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Phase transition and power-law coarsening in an Ising-doped voter model
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We examine an opinion formation model, which is a mixture of Voter and Ising agents. Numerical simulations
show that even a very small fraction (∼1%) of the Ising agents drastically changes the behavior of the Voter
model. The Voter agents act as a medium, which correlates sparsely dispersed Ising agents, and the resulting
ferromagnetic ordering persists up to a certain temperature. Upon addition of the Ising agents, a logarithmically
slow coarsening of the Voter model (d = 2), or its active steady state (d = 3), change into an Ising-type power-law
coarsening.
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I. INTRODUCTION

Statistical mechanics models, initially intended to describe
certain physical systems, find numerous applications outside
the realm of physics [1]. The best example is probably the
Ising model, which, introduced as a model of ferromagnetism,
has been used to study collective phenomena in various
nonphysical systems [2]. Particularly interesting nonphysical
applications of the Ising model are related to opinion for-
mation. This is not surprising because the dynamics of the
Ising model actually tries to align neighboring spins, similarly,
perhaps, to humans deciding on their political, religious, or
consumer preferences. Certainly, the opinion formation is a
process influenced by many factors and to take them into
account, more complex models are needed. Some approaches,
for example, emphasize the role of “influentials” for an opinion
to spread [3], while some others suggest that a critical mass of
individuals is needed [4]. There are also models that implement
the concept of social impact [5] or social influence [6,7].
Other studies take into account heterogeneity of the interaction
networks [8] as this aspect of social links seems to be very
important [9]. In the aforementioned models, an opinion is
represented as a discrete variable and an attempt to unify a class
of such models was made by Galam [10]. Models with opinions
represented as continuous variables were also examined [11].

For physicists, a very appealing model of opinion formation
is the so-called Voter model [12]. The dynamics of the Voter
model is very simple: at each step a randomly selected voter
takes an opinion of its randomly selected neighbor. Such
tendency to align with the neighbors suggests a similarity to
the Ising model, however, some subtle dynamical differences
result in quite different dynamics of these models. For our
purposes, we only need to mention that the Ising model for both
dimensions, d = 2 and d = 3, undergoes a finite-temperature
transition between ferromagnetic and paramagnetic phases
[13]. Moreover, its low-temperature coarsening is curvature-
driven, which is a consequence of a positive surface tension
[14]. Actually, the curvature-driven dynamics is not restricted
to Ising(-like) models. For example, the dynamics of certain
opinion-formation models generates an effective surface ten-
sion, as a result of which such models share some dynamical
similarities with the Ising model [15]. With this respect, the
Voter model turns out to be different and its dynamics is known

to be tensionless [16]. Consequently, its coarsening dynamics
for d = 2 is much slower than in the Ising models, while for
d = 3 the Voter model does not coarsen at all. It should be
emphasized that such a behavior of the Voter model is known
from its exact solution [17].

Taking into account the heterogeneity of a human popula-
tion and the multiplicity of factors affecting opinion-formation
processes, a homogeneous model, wherein each agent acts in
accordance with the same rules, must certainly be unrealistic.
The qualitatively different dynamics of the Ising and the Voter
models prompted us to examine a model being a mixture of
them. Naively, one might expect that with this strategy, it is
the largest fraction that determines the behavior of the model,
however, in the present paper we show that this is not always
the case.

II. MODEL

In our model, we consider a d-dimensional Cartesian lattice
of linear size L with periodic boundary conditions. On each
site i of the lattice, there is an agent, represented as a binary
variable si = ±1, which evolves according to the Ising- or
Voter-model dynamics. Initially, each agent is assigned the
type of dynamics, to which it is subject: with probability p

the agent is set to operate according to the heat-bath Ising
dynamics, and with probability 1 − p according to the Voter
dynamics. Our model is thus a quenched mixture of the Ising
and Voter variables. An elementary step of the dynamics is
defined as follows:

(i) Select an agent, say i.
(ii) If the variable si is of the Ising type, update it according

to the heat-bath dynamics, namely, set as +1 with probability

r(si =1) = 1

1 + exp(−2hi/T )
, hi =

∑

ji

sji
, (1)

and as −1 with probability 1 − r(si=1). The temperature-like
parameter T controls the noise of the system and the summa-
tion in Eq. (1) is over the nearest neighbors of the agent i.

(iii) If the variable si is of the Voter type, select one of its
nearest neighbors, say j , and set si = sj .
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For the purpose of dynamical simulations, we define a unit
of time (t = 1) as N elementary steps, where N = Ld is the
number of sites.

Let us notice that models combining two kinds of dynamics
have already been examined. For example, Hurtado et al. [18],
motivated by the nonequilibrium behavior of interfaces in
some disordered systems, analysed an Ising model with spin
variables evolving according to the heat-bath dynamics but
with a randomly switched temperature. In our case, however,
the type of the dynamics used by a given agent is initially
assigned and kept fixed. Moreover, our model combines two
qualitatively different dynamics, which, as we will show, leads
to somewhat unexpected behavior.

III. RESULTS

To analyze our model, we used numerical simulations.
Only for p = 1, the model preserves the detailed-balance
condition and is a dynamical realization of the equilibrium
Ising model. For p < 1, the relation with the Ising model is
lost, nevertheless, for convenience, we still use the terminology
and quantities such as in ordinary Ising model simulations.
We measured magnetization m = 1

N

∑
i si and energy E =

− 1
N

∑
〈i,j〉 sisj , where the summation is over pairs of the

nearest neighbors. We also calculated the high-temperature
(at m = 0) variance of magnetization χ = 1

N
(
∑

i si)2, which
up to the temperature factor is the analog of the Ising model
susceptibility. Since our model incorporates certain quenched
disorder, to calculate m,E, or χ we also averaged over
independent samples (due to self-averaging, sample-to-sample
fluctuations are not large and usually ten samples were
generated). To have some insight into the dynamics of our
model, we measured at T = 0 the time dependence of the
excess energy δE = E − E0, where E0 is the energy of
a perfectly ferromagnetic configuration (ground state). Of
course, E0 = −2 for d = 2, and E0 = −3 for d = 3. During
coarsening, the so-called characteristic length l increases as
l ∼ tφ and, since δE ∼ l−1 [19], it implies that δE ∼ t−φ . In
the Ising model driven by the heat-bath (i.e., nonconservative)
dynamics, φ = 1/2 is expected [14].

A. d = 2

First, we describe the results of simulations for p = 0.7.
In such a case, the concentration of Ising agents is large and
the existence of a ferromagnetic ordering at low temperature
is not surprising (Fig. 1). Indeed, voters (of a rather small
concentration 1 − p = 0.3) might be considered here as a per-
turbation (quenched dynamic disorder) to the pure Ising model.
Since Ising agents are distributed with concentration above the
percolation threshold (pc = 0.592 . . . [20]), an intuition based
on the studies of Ising models on diluted lattices [21] suggests
that perhaps also in this case the ferromagnetic ordering
should exist for sufficiently low temperatures. Indeed, our
simulations show that the phase transition for p = 0.7 takes
place at T ≈ 2.2, which is only slightly lower than the critical
temperature in the pure Ising model (Tc = 2.269 . . . [22]).
The peak of the susceptibility around T = 2.2 gives further
evidence of such a transition (Fig. 2). We do not estimate the
critical exponents β and γ , describing the behavior of m and
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FIG. 1. Temperature dependence of the absolute average magne-
tization |m| in the two-dimensional model. Simulations were made
for L = 1000 with simulation time t = 5 × 105. For each temperature
the initial configuration was ferromagnetic (si = 1). To reach the
stationary regime, the model relaxed and the relaxation time was
equal to the simulation time.

χ at the criticality, but it is, in our opinion, quite plausible that
they take the pure Ising values (β = 1/8 and γ = 1.75).

For lower concentrations of Ising agents, p = 0.3, 0.1,
and 0.01, basically the same behavior can be seen (Figs. 1,
2). Taking into account that such concentrations are below
the percolation threshold, the existence of an apparently
similar phase transition is quite surprising. Indeed, below the
percolation threshold, Ising agents form only finite (separate)
clusters, which, nevertheless, get aligned at a sufficiently low
temperature, arguably due to Voter agents acting as some kind
of a correlating medium. Although the surrounding Voter
agents are not directly exposed to the thermal noise, at a
sufficiently large temperature such a ferromagnetic ordering is
destroyed. Let us notice that this behavior is observed even for
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FIG. 2. Temperature dependence of susceptibility χ in the two-
dimensional model. Simulations were made for L = 1000 with
simulation time (equal to relaxation time) t = 5 × 105. For each
temperature, the initial configuration was ferromagnetic (si = 1).
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FIG. 3. Time dependence of the energy difference δE for d = 2
and several values of p. Simulations were made for T = 0, L = 2000
and the results are averages over 100 independent samples. For p = 1,
the least square fit to our data in the range 102–105 gives δE ∼ t−φ

with φ = 0.501(2).

a very small concentration of Ising agents p = 0.01. Checking
whether it extends to any p > 0 would require, however,
further analysis and more extensive simulations.

Our results show that at high temperature, even a tiny
fraction of Ising agents can destroy the dynamics of the Voter
model: due to a destabilizing effect of Ising agents, the system
does not evolve toward a single-opinion state but remains in
the m = 0 state. In the context of opinion formation, it shows
that the Voter model is actually very fragile with respect to
agents operating according to the Ising dynamics.

We also examined the T = 0 dynamics of our model
starting from a random initial configuration. In particular, we
calculated the time dependence of the average excess energy
δE = E − E0. For the Ising model (p = 1), our results (Fig. 3)
confirm the expected δE ∼ t−1/2 decay [14]. Let us notice,
however, that in such a case the system not always end up in a
homogeneous ground state, but might get trapped in a certain
metastable configuration. Such configurations, which appear
also during the coarsening of the d = 3 model [23,24], consist
of some stripes and its formation is shown in Fig. 4 (left panel).
A very good agreement of our estimation of φ = 0.501(2) with
the expected value 1/2 shows that formation of such structures
does not affect the asymptotic decay of δE.

The Voter agents, present in our model for p < 1, introduce
the so-called interfacial noise [16,25]. Such noise precludes
formation of stripe-like configurations (Fig. 4), but the fluc-
tuations that it generates might slow down the dynamics.
As a result, φ slightly varies with p (Fig. 3). For example,
for p = 0.5, we obtain φ = 0.433(5), and for smaller p, φ

seems to increase. Even for a very small fraction of Ising
agents, p = 0.01, the fit for the data with 104 < t < 105 gives
φ = 0.482(5), which is close to the Ising value 1/2. Only
for p = 0, when our model becomes equivalent to the Voter
model, we observe a much slower, and perhaps logarithmically
slow, decay of δE, which is consistent with the exact solution
[17]. Thus, the dynamical characteristics also show that the
tensionless Voter model dynamics in the presence of even

FIG. 4. Time evolution of the d = 2 model at T = 0 and for
p = 1 (left) or p = 0.1 (right) at t = 102 (top), t = 103 (middle), and
t = 104 (bottom), starting from a random initial configuration. For
the pure Ising model (left), the horizontal stripe will smooth out and
the system will get stuck in a metastable configuration. Simulations
were made for L = 300.

a very small fraction of Ising agents is replaced with the
curvature-driven dynamics. Definite resolution whether for
0 < p < 1 the exponent φ takes the Ising value 1/2 or is
somewhat smaller (possibly varying with p) might require
longer simulations. Let us notice, however, that φ = 0.45 was
already reported for some other nonequilibrium models with
absorbing states [26–29].

Stability of voter dynamics and its possible split into Ising
and directed percolation transition was examined in some other
models with symmetric and double degenerate absorbing states
[28–30]. Similarly to our work, these studies also indicate
fragility of voter dynamics albeit with respect to some other
perturbations, e.g., longer range of interactions.

B. d = 3

We also analyzed the behavior of the d = 3 version of our
model. The steady-state magnetization behaves similarly as in
the d = 2 case. For large concentration of Ising agents (p =
0.8), the phase transition takes place around T = 4.5 (Fig. 5),
which is close to the d = 3 Ising model value 4.511 . . . [31].
However, a similar behavior can be seen for the concentration
of Ising spins p = 0.01 with only a slightly reduced transition
temperature.
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FIG. 5. Temperature dependence of the absolute average magne-
tization |m| in the three-dimensional model. Simulations were made
for L = 100.

An estimation of the exponent φ based on T = 0 coarsening
dynamics for Ising model gives φ = 0.358(2) (Fig. 6), which is
considerably lower than 1/2. A similar value (φ ∼ 0.35–0.37)
was reported also in some other studies [19] and it was
suggested that a slower kinetics might be related to formation
of stripe-like structures [23]. Actually, T = 0 coarsening of
the d = 3 Ising model leads to the formation of even more
complex and slowly evolving structures [32,33] and it seems
that we have only limited understanding of the process [34,35].

For p < 1, our results show that δE decays in very good
agreement with φ = 1/2. In our opinion, the interfacial noise
generated by the Voter agents roughens interfaces (Fig. 4),
which might suppress formation of metastable stripe-like
configurations and eventually restore the φ = 1/2 dynamics.
Only for p = 0, we observe that δE saturates at a positive
value, which confirms that the Voter model for d = 3 remains
in an active phase with a mixture of opinions [17].
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FIG. 6. Time dependence of the energy difference δE for d = 3
and several values of p. Simulations were made for T = 0, L = 300
and the results are averages over 100 independent samples. Dashed
thick line has a slope corresponding to φ = 1/2.

Our results show that, similarly to the d = 2 version, as few
as 1% of the Ising agents drastically change the Voter model
dynamics. At zero temperature, it induces the φ = 1/2 coars-
ening dynamics, although the pure Voter model remains disor-
dered (and does not coarsen) for d = 3. Moreover, at low tem-
perature such small fraction of Ising agents is able to support
a ferromagnetic ordering. Similarly to the d = 2 case, Voter
agents might be considered as correlating sparsely distributed
Ising agents. However, while for d = 2 the correlating effect
of the Voter agents seems plausible (the d = 2 Voter model
exhibits a slow coarsening), for d = 3 it is somewhat surprising
because in this case the Voter model remains disordered.
Overall, in the d = 3 case, the dynamics of the Voter model is
also very fragile with respect to perturbation with Ising agents.

IV. CONCLUSIONS

The Ising and the Voter models are two very important
models in statistical mechanics. Although in both models, there
is a tendency for neighboring spins/agents to align at the same
value, certain dynamical differences lead to a much different
behavior. In the Ising model, a surface tension, present at low
temperatures, induces the so-called curvature-driven dynamics
with a characteristic power-law coarsening. In the Voter model,
the surface tension is absent and the model either coarsens
very slowly (d = 2) or does not coarsen at all (d = 3). In
the present paper, we analyzed a model being a mixture of
these two models. As a main result, we show that the Voter
model dynamics is very unstable and even a very small (∼1%)
fraction of Ising agents changes the tensionless dynamics into
the curvature-driven Ising-like dynamics with a power-law
coarsening and a finite-temperature phase transition. Since
the Ising agents are distributed much below the percolation
threshold, it means that it is the Voter agents that correlate the
Ising ones. While for d = 2, the Voter model slowly coarsens
and this correlating effect seems plausible, for d = 3 it is
more surprising. Probably, the density of the Ising agents
p examined in our simulations is still sufficiently large so
that a Voter medium can correlate them. Possibly, at a lower
concentration p such correlation would not take place and the
system would remain disordered. Verifying such a scenario is,
however, left as a future problem.

In the context of opinion formation, our results show that
in the two-dimensional case, a single-opinion state, asymptot-
ically reached in the pure Voter model, becomes destabilized
by a small fraction of the Ising agents provided that they are
kept at a sufficiently large temperature. Let us notice that the
Ising agents might be also interpreted as voters, though such
that take into account the opinion of the majority rather than
that of a randomly selected neighbor. The so-called majority
Voter model was extensively studied and its close relations to
the Ising model are firmly established [36,37]. In our model, in
the three-dimensional case, a small fraction of the Ising agents
can order the Voter agents provided that the Ising ones are
kept in a sufficiently low temperature. It would be certainly
interesting to examine our model on complex networks, which
seem to be more suitable to describe social interactions.

In statistical mechanics, there is a lot of examples showing
that the Ising dynamics emerges in a number of systems, also
nonequilibrium ones, provided that their dynamics preserves
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an up-down symmetry [38]. Although the Voter model also
satisfies the up-down symmetry, its somewhat specific dynam-
ics seems to be an exception. We have shown, however, that
this exception is actually very fragile and when exposed to
a small perturbation, it is replaced with a robust Ising-like
dynamics.
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