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Macroscopic violation of the law of heat conduction
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We analyze a model describing an anharmonic macroscopic chain in contact with general reservoirs that
follow the Lévy-Itô theorem on the Gaussian-Poissonian decomposition of the measure. We do so by considering
a perturbative approach to compute the heat flux and the (canonical) temperature profile when the system reaches
the steady state. This approach allows observing a macroscopic violation of the law of the heat conduction
equivalent to that found for small (N = 2) systems in contact with general reservoirs, which conveys the
ascendency of the nature of the reservoirs over the size of the system.
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I. INTRODUCTION

From the ancient Egyptians—to whom the first accounts on
the nature of heat are accredited—continuing with pre-Socratic
philosophers and later on with eminent figures in the History of
Science, it took 3000-off years and Joule’s experimental work
to reach a proper definition of heat as the amount of energy that
is transferred between a system and its surroundings but in the
form of whatever kind of work (mechanical, chemical, etc.) [1].
Two decades earlier than “The Mechanical Equivalent of Heat”
experiment [2]—and still within the caloric theory—Fourier
had established his law stating that the (local) heat flux
density, �h, is equal to the product of thermal conductivity,
κ , by the negative (local) gradient of the temperature T , �h ≡
−κ �∇T , which has been proved thermodynamically correct.
With the advent of statistical mechanics—namely, kinetic
theory—it was possible to connect mechanical microscopic
mechanisms with Fourier’s law [3]. In due course, the same
microscopical effort was made aiming to figure out the
phenomenon of heat transport in crystals in contact with
reservoirs at different temperatures, TC and TH (TC < TH )
[4,5]. Soon, it was realized that because of the ballistic
character of the transmission of the energy, by the harmonic
lattice, models of harmonic coupled oscillators are unable to
retrieve Fourier’s macroscopic behavior; actually, they yield
infinite heat conductivity with subsequent dynamically based
studies showing that favorable mixing properties assure normal
heat transport properties to a system [6] while ergodicity
apparently plays a secondary role [7].

Along with the microscopic mechanical features of the
system through which heat is transferred, it must be recalled
that the thorough characterization of this nonequilibrium prob-
lem must take the reservoirs into account. Markovian matters
apart, heat reservoirs are assumed as thermal baths—described
by either deterministic or stochastic analytical formulations,
each presenting its pros and cons [8,9]—yielding Gaussian
fluctuations, i.e., presenting a purely continuous Lévy-Itô
measure [10] with a single source of stochasticity: the variance.
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The most typical instances are the Nosé-Hoover thermostat
for the former and the Langevin thermostat for the latter.
With respect to a stochastic approach to the reservoirs, they
allow the employing of a quite useful arsenal of techniques
and simplifications in the treatment of Gaussian variables
that are provided by both stochastic calculus and probability
theory. Nevertheless, the concept of reservoir goes beyond the
thermal (heat) classification: in several physical and biological
processes we have mechanical(-like) systems in contact with
sources of energy which do not abide by the canonical
conditions of thermodynamics to be classified as thermal—and
thus they are called athermal reservoirs—different from other
types of sources that act upon the system by performing pure
work or exchanging information [11,12].

By reason of their statistical features, athermal reservoirs
have been analytically represented by processes other than
Gaussian and Brownian. For instance, the shot-noise Pois-
sonian process can be used to represent athermal reservoirs
which interact with the system at a rate λ, and effective
force of magnitude �(t). When 〈�(t)〉 �= 0 these reservoirs
can be understood as work performing reservoirs, whereas
when 〈�(t)〉 = 0 they only change the average energy of the
system by stochasticity (variance and higher-order cumulants)
and therefore they are viewed as heat sources. The former
can be depicted by some types of molecular motors or
experimental implementations of ratchets [13,14], whereas
the latter can be represented by a (little dense) granular gas
[15] or bacterial colonies [16] as well as problems described
by generalizations of the Onsager-Machlup fluctuation theory
of the second order in time [17]. It is worth mentioning
that Poissonian noise has been attracting the attention of the
physical community due its applications in a wide set of phe-
nomena, such as (i) solid-state problems wherein shot (singular
measure) noise is related to the quantization of the charge
[18]; (ii) resistor-inductor-capacitor circuits with injection of
power at some rate resembling heat pumps [19]; (iii) surface
diffusion and low vibrational motion with adsorbates, e.g.,
Na/Cu(001) compounds [20]; (iv) biological motors in which
shot noise mimics the nonequilibrium stochastic hydrolysis
of adenosine triphosphate [21–23]; (v) molecular dynamics
when the Andersen thermostat is applied [24]; (vi) the use
of detectors based on Josephson junctions in order to probe
higher-order cumulants in fluctuating currents [25,26]; and
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(vii) study of shape fluctuations of red blood cell membranes
[27]. Concomitantly, other sorts of noises have been considered
aiming at better depicting the properties of the source of
fluctuations in the system [17,28–33].

Recently, work by two of us, as well as other groups,
has put the impact of the nature of the reservoirs on the
thermostatistical properties of a mechanical system in the
limelight, namely, on the heat conduction of small mechanical
systems—actually dimers [34,35]. Explicitly, it was shown that
in straightforwardly applying the standard equipartition rela-
tion between temperature and mean-square velocity implies
awkward results such as having the average heat flux with a
“colder” to “hotter” reservoir direction, a clear violation of the
law of heat conduction. Within this context, it was introduced
[36], and later extended in [37], the concept of temperature of
higher order as a way out to amend the inconsistencies between
quantitative results and good sense.

Nonetheless, it is well established that the thermodynamical
limit plays a crucial role in the results obtained in statistical
physics; for example, the physical relevance of the fluctuations
vanishes rapidly as the number of elements of the system
increases so that we can match microscopical results of
statistical mechanics with macroscopical formulas of thermo-
dynamics. It is thus reasonable to ask whether such oddities
in the thermostatistical behavior of small systems coupled to
athermal reservoirs endure as we increase the size of the system
or, contrarily, in the large system limit we end up obtaining
standard results. The answer to that question corresponds to
the goal of the present article, which is divided as follows:
in Sec. II, we introduce the mathematical equations that rule
the dynamics of our system: massive particles similar to the
β-Fermi-Pasta-Ulam [38,39] problem in contact with thermal
and/or athermal reservoirs. In Sec. III, we analytically char-
acterize our method of solution and apply it to the Gaussian
bath—for which the results are known—and the quintessential
athermal reservoir (the Poissonian case). We present our
results on the statistics of heat flux and whether the previous
results regarding heat flux inversion persist for macroscopic
chains. Finally, in Sec. IV we address further comments on our
results and provide some hints about future work.

II. MODEL AND SOLUTION METHOD

As mentioned, the mechanical part of our (non-momentum-
conserving) system corresponds to N particles with mass m

each, subjected to an anharmonic β-Fermi-Pasta-Ulam [38]
interaction potential between them and harmonic pinning to a
substrate—with constants k′ for the edge and k for the bulk—
analytically given by

m
d2x1

dt2
= −γ

dx1

dt
− k′x1 − k1(x1−x2) − k3(x1−x2)3 + η1,

m
d2xl

dt2
= −kxl − k1(2 xl − xl+1 − xl−1) − k3(xl − xl−1)3

− k3(xl − xl+1)3,

m
d2xN

dt2
= −γ

dxN

dt
− k′xN − k1(xN − xN−1)

− k3(xN − xN−1)3 + ηN, (1)

where the edge particles l = 1 and l = N are in contact with
the reservoirs, which is represented by (linear) dissipation
and a stochastic component η that is the only term that can
introduce positive variations of the energy of the system.
Recently, the importance of the interaction between the system
and the substrate, namely, in the elimination of the cuspidal
temperature profile in a chain [40], was presented in [41].

Thermally, the solution to this problem is obtained by
resorting to the continuous Lévy-Itô measure of the stochastic
terms η where

〈η(t)〉c = 0,

〈ηl(t)ηn(t ′)〉c = 2γ Tl δln δ(t − t ′), (2)

with Tl representing the temperature of each reservoir (l =
1,N ), which allows the definition of the associated Fokker-
Planck equation, whence the calculation of the local average
heat flux

〈Jl〉 ≡ −
〈
vl

∂U (xl,xl+1)

∂xl

〉
(3)

=
〈{

[−k1(xl − xl+1) − k3(xl − xn)3]
vl + vl+1

2

}〉
(4)

is made by employing the eigenvalue method. In the steady
state this value is the same for all the particles.

For cases without a full continuous measure, the Lévy-
Itô theorem on the decomposition of the measure asserts the
singular part of a stochastic variable is written in the form of
a Poisson (shot-noise) process

η(t) =
∑

l

�(t)δ(t − tl) (5)

(l is the sequential order of the lth shot) that physically
we bridge with the athermal character of the reservoir [42].
For the sake of simplicity, we shall assume a homogeneous
process λ(t) = λ.1 Despite being possible to consider several
distribution functions for �(t), we will restrict our study to the
standard family of exponential probability density functions2

P (�) = �̄−1 exp

[
−�

�̄

]
, �n = n! �̄n, (6)

namely, its two side extension,3 p(�) ∼ exp(−|�|/�̄), so that
there is no contribution from the work to the flux, which is
produced when 〈η〉 = λ〈�〉 �= 0 (see details in Appendix C).
In the white-noise cases, the cumulants of the athermal
reservoir are defined by the cumulants

〈η(t1) · · · η(tn)〉c ≡ λ〈�̄n〉
n−1∏
i=1

δ(ti+1 − ti). (7)

1Studies over the statistics of single-particle heterogeneous Poisson
systems [42] have shown that they can bring about stochastic
resonance phenomena that have not been explored in the case of
heat transport yet.

2We use the notation · · · for statistics over time and 〈· · · 〉 for
statistics over samples.

3Also known as Laplace probability density function.
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Heeding the Marcinkiewicz theorem, there must be an infinite
number of nonvanishing cumulants, contrarily to the case
of the thermal Gaussian case where there must be just
one nonvanishing cumulant: its source of stochasticity—the
variance that is associated with temperature of reservoir. In
the limit λ → ∞ and fixing 〈η2(t)〉 we get standard thermal
features. The picture is as follows: as λ increases, the rate of
interaction between the system and the bath grows to such
an extent that the overall effect is well described taking into
account the central limitheorem as in the standard Einstein’s
Brownian motion theory.

Physically, it is possible to verify equipartition of energy, re-
lating quadratic energy terms (on the degrees of freedom) with
the second-order cumulant of η(t), as analytically shown in
[36,42]. Hence, it is possible to define a canonical temperature

T ≡ 1

2

λ 〈�2〉
γ

. (8)

For athermal cases, represented by Poisson variables,
Eq. (5), it is blatantly impossible to turn to continuous mea-
sure methods. Recently, a method based on Fourier-Laplace
transforming the dynamical equations was able to provide the
full statistical characterization of the position and velocity as
well as thermostatistical quantities for monomers and dimers
[37,43]; in the present case, we explore a multivariate version
of that perturbative technique. Explicitly, we note that the
typical energy scales of our chain regarding the harmonic and
cubic interactions are, respectively,

Uh = k1x
2

2
, Unl = k3x

4

4
. (9)

As we want to consider the Uh much larger than Unl—so
that the first-order approximation is already effective—our
treatment obeys the condition

Unl

Uh
� 1 →

k3x
4

4
k1x2

2

= k3x
2

k1
∼ k3TN

k2
1

≡ δ � 1, (10)

where in the last step of Eq. (10) we have used the equipartition
theorem (to which we shall return). Here, it is important to
mention that the introduction of nonlinearities in the potential
has no effect on the value of 〈v2〉 and hence on the canonical
temperature of a system whatever the type of reservoir [36,37].
Under the last inequality of Eq. (10), it is possible to expand
all the coordinates in terms of a power series of δ, given by

xl = x(0)
l + δx(1)

l + δ2x(2)
l + · · · . (11)

The equations of motion (1) can be recast in the form

m
d2xl

dt2
= Dlnxn + η + k3fl(xp), (12)

where D(t) is a N × N operator,4x(t) ≡ {x1(t), . . . ,xN (t)}
is the vector of the positions, η(t) ≡ {η1(t),0, . . . ,0,ηN (t)}
represents the multivariate stochastic variable describing the
fluctuations introduced by the reservoirs, and fi(xp) is an inte-
gral operator representing the cubic interparticle interactions

4The form of operators, A(s) and D(s), is made explicit in
Appendix A.

in the chain. Plugging Eq. (11) into Eq. (12) and truncating the
expansion to first order in δ,

m
d2xl

(0)

dt2
+ mδ

d2xl
(1)

dt2
= Dlnx(0)

n + δDlnx(1)
n + η

+ δ
k2

1

TN

fl

(
xp

(0)). (13)

The zeroth order in δ corresponds to

O(δ0) → m
d2xl

(0)

dt2
= Dlnx(0)

n + η, (14)

and the first order explicitly reads

O(δ1) → m
d2xl

(1)

dt2
= Dlnx(1)

n + k2
1

TN

fl

(
xl

(0)
)
. (15)

Without loss of generality, assuming the initial condition
xl(0) = 0 and vl(0) = 0 for all l, the Fourier-Laplace trans-
forms [44] of the position and velocity read, in the reciprocal
space

x̃l(iq + ε) ≡
∫ ∞

0
xl(t)e

−(iq+ε)t dt, (16)

and

ṽl(iq + ε) = (iq + ε)x̃l(iq + ε), (17)

respectively.
Looking to the matrical form of Eq. (1), the Fourier-Laplace

transform yields

D̃(iq + ε)x̃(iq + ε) = η̃(iq + ε)

x̃(iq + ε) = Ã(iq + ε)η̃(iq + ε), (18)

whereA ≡ D−1. From Eq. (18), the position of particle l yields

x̃l(iq + ε) =
∑

n=1,N

Ã(s)ln(iq + ε)η̃n(iq + ε). (19)

Similarly, from Eq. (15), we have the column vector for the
first-order perturbation of the position

x̃l
(1)(iq + ε) = k2

1

TN

Ãln(iq + ε)f̃n

(
xp

(0)
)
(iq + ε). (20)

In this steady-state nonequilibrium problem, we can apply
the (weak) ergodic property of equivalence between averages
over time,

g ≡ lim
�→∞

1

�

∫ �

0
g(t)dt, (21)

and over samples, 〈g〉, where g represents a generic stochastic
function. This property allows us to directly benefit from the
Fourier-Laplace representation by means of the final-value
theorem [44]

g = lim
z→0

z

∫ +∞

0
exp[−zt]g(t)dt

= lim
z,ε→0

∫ +∞

−∞

dq

2π

z

z − (iq + ε)
g̃(iq + ε), (22)

g = 〈g〉 = lim
z,ε→0

∫ +∞

−∞

dq

2π

z

z − (iq + ε)
〈g̃(iq + ε)〉. (23)

Because in the stationary state the heat flux is the same
between next-nearest-neighbor sites of the chain, we simplify
our calculations by restricting our calculations to the heat flux
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between particles 1 and 2. Combining Eqs. (4) and (23) we obtain

〈J1〉 = lim
z,ε→0

∫
all space

dq1

2π

dq2

2π

z(iq2 + ε)

z − (iq1 + iq2 + 2ε)

⎧⎨
⎩k1

2
〈[̃x1(iq1 + ε) − x̃2(iq1 + ε)][̃x1(iq2 + ε) + x̃2(iq2 + ε)]〉︸ ︷︷ ︸

I

⎫⎬
⎭

+ lim
z,ε→0

∫
all space

dq1

2π

dq2

2π

dq3

2π

dq4

2π

z(iq4 + ε)

z − (iq1 + iq2 + iq3 + iq4 + 4ε)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k3

2
lim
α→0

∫
all space

3∏
l=1

dql

(2π )3
〈[̃x1(iql + α) − x̃2(iql + α)][̃x1(iq4 + ε) + x̃2(iq4 + ε)]〉

︸ ︷︷ ︸
II

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (24)

whose form will depend on the form of the cumulants of η(t), as shown in Appendix B.

III. RESULTS

A. The usual case: Gaussian heat reservoirs

This instance corresponds to the traditional case where we have the system put in contact with thermal reservoirs at temperatures
T1 and TN , each following Eq. (2). Since we work in the Fourier-Laplace space, we must transform Eq. (2) which reads

〈η̃l(iq1 + ε)η̃n(iq2 + ε)〉c = 2γ Tl

iq1 + iq2 + 2ε
δln, (25)

whereas all the other cumulants are equal to zero.
Plugging Eq. (25) into Eq. (24) we obtain the steady-state heat flux with standard thermal reservoirs,

〈J 〉G = γ 2 �T

π

∫ ∞

−∞
(iq + ε)2 Ã1N (iq + ε)Ã1N (−iq − ε) dq + 6γ 2k1k3

⎧⎨
⎩

N∑
j=2

[
T 2

1 I
[j ]
4

(
I [j,j−1]

3 + I [j,j−1]
7

)

+ T1TN

(
I [j,j−1]

3 I [j ]
6 + I [j ]

4 I [j,j−1]
5 + I [j ]

6 I [j,j−1]
7 + I [j ]

4 I [j,j−1]
8

)+ T 2
NI

[j ]
6

(
I [j,j−1]

5 + I [j,j−1]
8

)]+
−

N−1∑
j=1

[
T 2

1 I
[j ]
4

(
I [j,j ]

3 + I [j,j ]
7

)+ T1TN

(
I [j,j ]

3 I [j ]
6 + I [j ]

4 I [j,j ]
5 + I [j ]

6 I [j,j ]
7 + I [j ]

4 I [j,j ]
8

)+ T 2
NI

[j ]
6

(
I [j,j ]

5 + I [j,j ]
8

)]⎫⎬⎭
+ 6γ 2k3

[
T 2

1 I
[1]
4 I1 + T1TN

(
I [1]

4 I2 + I [1]
6 I1

)+ T 2
NI

[1]
6 I2

]
, (26)

where the first term [O(k0
3)] in the limit N → ∞ equals

〈J 〉G = γ k2
1

m�2 (� − √
�2 − �2)�T, (27)

with

� = 2k1γ
2

m
+ 2k1(k1 + k − k′), � = (2k1 + k)γ 2

m
+ (k1 + k)2 + (k1 − k′)2 − 2k′k, �T ≡ TN − T1. (28)

The expressions for I [r]
n , I [j,l]

n , I1, and I2 are defined
in Appendix B. In Fig. 1, we show a comparison between
the analytical results given by Eq. (26) and the numer-
ical results obtained by computer simulation of Eq. (1),
where it is possible to notice an excellent agreement be-
tween the two approaches for the conditions presented in
Eq. (10).

At this point, we observe that, despite the fact that the ana-
lytical framework we employ is valid for undefined N , for the
sake of simplicity and swiftness, we will restrict comparisons
between analytical and simulation results to chains of size
N = 10, which can be considered macroscopically large, as
visible from Fig. 2.

B. Beyond the standard thermal case: Assuming Poisson
reservoirs

Let us now turn to the case where instead of having
usual (thermal) reservoirs, we have reservoirs that contain
singular measure as well. For the sake of clarity, we consider
the simplest case for which all of the measure is singular:
(shot-noise) Poissonian reservoirs defined by Eq. (7). In the
Fourier-Laplace space they read [42]

〈ηα(iq1 + ε) . . . ηα(iqn + ε)〉c ≡ λα

〈
�̄n

α

〉∑n
j=1(iqj + ε)

∀n∈N and α = 1,N. (29)
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FIG. 1. The heat current in a chain with N = 10 particles and
γ = m = k′ = k1 = 1 and k = 1

2 in contact with thermal reservoirs
at TC = 1 and TH = 2. The solid blue line represents the analytical
results given by Eq. (26), whereas the points stand for the numerical
results obtained by the computer simulation of Eq. (1) following a
second-order implementation scheme as presented in [45].

For the general case of two Poissonian reservoirs, we
employ definitions Eq. (29) in Eq. (4) and obtain

〈J 〉P =
∞∑

n=0

kn
3

∑
P

�
∏

{l}∈P

〈�l〉
∫

C(P)
n (q,k1,k,m,γ,λ1,λN )dq,

(30)

where P corresponds to the possible partitions of a block of
size n and {l} ∈ P specifies the exponents in the partition that
is equal for both reservoirs (�A ≡ A1 − AN ).

Recalling that these reservoirs allow defining a canonical
temperature, Eq. (8), and resorting the definition of cumulants
of temperature of nth order [36]

Tn ∝ k3

k2
1

〈ηn〉c = k3

k2
1

λ〈�n〉, (31)

Eq. (30) can be recast to read

〈J 〉P = −κlin�T +
∞∑

n=1

∑
P

κ (P)
n (λ) · �

∏
{l}∈P

Tl . (32)

In first order in k3 and assuming a symmetrical amplitude of
the noise, the flux across the chain is just composed of heat

FIG. 2. The heat current in a chain of size N with γ = m =
k′ = k1 = 1 and k = 1

2 in contact with two reservoirs at temperatures
T1 = 1 and TN = 2 vs N−1 as given by Eq. (26).

and Eq. (32) expands into

〈J 〉P = −κlin�T + κ
(′)
1 (λ)�T4 + κ

(′′)
1 (λ)�T 2 + · · · . (33)

In Eqs. (32) and (33), κlin is the conductance for linear systems
[4] and we define κ (P)

n (λ) as the nth-order conductances. Our
calculations permit us to grasp that, at each order of k3 we
consider, we call for higher-order cumulants of ηα , i.e., higher
sources of stochasticity enter into action. Understanding that
the first order of stochasticity—〈η2

α〉c—is related to heat (i.e.,
a source of energy), higher-order cumulants can be viewed as
higher orders of heat. The 〈v2

i 〉 and 〈x2
i 〉 profiles show that

these sources do not affect the kinetic but affect only potential
energy instead.

As k3 vanishes, we stop activating the higher sources of
energy established by the high-order cumulants and every
κ (P)

n (λ) zeros out. On the other hand, in the limit of continuous
measure λ → ∞, cumulants greater than second order fall off
and only the κ (P)

n coefficients related to terms �T n+1 live on
so that the sum of the full series yields

lim
λ→∞

〈J 〉P = 〈J 〉G = −κ�T . (34)

For the simpler situation in which the athermal Poissonian
reservoirs have the same λ, but different typical amplitudes,
�̄1,N , we have

〈J 〉P = 〈J 〉G + 12γ 2k1k3

λ

⎧⎨
⎩

N∑
j=2

[
T 2

1

(
I [j,j−1]

11 + I [j,j−1]
13

)

+ T 2
N

(
I [j,j−1]

12 + I [j,j−1]
14

)]+
−

N−1∑
j=1

[
T 2

1

(
I [j,j ]

11 + I [j,j ]
13

)+ T 2
N

(
I [j,j ]

12 + I [j,j ]
14

)]⎫⎬⎭
+ 12γ 2k3

λ

(
T 2

1 I
[1]
9 + T 2

NI
[1]
10

)+ O
(
k2

3

)
. (35)

The extra terms besides 〈J 〉G do not vanish in the limit
N → ∞; only in the limit λ → ∞—i.e., when the measure of
the noise approaches continuity and physically the athermal
reservoirs turn into effective thermal reservoirs [e.g., the (gran-
ular) gases in the reservoirs increase their densities and become
liquids]—the second and fourth terms on the right-hand side
vanish and the results of Eq. (26) are recovered. In other words,
in making the mechanical system—through which heat is
transferred between the two reservoirs—converge on the ther-
modynamic limit, we do not quell the impact of the athermal
properties of the reservoirs. The nonlinear mechanical features
of the system and the athermal properties—i.e., the existence
of higher-order cumulants (stochasticity)—of the reservoirs
continue coupling and we are still able to compute a singular
contribution to the heat flux.

Violating the law of heat conduction in a macroscopic
system. The finding that the nonlinear nature of the mechanical
system activates the higher-order stochasticity (nth cumulants
with n > 3) of athermal systems in the form of sources of
energy opened the door to microscopic violations of the
law of heat conduction [34] as well as the zeroth law of
thermodynamics [35] using an overdamped N = 2 system
where the heat flows on average from the colder to the hotter
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TN

Shaker

FIG. 3. Schematic representation of a pinned anharmonic chain
of arbitrary size N � 1. In contact with the particle “1” we put the
colder reservoir with temperature T1 corresponding to a granular gas
which hits a paddle with a rate λ leading to a stochastic force η1(t)
with a characteristic scale, �̄, so that T1 ∝ λ �̄2; on the other edge,
the particle “N” is in contact with a thermal reservoir at temperature
TN > T1. (Courtesy of Lucianno A.C.A. e Defaveri.)

reservoir. The results we have obtained in the previous section
prove that macroscopic systems keep on activating the higher-
order cumulants of η and having higher-order reservoirs acting
upon it. This means that in the case of general reservoirs—
analytically represented by a composition of Gaussian and
Poissonian noises according to the Lévy-Itô theorem—we can
still have inversion of the heat flux direction depending on the
balance between all the cumulants of η1 and ηN .

To illustrate this situation, we resort to the utmost situation
where we have a chain connecting the two extreme cases
with respect to the nature of the reservoir: an athermal (sym-
metrical) Poissonian reservoir—with canonical temperature
T1—e.g., in the form of a granular gas and a thermal reservoir
with TN > T1, as depicted in Fig. 3. This particular choice
on the reservoirs is made in furtherance of clearness only and
the assumption of more intricate cases would confirm our
conclusions.

Within this setup, and following our calculations, namely,
Eq. (4), the heat flux reads up to first order in k3,

〈J 〉P = 〈J 〉G +
⎧⎨
⎩

N∑
j=2

[
T 2

1

(
I [j,j−1]

12 + I [j,j−1]
14

)]

−
N−1∑
j=1

[
T 2

1

(
I [j,j ]

12 + I [j,j ]
14

)]⎫⎬⎭12γ 2k1k3

λ

+ 12γ 2k3

λ
T 2

1 I
[1]
10 , (36)

and a comparison between that equation and numerical
simulation obtained by integrating the equations of motion
Eq. (1) is presented in Fig. 4.

At first glance, the behavior shown in Fig. 4 seems
physically wrong. However, this reckoning is strongly based
on standard assumption that the temperature of a reservoir
is only related to the second-order cumulant of the noise.
For thermal reservoirs, this is correct because that is the
unique source of stochasticity, but a simplistic definition for
athermal cases, though. In that case, we have additional term
stochasticity, which physically translate into extra sources of
energy. This new term can actually excel the standard form of
heat and switch the direction of the flux, as our calculations
and simulations show.

Considering our fully nonequilibrium system, its physics—
i.e., the role of higher-order cumulants as sources of heat
flux is uncovered by relying on perturbation theory and the

FIG. 4. The heat current in a chain with N = 10 particles in the
conditions depicted in Fig. 3 with the following parameters with the
following values: T1 = 1.99, TN = 2, λ = 4, γ = m = k′ = k1 =
1, and k = 1

2 . The solid red line (AT) is computed considering one
athermal and one thermal reservoir and the dashed green line is for the
case of two thermal reservoirs (TT) under the same mechanical and
temperature conditions (the inset is a zoom), whereas the blue dots
are obtained by numerical simulation using the approach presented
in the Appendix of [42] to cope with the athermal reservoir. In both
cases, we use the first-order approximation, Eqs. (36) and (26). The
error bars computed at ±5 × 10−4 correspond to the error expected
from sampling over 108 measurements (the same would apply to the
symbols of the numerical simulations in the inset).

developing of Eq. (24)—becomes easier to understand when
we analyze the contribution from the higher-order cumulants
to the heat flux, namely, the second (negative) term inside the
curly brackets, that is added up with the canonical temperature
heat current.

IV. CONCLUDING REMARKS

In this article, we have cast light on the problem of heat
conduction between athermal reservoirs through macroscopic
mechanical systems. Those general reservoirs are described
by stochastic variables with a singular contribution to their
Lévy-Itô measures and therefore cannot be characterized by
solely establishing value of the variance, which is associated to
the temperature of the reservoir, but considering the entire set
of cumulants instead that are naturally understood as sources
of stochasticity.

Previous results on heat transport in small systems have
proven that the interaction between them and athermal reser-
voirs leads to a heat flux formula consisting of additional
terms that open the door to the violation of the law of
heat conductance. The key to unravel that paradox is the
understanding that the extra stochasticity provided by the high-
order nonvanishing cumulants defining athermal reservoirs act
upon the system as (higher-order) sources of energy, more
precisely, heat. These sources are called up when the system
presents nonlinearities and remain silent otherwise. In the latter
linear case, the heat flux will be controlled by the difference
between the temperature (originated from the stochasticity of
first order, the variance) of the reservoirs, whereas in the former
the tagging as “hotter” and “colder” of each of the reservoirs
depends on the cumulant structure and the level of nonlinearity

032143-6



MACROSCOPIC VIOLATION OF THE LAW OF HEAT . . . PHYSICAL REVIEW E 96, 032143 (2017)

in the system; explicitly, as Fig. 4 shows, the distinction
between hotter and colder when at least one of the reservoirs
is athermal depends on the level of nonlinearity in the system
because a given reservoir can be the hotter—in the sense that
on average the heat flows outward—up to some threshold value
k∗

3 and colder—with the heat flowing inward on the average—
after that (and vice versa). Moreover, an athermal reservoir
with the same canonical temperature T as that of a thermal
reservoir is always the “hotter” one in a nonlinear situation
since it will be possible to measure a heat flux athermal →
thermal set forth by the high-order cumulants. Equivalently,
we can consider two athermal reservoirs which show the same
canonical temperature, but a different cumulant structure [46];
in that case, the heat flux is still equal to zero when k3 = 0 and
depends on the cumulant structures, which rule the high-order
sources of energy of the reservoirs, for k3 �= 0.

In respect to heat transport, our present work shows the
nature of the reservoirs outclasses the scale of a mechanical
system through which heat flows, in the sense that for
a macroscopic (N � 1) nonlinear system in contact with
different athermal reservoirs we can still obtain the same
sort of paradoxical results as for small (N = 2) systems. That
provides further significance to the results of [34,35,37].

Bearing in mind the standard framework and the fact that
a “reverse” heat flow implies a decrease in the entropy, the
present result cues us in to a possible overall macroscopic
violation of the second law of the thermodynamics. At this
point, we must recall that athermal reservoirs are naturally
out of equilibrium: this means their existence involves a
continuous production of entropy which sets off the entropy
decrease that is taking place in the reservoirs plus chain
subsystem and hence the second law of thermodynamics is
still verified overall (a reasoning related to Haff’s law [47] on
this matter is introduced in Appendix D).

Last, we deem that the present result opens the door to
brand new studies within the problem of heat and energy
transport in low-dimensional nonequilibrium systems—this

time subjected to athermal reservoirs—and for which the
signal relation between the value of the average flux and the
difference between the canonical temperatures, as depicted by
Fourier law, can be modified. Having shown that, the natural
move is the assessment of scaling relations. From the decades
of studies on systems in contact with thermal reservoirs we
have learned that such relations are quite sensitive to the
mechanical details such as the existence of on-site interactions
(pinning) which break momentum conservation in the system
[4,41], the nature and magnitude of the nonlinearity of the
potentials [48,49]—either on the interactions between the
elements of the chain or the on-site potential [50–52]—or
mass dispersion among others [53]. With respect to theory,
future work on this type of systems should explore the relations
between heat flux and the specificities of the chain, namely, its
scaling ones. With respect to experiment, we expect that the
development of realistic apparatuses (similar to Fig. 3) will
allow measuring the predicted flux reversion.
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APPENDIX A: MATRIX FOR D(s) AND ˜A(s)

The matrix of dynamics, D(s), in Laplace space is written
as

D(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ms2 + γ s + k1 + k′ −k1 · · · · · · · · · 0
−k1 ms2 + 2k1 + k −k1 · · · · · · 0

0 −k1 · · · · · · · · · 0
...

...
. . . −k1 · · · 0

...
...

...
. . . · · · 0

...
...

...
. . . · · · 0

0 · · · 0 −k1 ms2 + 2k1 + k −k1
0 · · · 0 0 −k1 ms2 + γ s + k1 + k′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and its inverse is

Ã(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ã11(s) Ã12(s) Ã13(s) · · · · · · Ã1N (s)
Ã21(s) Ã22(s) Ã32(s) · · · · · · Ã2N (s)

...
...

. . . · · · · · · ...
...

...
...

. . . · · · ...
... · · · · · · · · · . . .

...
ÃN1(s) · · · · · · · · · · · · ÃNN (s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The elements Ã(s)ij have the structure

Ã(s)ij = a0 + a1s + a2s
2 + · · · + a2n−3s

2n−3 + a2n−2s
2n−2

Det[D(s)]
,

where n represents the dimension of the chain, and the ak are
different constants for each Ã(s)ij .

Taking the particular case N = 4 and using the parame-
ters k′ = k = k1 = γ = m = 1, D(s) and Ã(s) are written,
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respectively, as

D̃(s) =

⎛
⎜⎜⎝

s2 + s + 2 −1 0 0
−1 s2 + 3 −1 0
0 −1 s2 + 3 −1
0 0 −1 s2 + s + 2

⎞
⎟⎟⎠,

Ã(s) = 1

Det
[
D̃(s)

]
⎛
⎜⎜⎝
Ã(s)11 Ã(s)12 Ã(s)13 Ã(s)14

Ã(s)21 Ã(s)22 Ã(s)23 Ã(s)24

Ã(s)31 Ã(s)32 Ã(s)33 Ã(s)34

Ã(s)41 Ã(s)42 Ã(s)43 Ã(s)44

⎞
⎟⎟⎠,

where Det[Ã(s)] is

Det[D̃(s)] = s8 + 2s7 + 11s6 + 16s5 + 40s4 + 38s3

+ 54s2 + 26s + 21,

and for entries we have

Ã(s)11 = Ã(s)44 = s6 + s5 + 8s4 + 6s3 + 19s2 + 8s + 13,

Ã(s)12 = Ã(s)43 = s4 + s3 + 5s2 + 3s + 5,

Ã(s)13 = Ã(s)42 = 2 + s + s2,

Ã(s)14 = Ã(s)41 = 1,

Ã(s)21 = Ã(s)34 = s4 + s3 + 5s2 + 3s + 5,

Ã(s)22 = Ã(s)33 = s6 + s5 + 8s4 + 6s3 + 19s2 + 8s + 13,

Ã(s)23 = Ã(s)32 = s4 + 2s3 + 5s2 + 4s + 4,

Ã(s)24 = Ã(s)31 = 2 + s + s2.

APPENDIX B: INTEGRALS OF HEAT FLUX FOR
GAUSSIAN AND POISSONIAN BATHS

1. Integrals related to Gaussian bath

In order to clarify a little bit more of the analytical
computation, we show here the functions utilized to determine

the heat current in our work. As the expressions become so
lengthy, it is useful to introduce here some auxiliary functions
given by

χ±
{j,j+1}(iqm + α) = Ã{j,1}(iqm + α) ± Ã{j+1,1}(iqm + α),

�±
{j,j+1} (iqm + α) = Ã{j,N}(iqm + α) ± Ã{j+1,N}(iqm + α).

(B1)

We are now able to write down some integrals related to term
II. Considering the heat flux between the first and second
particles, one gets

I1 =
∫ ∞

−∞

dq1

2π
(iq1 + ε)χ+

{1,2}(iq1 + ε)χ−
{1,2}(−iq1 − ε), (B2)

I2 =
∫ ∞

−∞

dq1

2π
(iq1 + ε)�+

{1,2} (iq1 + ε)�−
{1,2} (−iq1 − ε).

(B3)

We now define a couple of variables which are useful to
term I:

�j (iq1 + ε) = Ã{1,j}(iq1 + α) − Ã{2,j}(iq1 + α),

�j (iq2 + ε) = Ã{1,j}(iq2 + α) + Ã{2,j}(iq2 + α), (B4)

allowing us to write the integrals which compose I and
II as

I [l,j ]
3 =

∫ ∞

−∞

dq1

2π
(iq1 + ε)�l(iq1 + ε)χ−

{j,j+1}(iq1 + ε)χ−
{1,2}(−iq1 − ε), (B5)

I [j ]
4 =

∫ ∞

−∞

dq2

2π
χ−

{j,j+1}(iq2 + α)χ−
{j,j+1}(−iq2 − α), (B6)

I [l,j ]
5 =

∫ ∞

−∞

dq1

2π
(iq1 + ε)�l(iq1 + ε)�−

{j,j+1} (iq1 + ε)�−
{1,2}(−iq1 − ε), (B7)

I [j ]
6 =

∫ ∞

−∞

dq2

2π
�−

{j,j+1}(iq2 + α)�−
{j,j+1} (−iq2 − α), (B8)

I [l,j ]
7 =

∫ ∞

−∞

dq1

2π
(iq1 + ε)�l(−iq1 − ε)χ−

{j,j+1}(−iq1 − ε)χ+
{1,2}(iq1 + ε), (B9)

I [l,j ]
8 =

∫ ∞

−∞

dq1

2π
(iq1 + ε)�l(−iq1 − ε)�−

{j,j+1}(−iq1 − ε)�+
{1,2} (iq1 + ε). (B10)

2. Integrals related to Poissonian bath

The main difference between the computation involving the Gaussian and Poissonian noises at first order in δ, comes from
terms related to averages over cumulants of fourth order. Besides the use of Wick theorem, the evaluation of this kind of term
makes use of Eq. (29) and consequently adds some extra integrals in the expression of the Gaussian case. The new contributions
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to the heat flux when the Poissonian is injecting energy into the chain are

I [j ]
9 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
χ−

{j,j+1}(iq1 + ε)χ−
{j,j+1}(iq2 + ε)χ−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε)χ+
{1,2}(iq3 + ε), (B11)

I [j ]
10 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
�−

{j,j+1}(iq1 + ε)�−
{j,j+1}(iq2 + ε)�−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε)�+
{1,2}(iq3 + ε), (B12)

I [l,j ]
11 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
(−iq1 − ε)χ−

{1,2}(iq1 + ε)�l(−iq1 − ε)χ−
{j,j+1}(iq2 + ε)

×χ−
{j,j+1}(iq3 + ε)χ−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε), (B13)

I [l,j ]
12 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
(−iq1 − ε)�−

{1,2} (iq1 + ε)�l(−iq1 − ε)�−
{j,j+1}(iq2 + ε)

×�−
{j,j+1}(iq3 + ε)�−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε), (B14)

I [l,j ]
13 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
(iq1 + ε)χ+

{1,2}(iq1 + ε)�l(−iq1 − ε)χ−
{j,j+1}(iq2 + ε)

×χ−
{j,j+1}(iq3 + ε)χ−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε), (B15)

I [l,j ]
14 =

∫
all space

dq1

2π

dq2

2π

dq3

2π
(iq1 + ε)�+

{1,2}(iq1 + ε)�l(−iq1 − ε)�−
{j,j+1}(iq2 + ε)

×�−
{j,j+1}(iq3 + ε)�−

{j,j+1}(−iq1 − iq2 − iq3 − 3ε). (B16)

APPENDIX C: THE WORKING NATURE OF A POISSON
RESERVOIR WITH NONZERO AVERAGE AMPLITUDE

In order to show that the work component of a Poisson
reservoir is removed we assume a reductio ad absurdum–like
approach by considering the equation of motion of a particle
in contact with a Poissonian (shot-noise) bath, attached to a
linear spring and subject to gravity

mÿ = −ky2 − mg − γ ẋ + η, (C1)

where η is a Poisson white noise.
Analytically that noise is given by

〈η(t1) · · · η(tn)〉c = λφnδ(t1 − t2)δ(t − t ′) · · · δ(tn−1−tn). (C2)

The initial condition is y(0) = ẏ(0) = 0.

Laplace-Fourier transforming the equation of motion we
get

ỹ(s) = − mg

sR(s)
+ η̃(s)

R(s)
,

where R(s) = ms2 + γ s + k = m(s2 + θs + ω2) = m(s
− κ+)(s − κ−), where κ± = (−θ ± i

√
4ω2 − θ2)/2.

Considering that

y(t) =
∫ ∞

0
dt δ(t − t1) y(t1)

= lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t ỹ(iq1 + ε) = lim

ε→0

∫ ∞

−∞

dq1

2π

× e(iq1+ε)t

(
− mg

(iq1 + ε)R(iq1 + ε)
+ η̃(iq1 + ε)

R(iq1 + ε)

)
,

the first integral reads

I1 = lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t

(
− mg

(iq1 + ε) R(iq1 + ε)

)

= − g

κ1κ2
+ g(eκ2t κ1 − eκ1t κ2)

κ2(−κ2 + κ1)κ1
.

Note that

I1(t = 0) = 0

and

lim
t→∞ I1 = − g

κ1κ2
= − g

ω2
.

The second integral reads

I2 = lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t

(
η̃(iq1 + ε)

R(iq1 + ε)

)
,

and is a function of the noise.
Let us, for instance, study 〈y(t)〉. We need to take the

average 〈I2〉

〈I2〉 = lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t

( 〈η̃(iq1 + ε)〉
R(iq1 + ε)

)

= lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t

(
λ φ1

(iq1 + ε)R(iq1 + ε)

)

= λφ1

κ1κ2
− λφ1(eκ2t κ1 − eκ1t κ2)

κ2(−κ2 + κ1)κ1
.
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In the limit t → ∞, the stable position is

yf ≡ lim
t→∞ y(t) = λφ1 − g

ω2
= m(λφ1 − g)

k
.

Observe that for λφ1 = g, the final average position is the
initial one. However, whenever the inequality holds, say λφ1 −
g = δ > 0, we have

yf = mδ

k
,

which corresponds to the elongation of the spring due to
the force difference m(λ φ1 − g) between the gravity and
the Poisson “wind.” We shall take the limits δ,k → 0 with
δ/k = � � 1.

The average potential energy of the system will be

U = mgyf + 1

2
ky2

f = m2g
δ

k
+ km2δ2

2k2
.

We can obtain the instantaneous velocity by taking the time
derivative of the position

v(t) = lim
ε→0

∫ ∞

−∞

dq1

2π
e(iq1+ε)t

×
(

− mg

R(iq1 + ε)
+ (iq1 + ε) η̃(iq1 + ε)

R(iq1 + ε)

)
.

The first and second integrals now give us an average of
zero at the limit of large times.

The second cumulant will give the local canonical temper-
ature

〈v2(t)〉c = lim
ε→0

∫ ∞

−∞

dq1

2π

dq2

2π
e(iq1+iq2+2ε)t

× (iq1 + ε)(iq2 + ε)〈η̃(iq1 + ε) η̃(iq1 + ε)〉c
R(iq1 + ε)R(iq2 + ε)

= lim
ε→0

∫ ∞

−∞

dq1

2π

dq2

2π
e(iq1+iq2+2ε)t

× (iq1 + ε)(iq2 + ε)λφ2

(iq1 + iq2 + 2ε)R(iq1 + ε)R(iq2 + ε)
.

The limit of infinite time gives us

〈v2(∞)〉c = λφ2

2θ
.

Using the exponential probability density function for the
Poisson kicks, which naturally has an average value different
to zero, we write

φ1 =
∫ ∞

0
dy

e−y/φ0

φ0
y = φ0,

φ2 =
∫ ∞

0
dy

e−y/φ0

φ0
y2 = 2φ2

0 .

Let us compare the thermodynamic temperature and the
work done as time becomes large. We have

m〈v2(∞)〉c = T = m
λφ2

2θ
= λφ2

0m
2

γ
.

We can now compare the potential energy, accumulated due
to the work done by the Poisson wind, and the heat absorbed
that shows in the temperature value. Since λφ0 ≈ g, we have

T/2

U
=

λ φ2
0 m2

2γ

U
= g2m2

2γ λU
.

By taking the limits φ0 → 0, and λ → ∞, keeping λφ0 ≈ g,
we see that T � U. All noise cumulants vanish, except for the
first one in this soft gas wind model. The athermal reservoir
gives mainly work to the particle.

That said, if the Poissonian shot noise exhibits a vanishing
value for its average, that the work produced is equal to zero
and there is no contribution from work to the energy flux which
turns into heat flux alone.

APPENDIX D: ENTROPY PRODUCTION OF A
GRANULAR GAS

Concerning the production of entropy rate of an athermal
reservoir, it was demonstrated in [15] that a granular gas
(reservoir) can produce non-Gaussian noise upon a motor
(system). While the work produced scales with the granular
temperature—according to [47]—the rate of energy loss by
the granular gas (which has to be constantly replaced so the
gas might reach a steady state) in the reservoir is proportional
to (1 − e)ρV T

3/2
G , where e is the coefficient of restitution, ρ is

the density of grains, V is the volume, and TG is the granular
temperature.

The work extracted (from the reservoir), per unit time, will
be a small fraction of the grains total kinetic energy ερV TG.
On the one hand, the system will reach a temperature that is
of the order of TG at the steady state. Furthermore, from the
system’s point of view, the entropy reduction rate will be, at
most, of the order of

ερV TG

TG

∝ ερV .

On the other hand, in order to sustain the steady-state regime
of the reservoir, the energy dissipation rate goes as (1 −
e) ρV T

3/2
G , yielding an entropy production rate of the order of

(1 − e)ρV T
3/2
G

T
∝
√

TG

TG

T
,

where T is the thermodynamical temperature of the grains.
Usually, TG/T ≈ 1010–1012. Thus, we can say the entropy
production rate is orders of magnitude larger than the
anomalous entropy reduction due to the non-Gaussian
character of the athermal reservoir noise function.
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[45] A. C. Brańka and D. M. Heyes, Phys. Rev. E 60, 2381 (1999).
[46] M. M. Cândido, S. M. D. Queirós, and W. A. M. Morgado

(unpublished).
[47] P. K. Haff, J. Fluid Mech. 134, 401 (1983).
[48] B. Li, H. Zhao, and B. Hu, Phys. Rev. Lett. 86, 63 (2001).
[49] A. Dhar and J. L. Lebowitz, Phys. Rev. Lett. 100, 134301 (2008).
[50] R. Lefevere and A. Schenkel, J. Stat. Phys. 115, 1389 (2004); J.

Stat. Mech. (2006) L02001.
[51] K. Aoki, J. Lukkarinen, and H. Spohn, J. Stat. Phys. 124, 1105

(2006).
[52] J. Bricmont and A. Kupiainen, Commun. Math. Phys. 274, 555

(2007); Phys. Rev. Lett. 98, 214301 (2007).
[53] Thermal Transport in Low Dimensions: From Statistical Physics

to Nanoscale Heat Transfer, edited by S. Lepri (Springer,
Heidelberg, 2016).

032143-11

https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1103/PhysRevE.67.021204
https://doi.org/10.1103/PhysRevE.67.021204
https://doi.org/10.1103/PhysRevE.67.021204
https://doi.org/10.1103/PhysRevE.67.021204
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1103/PhysRevLett.78.1896
https://doi.org/10.1103/PhysRevLett.78.1896
https://doi.org/10.1103/PhysRevLett.78.1896
https://doi.org/10.1103/PhysRevLett.78.1896
https://doi.org/10.1103/PhysRevLett.104.248001
https://doi.org/10.1103/PhysRevLett.104.248001
https://doi.org/10.1103/PhysRevLett.104.248001
https://doi.org/10.1103/PhysRevLett.104.248001
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1103/PhysRevLett.107.138001
https://doi.org/10.1103/PhysRevLett.107.138001
https://doi.org/10.1103/PhysRevLett.107.138001
https://doi.org/10.1103/PhysRevLett.107.138001
https://doi.org/10.1209/0295-5075/102/14002
https://doi.org/10.1209/0295-5075/102/14002
https://doi.org/10.1209/0295-5075/102/14002
https://doi.org/10.1209/0295-5075/102/14002
https://doi.org/10.1103/PhysRevLett.114.090601
https://doi.org/10.1103/PhysRevLett.114.090601
https://doi.org/10.1103/PhysRevLett.114.090601
https://doi.org/10.1103/PhysRevLett.114.090601
https://doi.org/10.3390/e19050193
https://doi.org/10.3390/e19050193
https://doi.org/10.3390/e19050193
https://doi.org/10.3390/e19050193
https://doi.org/10.1103/PhysRevE.94.062124
https://doi.org/10.1103/PhysRevE.94.062124
https://doi.org/10.1103/PhysRevE.94.062124
https://doi.org/10.1103/PhysRevE.94.062124
https://doi.org/10.1021/nl101934j
https://doi.org/10.1021/nl101934j
https://doi.org/10.1021/nl101934j
https://doi.org/10.1021/nl101934j
https://doi.org/10.1038/nmat3064
https://doi.org/10.1038/nmat3064
https://doi.org/10.1038/nmat3064
https://doi.org/10.1038/nmat3064
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1142/S021947751640006X
https://doi.org/10.1142/S021947751640006X
https://doi.org/10.1142/S021947751640006X
https://doi.org/10.1142/S021947751640006X
https://doi.org/10.1103/PhysRevLett.98.216102
https://doi.org/10.1103/PhysRevLett.98.216102
https://doi.org/10.1103/PhysRevLett.98.216102
https://doi.org/10.1103/PhysRevLett.98.216102
https://doi.org/10.1103/PhysRevE.75.051128
https://doi.org/10.1103/PhysRevE.75.051128
https://doi.org/10.1103/PhysRevE.75.051128
https://doi.org/10.1103/PhysRevE.75.051128
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1103/PhysRevE.55.4057
https://doi.org/10.1103/PhysRevE.55.4057
https://doi.org/10.1103/PhysRevE.55.4057
https://doi.org/10.1103/PhysRevE.55.4057
https://doi.org/10.1073/pnas.0510191103
https://doi.org/10.1073/pnas.0510191103
https://doi.org/10.1073/pnas.0510191103
https://doi.org/10.1073/pnas.0510191103
https://doi.org/10.1103/PhysRevE.79.030103
https://doi.org/10.1103/PhysRevE.79.030103
https://doi.org/10.1103/PhysRevE.79.030103
https://doi.org/10.1103/PhysRevE.79.030103
https://doi.org/10.1063/1.439486
https://doi.org/10.1063/1.439486
https://doi.org/10.1063/1.439486
https://doi.org/10.1063/1.439486
https://doi.org/10.1007/b99427
https://doi.org/10.1007/b99427
https://doi.org/10.1007/b99427
https://doi.org/10.1007/b99427
https://doi.org/10.1103/PhysRevLett.93.206601
https://doi.org/10.1103/PhysRevLett.93.206601
https://doi.org/10.1103/PhysRevLett.93.206601
https://doi.org/10.1103/PhysRevLett.93.206601
https://doi.org/10.1103/PhysRevE.82.046712
https://doi.org/10.1103/PhysRevE.82.046712
https://doi.org/10.1103/PhysRevE.82.046712
https://doi.org/10.1103/PhysRevE.82.046712
https://doi.org/10.1103/PhysRevLett.106.238103
https://doi.org/10.1103/PhysRevLett.106.238103
https://doi.org/10.1103/PhysRevLett.106.238103
https://doi.org/10.1103/PhysRevLett.106.238103
https://doi.org/10.1103/PhysRevE.76.020101
https://doi.org/10.1103/PhysRevE.76.020101
https://doi.org/10.1103/PhysRevE.76.020101
https://doi.org/10.1103/PhysRevE.76.020101
https://doi.org/10.1016/j.physa.2012.03.012
https://doi.org/10.1016/j.physa.2012.03.012
https://doi.org/10.1016/j.physa.2012.03.012
https://doi.org/10.1016/j.physa.2012.03.012
https://doi.org/10.1103/PhysRevE.67.016102
https://doi.org/10.1103/PhysRevE.67.016102
https://doi.org/10.1103/PhysRevE.67.016102
https://doi.org/10.1103/PhysRevE.67.016102
https://doi.org/10.1088/0305-4470/37/23/002
https://doi.org/10.1088/0305-4470/37/23/002
https://doi.org/10.1088/0305-4470/37/23/002
https://doi.org/10.1088/0305-4470/37/23/002
https://doi.org/10.1103/PhysRevE.94.032127
https://doi.org/10.1103/PhysRevE.94.032127
https://doi.org/10.1103/PhysRevE.94.032127
https://doi.org/10.1103/PhysRevE.94.032127
https://doi.org/10.1103/PhysRevE.92.062145
https://doi.org/10.1103/PhysRevE.92.062145
https://doi.org/10.1103/PhysRevE.92.062145
https://doi.org/10.1103/PhysRevE.92.062145
https://doi.org/10.1103/PhysRevE.86.041108
https://doi.org/10.1103/PhysRevE.86.041108
https://doi.org/10.1103/PhysRevE.86.041108
https://doi.org/10.1103/PhysRevE.86.041108
https://doi.org/10.1103/PhysRevE.87.052124
https://doi.org/10.1103/PhysRevE.87.052124
https://doi.org/10.1103/PhysRevE.87.052124
https://doi.org/10.1103/PhysRevE.87.052124
https://doi.org/10.1103/PhysRevE.90.022110
https://doi.org/10.1103/PhysRevE.90.022110
https://doi.org/10.1103/PhysRevE.90.022110
https://doi.org/10.1103/PhysRevE.90.022110
https://doi.org/10.1103/PhysRevE.93.012121
https://doi.org/10.1103/PhysRevE.93.012121
https://doi.org/10.1103/PhysRevE.93.012121
https://doi.org/10.1103/PhysRevE.93.012121
http://www.osti.gov/accomplishments/pdf/A80037041/01.pdf
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1007/s13538-017-0494-z
https://doi.org/10.1007/s13538-017-0494-z
https://doi.org/10.1007/s13538-017-0494-z
https://doi.org/10.1007/s13538-017-0494-z
https://doi.org/10.1088/1742-5468/2011/06/P06010
https://doi.org/10.1088/1742-5468/2011/06/P06010
https://doi.org/10.1088/1742-5468/2011/06/P06010
https://doi.org/10.1016/j.physa.2015.07.012
https://doi.org/10.1016/j.physa.2015.07.012
https://doi.org/10.1016/j.physa.2015.07.012
https://doi.org/10.1016/j.physa.2015.07.012
https://doi.org/10.1016/j.physa.2006.01.063
https://doi.org/10.1016/j.physa.2006.01.063
https://doi.org/10.1016/j.physa.2006.01.063
https://doi.org/10.1016/j.physa.2006.01.063
https://doi.org/10.1103/PhysRevE.60.2381
https://doi.org/10.1103/PhysRevE.60.2381
https://doi.org/10.1103/PhysRevE.60.2381
https://doi.org/10.1103/PhysRevE.60.2381
https://doi.org/10.1017/S0022112083003419
https://doi.org/10.1017/S0022112083003419
https://doi.org/10.1017/S0022112083003419
https://doi.org/10.1017/S0022112083003419
https://doi.org/10.1103/PhysRevLett.86.63
https://doi.org/10.1103/PhysRevLett.86.63
https://doi.org/10.1103/PhysRevLett.86.63
https://doi.org/10.1103/PhysRevLett.86.63
https://doi.org/10.1103/PhysRevLett.100.134301
https://doi.org/10.1103/PhysRevLett.100.134301
https://doi.org/10.1103/PhysRevLett.100.134301
https://doi.org/10.1103/PhysRevLett.100.134301
https://doi.org/10.1023/B:JOSS.0000028064.17281.bb
https://doi.org/10.1023/B:JOSS.0000028064.17281.bb
https://doi.org/10.1023/B:JOSS.0000028064.17281.bb
https://doi.org/10.1023/B:JOSS.0000028064.17281.bb
https://doi.org/10.1088/1742-5468/2006/02/L02001
https://doi.org/10.1088/1742-5468/2006/02/L02001
https://doi.org/10.1088/1742-5468/2006/02/L02001
https://doi.org/10.1007/s10955-006-9171-2
https://doi.org/10.1007/s10955-006-9171-2
https://doi.org/10.1007/s10955-006-9171-2
https://doi.org/10.1007/s10955-006-9171-2
https://doi.org/10.1007/s00220-007-0284-5
https://doi.org/10.1007/s00220-007-0284-5
https://doi.org/10.1007/s00220-007-0284-5
https://doi.org/10.1007/s00220-007-0284-5
https://doi.org/10.1103/PhysRevLett.98.214301
https://doi.org/10.1103/PhysRevLett.98.214301
https://doi.org/10.1103/PhysRevLett.98.214301
https://doi.org/10.1103/PhysRevLett.98.214301



