < 1/2 on the steepest slope of
the potential, making it unlikely to return into the regions due
to fluctuations, whereas it leaves regions with p > 1/2 where
the potential is most shallow, rendering return events due to
fluctuations much more likely.
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FIG. 6. Order parameter R (left column) and mean quality 2
(right column) as a function of the phase discretization m and the
coupling strength « for two coupled oscillators. The panels show
the two cases of (a,b) equal frequencies, w; = w, = 1; and (c,d)
unequal frequencies, w; = 0.75, w, = 1.25. The coupling phase shift
is ¢0 =0.

C. Oscillator precision at steady state

It is well known that besides promoting synchronization,
coupling can lead to an improvement of the oscillator preci-
sion, i.e., often damps frequency fluctuations [44]. However,
in the phase-discretized system, coupling not only tends to
synchronize oscillators but is itself also a source of noise
[cf. Eq. (15) and the discussion below]. Hence, the effects of
coupling on oscillator precision are not immediately obvious.
To quantitatively assess these effects, we again consider the
quality factor of the oscillators (see Sec. II), now for the
coupled case: from the numerically obtained autocorrelation
functions G;(t) = (x;(t)x;(0)) of the two oscillators i = 1,2,
we obtain the quality factors by a fit with the exponential
exp(id;t — k;t) as Q; = @; /2w k;. From this, we compute the
mean quality factor 2 = (Q; + Q»)/2 as a proxy for the
quality of the coupled system. Figure 6 shows the steady-state
order parameter R and the steady-state quality factor 2 as
a function of the phase discretization m and the coupling
strength « for the case of equal frequencies [Figs. 6(a)
and 6(b)] and the case of unequal frequencies [Figs. 6(c)
and 6(d)]. Remarkably, while the order parameter R follows
the general trends studied in the previous section, the quality
factor 2 exhibits certain optima along the coupling strength
axis. In the case of equal frequencies [Figs. 6(a) and 6(b)] for
a given phase discretization, increasing the coupling strength
beyond the optimal value contributes more noise to the system
than coupling is reducing. The location of this optimum
depends on the intrinsic frequencies of the oscillators and for
detuned frequencies, we consequently find two optima along
the coupling strength axis [Fig. 6(d)]. It is also interesting to
note that there is no obvious correlation between synchrony
and precision along the coupling strength axis, so that a high
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degree of phase synchrony can indeed be accompanied by
large frequency fluctuations.

V. SYNCHRONIZATION OF MANY OSCILLATORS

We now turn to the dynamics of systems with larger
numbers of oscillators and choose the classical case of an
all-to-all coupled system to illustrate their behavior. For a
system without self-coupling, the corresponding normalized
adjacency matrix is given by ¢;; = (N — 1)71(1 — §;;).

A. “Mean-field” formulation of the all-to-all coupled system

For an all-to-all coupling topology, the original Kuramoto
model with sinusoidal coupling function can be rewritten in
such a way that each oscillator individually couples to the
order parameter W, also called the “mean field” [17]. The
same is possible for the phase-discretized stochastic system
specified by Egs. (8)—(11) and (16), which can be rewritten in
the form [45]

aP

_ A AMF,
o= Z {& + kM (@, W)} P, 27)
where W is the Kuramoto order parameter defined in Eq. (17)
and the coupling operator I"'MF is given by

A NWe v — 1 .
i = 3 [im {2 ol ] g
o=%+ o

(28)

where we have introduced the notation [x]+ = (1 & x)/2. Note
that this rewriting also drastically reduces the computational
effort to simulate the model [46].

Likewise, the corresponding linear noise approximation
Egs. (12)—(15) can be recast in the form

9% b5 rsin— i —do), (29
— =w; t+ ———r — &; — ¢o),

a TN 0
d§;

prie #{7005(& — @ — o)

—r& cos(Y — ®; — o)} + /uini(t),  (30)

where u; = |w;| +« is the effective noise strength for
oscillator i, n; is Gaussian white noise with (n;(¢)) =0
and (n;(t)n;(¢")) = 8;;6(t —t’), and where we have used the
definition of the two global quantities

i 1 iD; ~ iy 1 id;
re"’:NZe 7, re'p:NZEje 7 (31)
j j

The first quantity is the Kuramoto order parameter associated
with the “macroscopic” phases ®; and the second one con-
volves the macroscopic phases with the random variables &;.

B. Synchronization transient

As for the case of two coupled oscillators, we assess the syn-
chronization transient and the steady-state phase coherence for
the many-oscillator system. To this end, we consider the case
of homogeneous frequencies w; = w. Figure 7(a) illustrates
the synchronization transient by showing the time-dependent

PHYSICAL REVIEW E 96, 032201 (2017)

order parameter p(t) = (|¥(¢)|?) for different numbers of os-
cillators and phase discretizations [cf. Fig. 2(a)]. Figures 7(b)
and 7(c) show the synchronization time ty, [Eq. (20)] to reach an
order parameter of p = 1/2 from complete desynchronization
as well as the time t, [Eq. (21)] to reach a fraction v = 0.95
of the steady-state order parameter R. Note that for coarse
phase discretizations, the system may not reach an order
parameter of 1/2 at all, in which case the time 1}, is undefined
[Fig. 7(b)]. Generally, the shown synchronization times,
which characterize the nonlinear transient from complete
desynchronization to synchrony, increase with the number of
oscillators N but can exhibit a nonmonotonic behavior in the
phase discretization m for a large enough number of oscillators.

C. Steady-state phase coherence and oscillator precision

Turning to the steady-state phase coherence, Fig. 7(d)
shows the steady-state order parameter R as a function of the
phase discretization for different numbers of oscillators (dots)
as well as a comparison with the linear noise approximation
(curves) Egs. (29)—(31). While the order parameter increases
monotonically in the phase discretization, the behavior for
larger numbers of oscillators hinting at a synchronization
transition for a finite value of the phase discretization [dark data
set and arrowhead in Fig. 7(d)]. This transition is likely related
to the synchronization transition of the classical Kuramoto
model in the presence of noise, where partial synchrony is
enabled when the noise strength drops below a critical value
that depends on the coupling strength [6]. However, while in
our case, the phase discretization is clearly associated with the
effective noise strength [cf. Eq. (7)], it also introduces other
effects such as sampling of the coupling function at discrete
readout points, which may alter the behavior of the system
apart from introducing fluctuations.

In the spirit of Sec. IV C, we next assess the quality factor
as the dimensionless ratio of the oscillation time scale and
the exponential decay rate of the autocorrelation function.
Figure 7(e) shows the steady-state quality factor Q computed
from the average autocorrelation from all oscillators. We find
a massive increase in oscillator precision when the phase
discretization reaches values for which also the onset of partial
synchrony is observed; cf. Fig. 7(d). As expected, the quality
factor also increases with the number of oscillators, a behavior
that is well known for coupled phase oscillator systems in
general [44]. Figures 7(d) and 7(e) also suggest that for both
the steady-state order parameter as well as the quality factor,
the LNA specified by Eqgs. (29)—-(31) provides an excellent
approximation in the limit of fine phase discretizations.

D. Onset of synchronization for inhomogeneous frequencies

Finally, we illustrate the behavior of many phase-discrete
oscillators with inhomogeneous frequencies in the all-to-all
coupled system Eq. (27). To this end, we consider an ensemble
of systems with quenched disorder, i.e., with intrinsic transi-
tion frequencies w; drawn from a specific distribution f(w)
but fixed for each realization of the system. This scenario is
well studied for the classical Kuramoto model with unimodal
and symmetric distributions f: In the thermodynamic limit
of infinitely many oscillators, N — oo, this system exhibits
a second-order synchronization phase transition at the critical
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FIG. 7. Synchronization and precision properties for systems of many oscillators. (a) Synchronization transient as indicated by the
time-dependent Kuramoto order parameter p [Eq. (18)] for different phase discretizations and numbers of oscillators. (b, ¢) Synchronization
times as defined in Egs. (20) and (21) as a function of the phase discretization for different numbers of oscillators, analogous to Fig. 3 for
the case of two oscillators. (d, e) Steady-state order parameter R and quality factor Q as a function of the phase discretization for different
numbers of oscillators for the full phase-discrete system (dots) and the linear noise approximation (curves), given by Egs. (29)—(31). The m
axes in panels d and e are the same. System parameters are w; = 1,k = 1, ¢y = 0.

coupling strength k. = 2/(;w f(0)) [5,17]. We here draw the
transition frequencies w; from a Cauchy distribution centered
around zero,

11
flo)y=—

7 l+w? (32)
so that for the classical Kuramoto model in the thermodynamic
limit, the phase transition occurs at k. = 2. Figure 8 shows the
order parameter R as a function of the coupling strength k
for different phase discretizations m and the Kuramoto limit
m — oo. Phase discretization decreases the limiting amount
of synchrony and in some cases, even completely prohibits
partial synchronization where the classical model is able to
partially synchronize (see m = 5 curve in Fig. 8). Again, the
LNA given by Eqgs. (29)-(31) provides good agreement with
the phase-discretized model in the limit of fine discretizations.

VI. DISCUSSION

In this paper, we have presented a stochastic generalization
of the Kuramoto model with discretized phases and investi-
gated its synchronization behavior as well as its frequency
fluctuations. Remarkably, while the phase-discretized model
converges towards the deterministic Kuramoto dynamics in
the limit of a continuous phase, many key observables
exhibit a nonmonotonic behavior. This leads to optima in the
steady-state synchrony and oscillator precision for finite phase
discretizations, which can exceed the corresponding values of
the deterministic Kuramoto model. These features arise from
an interplay of different effects that are a consequence of the

phase discretization such as discrete sampling of the coupling
function and the inherent stochasticity of the coupling process.

The discretization schemes introduced here enable a
straightforward implementation of coupled stochastic oscil-
lations in a Markov chain setting and can be useful in coupling
cyclic dynamics to mesoscopic systems. Such systems might
include, e.g., chemical reaction networks [36] and stochastic
models of cell fate dynamics [47], where cyclic processes
may effectively depict periodic extrinsic signals such as
the cell cycle [23], circadian rhythms [19,25], or periodic
signaling activity [24]. Moreover, it is straightforward to
computationally generalize the phase-discretized model to the
case of non-Markovian transitions between phase states that
entail nonexponential waiting time distributions [48].

Here we have only taken a glimpse at the phenomena that
can arise when phase-discretization of Kuramoto oscillators
is combined with stochastic dynamics. To illustrate their
behavior, we have chosen the generic cases of two oscillators
and many oscillators with all-to-all coupling; therefore, we
could not address the spatiotemporal dynamics of spatially
distributed systems such as those with short-range (e.g.,
nearest-neighbor) interactions, which may give rise to in-
teresting patterning phenomena [32]. Moreover, we have
chosen a generic but contingent discretization scheme for
the coupling process (see Appendix B). It will be interest-
ing to unfold the dynamics of different model realizations
and to apply the proposed discretization schemes to, e.g.,
Kuramoto oscillators with inertia [49-51] and excitable dy-
namics [42] as well as time-delayed coupling [41,52-54] and
signal filtering [55,56], which goes beyond the Markovian
approach.
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FIG. 8. Synchronization transition with the coupling strength as control parameter. The plot shows numerical results for the steady-state
order parameter R as a function of the coupling strength « for the model defined by Eqgs. (27)—(32) for different phase discretizations m (colored
dots) as well as for the linear noise approximation (LNA) given by Eqgs. (29) and (30) (blue curve) and the deterministic Kuramoto model
Eq. (1) (red curve). Simulations involve N = 500 oscillators and averages are taken over 25 realizations of the frequency distribution.
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APPENDIX A: LINEAR NOISE APPROXIMATION OF THE
PHASE-DISCRETIZED MODEL WITH COUPLING

In this Appendix, we derive the linear noise approximation
Egs. (12)—(15). To this end, we perform a system size
expansion of the system specified by Eqs. (8)-(11) in the
standard way [35]. The phase discretization m is a natural
candidate for the system size €2 as large m lead to a more
continuous phase. For the oscillator system with phases
¢ = (g1, - .. ,0n), we define the “macroscopic” phases ® (that
follow deterministic dynamics) and the random components
£ through the relation ¢ = Q® + +/Q& where Q =¢~! =
m/2m. Furthermore, we define the probability distribution W
for the random components as W (€,r) = P(¢(&),t). The next
steps consist in calculating the time evolution of W, expanding
in powers of +/Q and comparing coefficients. The coefficients
of /Q yield the equation

oW do; ow
i a_%‘l7 = Xl: w; + K ;ciﬂ’(d)j — q),) a—%_i,

(A1)
whereas the coefficients of Q° result in

aW_Z 3 Jloil +x 3, cij ow
ot - ; 351 2 351

—K ZC,‘jF/(CDj —®)E; &)W, (A2)
J

where I' is the derivative of the coupling function. Equation
(A1) describes the deterministic evolution of the macroscopic
phases ®;, while Eq. (A2) is a Fokker-Planck equation for the

random components &;. The correspondence between Fokker-
Planck and Langevin stochastic differential equations [35]
enables to immediately write Eqgs. (12)—(15) from Egs. (A1)
and (A2). In the case of no coupling, k = 0, Egs. (13) and (14)
reduce to d®; /dt = w; and d&; /dt = /|w;|n;(t), so that the
linear noise approximation Eq. (7) derived for Eq. (2) follows
from Eqgs. (12)—(15) and w; > 0.

APPENDIX B: ALTERNATIVE GENERALIZATIONS
OF COUPLING

In this Appendix, we schematically discuss different possi-
bilities to generalize the coupling term in a phase-discretized
setting. To this end, we consider the Kuramoto model Eq. (1)
for the case of two coupled oscillators without self-coupling
and w; = w; = 0. Schematically, the time evolution of os-
cillator i = 1,2 can now be written as d¢; /dt = K;, where
K; represents the dynamical frequency contribution from its
coupling term. For simplicity, here we neither address the
dependence of the K; on the phases nor their implicit time
dependence; these do not add any qualitative features to
our considerations. We now illustrate different possibilities
to generalize the coupling term by considering different
stochastic processes (denoted by A, B, and C) for two discrete
random variables ¢; and ¢, which all have in common that
their expectation values satisfy d(g;)/dt = K;.

For case A, we introduce four non-negative rates kf”, ki, k;r R
and k; , with the only constraint that they satisfy k;” — k; =
K;. The stochastic dynamics is defined by the master equation

8PA : o(r—0
WZZZ’% (977 — 1) Pa, (B1)

i=1 o==%

where Ppn = Pa(¢1,¢2,t) and the (f)ii are ladder operators, as
defined in Eq. (10). Equation (B1) describes a system in which
the forward and backward processes ¢ — ¢ + landgp — ¢ — 1
are independent for each oscillator, leading to four parallel
processes with rates kii. In this case, stochastic reactions do
not conserve the total number ¢; + ¢,. The coupling type
investigated in this paper [Eq. (11)] follows this spirit.
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The stochastic dynamics of case B is defined by

8PB 2
Z K | Z@(UK) — 1) Pg, (B2)

Eq. (B2) describes a process in which for each oscillator at
each point in time, depending on the sign of K; either the
process ¢ — ¢ + 1 or ¢ — @ — 1 can occur, as indicated by
the Heaviside function ®. A coupling in this spirit only admits
a positive or negative frequency contribution at each point in
time and importantly has zero contribution to the stochastic
dynamics if K; = 0. This is not the case for coupling type A,
where K; = 0 only imposes k;“ =k; .

Case C is possible only if K; = K = —K>; this is the case,
e.g., for symmetric bidirectional coupling ¢;; = ¢;; and an odd
coupling function such as I'(¢) = sin ¢. Here we introduce two
non-negative rates k* and k~ with the only constraint that they
satisfy k™ — k=~ = K and define the stochastic dynamics by

P
—C—Zk" 577@5 — 1) P, (B3)

Eq. (B3) describes a process in which the forward process
¢ — ¢+ 1 in one oscillator is always accompanied by a
backward process ¢ — ¢ — 1 in the other oscillator, leading to
the “exchange of phase quanta” between the two oscillators and
strict conservation of the total number ¢; + @,. It is clear that
such a coupling type only works for symmetric coupling as any
coupling-induced reaction will affect both oscillators involved.

This list of generalizations is by no means exhaustive and
only gives a flavor of the different types of implementations
of the stochastic coupling process. For instance, additional
possibilities arise from the differences in how oscillators
might internally process the coupling signals from different
oscillators, e.g., whether they are processed independently
[56] or first integrated and then processed as a whole [55]. The
adequate formalization to describe a specific system depends
on the physical implementation of the coupling process.

APPENDIX C: STEADY-STATE ORDER PARAMETER AND
CROSS CORRELATION OF THE TWO-OSCILLATOR
SYSTEM

In this Appendix, we derive Eq. (24) for the steady-state
expectation value of the order parameter for two coupled
phase-discretized oscillators. First, we obtain a master equa-
tion for the discrete phase difference 6 = ¢; — ¢, by using
Eq.(8)for N = 2and¢;; = 1 — §;; and marginalizing over one
of the discrete phase variables, P, = Zw P(p1,01 — 0,1).
For simplicity, we only consider the case w; > 0, w; > 0; the
other cases follow analogously. Hence, we obtain the master
equation for P as

P . .
8? = (a)l(e -1 +w2(9+ -1

+2K{Z[ﬁ(89 +08)],0° — 1}) P, (C1

o=%

where A are the ladder operators for the phase difference
and where we have used the same convention for [-]+ as in
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Eq. (28). Here I'(¢) = [[(¢) — I'(—¢)]/2 is the odd part of
the coupling function and for the Kuramoto-Sakaguchi-type
coupling Eq. (16), this evaluates to [(¢) = cos(¢p) sin(¢).
Next, we define the steady-state expectation values X, =
(e"?) and using the master equation (C1), we obtain their
time evolution as

— Dwy + (€77 = Dy

dx AP©,t
8_” — SZ ( ) msb‘ {( ine

ot
+ 2k [cos(ne) — 111X,
— Kk cos(¢o) sin(ne)(Xn+1 — Xn-1). (C2)

The key observation is that from the definition of the X,, and
& = 2m/m, it follows that Xg = 1 and X,, = 1, so that the
set of equations given by (C2) constitutes a closed hierarchy
for the X,, with 0 < n < m. At steady state, d X, /dt = 0, this
yields the following set of algebraic equations:

Xo =1,
Xy = Xp1 — XnJrl I<n<m—-1),
X =1, (C3)

where the A, are defined in Eq. (26). Solving this hierarchy
starting from n = m — 1, each expectation value X, can be
expressed in terms of the next lower expectation value X,,_;.
It can be shown by induction that this leads to the generic form

m—1
x—]_[A—Axn1 1<n<

i=n

m — 1), (C4)

where the A, satisfy the nonlinear recurrence relation

1
An An+1 - )\n ' (CS)
with initial condition A,, = 0. The continued fraction Eq. (25)
is the solution to this recurrence relation as is obvious from
repeatedly inserting Eq. (C5) into itself. Since the cross
correlation is given by X = X, its exact solution is obtained
from Eq. (C4) as

m—1

x=[]a-a. (C6)

and Eq. (24) for the order parameter follows from this via
Eq. (18)as R = (1 + Re X)/2.

Since the solution given by Eq. (C6) is somewhat opaque
due to its combinatorial complexity, we here give explicit
expressions for X for small m,

V3p+qg—1
X|m:2 - Oa X|m:3 - #a
3p?—qg* —1
1 1 —3¢7!
X|m:4=—7 X|m—6=|: +p qi| s
P—q V3p—gq V3
where
o+ o+ 2 w1 —w
T kcosgy T Kkcosgy
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