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By analyzing the probability distributions of the Loschmidt echo (LE) and quantum work, we examine the
nonequilibrium effects of a quantum many-body system, which exhibits an excited-state quantum phase transition
(ESQPT). We find that depending on the value of the controlling parameter the distribution of the LE displays
different patterns. At the critical point of the ESQPT, both the averaged LE and the averaged work show a cusplike
shape. Furthermore, by employing the finite-size scaling analysis of the averaged work, we obtain the critical
exponent of the ESQPT. Finally, we show that at the critical point of ESQPT the eigenstate is a highly localized
state, further highlighting the influence of the ESQPT on the properties of the many-body system.
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I. INTRODUCTION

Quantum phase transition (QPT) [1–3] is characterized
by a dramatic change of the ground-state properties of a
quantum system when the controlling parameter, such as
an external magnetic field or an internal coupling strength
[4], passes through the critical point. It occurs at absolute
zero temperature and the change of phases is solely driven
by quantum fluctuations. In the past few decades, QPT has
become a vast interesting topic and has attracted lots of
attention. It is well known that QPT has strong influence on the
property of the system, such as the divergence of the derivative
of the ground-state entanglement (concurrence) [5], fidelity
[6], and the emergence of chaos [7]. The effects of the QPT
on the nonequilibrium properties of the system also attracted
lots of attention [8–17]. In particular, QPT has been observed
in many experiments [18–22].

Recently, the quantum critical phenomenon has been
extended to the excited states of the system [23–26]. An
excited-state quantum phase transition (ESQPT) refers either
a nonanalytic variation of eigenenergies of the individual
excited states with respect to the controlling parameter or a
singular behavior of the density of states [24,25]. They appear
in various models, such as Lipkin-Meshkov-Glick (LMG)
model [26–32], molecular vibron model and interacting boson
model (IBM) [24,33], Dicke and Jaynes-Cumming models
[34,35], Rabi model [36], kicked top [37], and microwave
Dirac billiards [38]. Moreover, the signatures of ESQPTs have
been observed in many experiments [38–44]. Here, it is worth
pointing out that even though there are connections between
excited energy and the temperature in an isolated system, ES-
QPTs and thermal phase transitions are qualitatively different
[45]. The static definition of the order parameter is invalid
for ESQPTs. To define the order parameter of an ESQPT, one
must take into account some dynamic properties of the system
[24,46].

The influence of ESQPTs on the dynamics of the system
has been studied in literature. Various dynamic consequences
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have been predicted, such as the enhancement of the deco-
herence in open systems [29,30], the peculiar behavior of the
survival probability in isolated systems [31], the emergence
of symmetry-breaking steady states [46], the singularities in
the evolution of observables [47,48], and the abrupt increase
of entropy [49]. To get a better understanding of the ESQPTs,
however, more works are required to study the nonequilibrium
dynamic effects of the system, which exhibits an ESQPT.

In the current study, we analyze the nonequilibrium
dynamics of an isolated quantum many-body system that
undergoes an ESQPT. Specifically, we study the dynamics
following a sudden quench of the controlling parameter, i.e.,
an external magnetic field, in the LMG model. The aim of
this work is to investigate how the signatures of an ESQPT
manifest themselves in the nonequilibrium dynamics when
the controlling parameter is quenched across the critical point.
By studying the probability distribution of the Loschmidt echo
(LE), we show the effect of ESQPT on the dynamics in the
LMG model. From the quantum thermodynamics perspective,
we study the statistics of work done on the LMG model in
the sudden quench process. We find that the signature of the
ESQPT can be observed in both the average value of work
and the standard deviation of work distribution. By applying
the finite-size scaling analysis, we obtain the critical exponent
of the ESQPT. In order to better understand the influence of
ESQPT on the dynamics of the system, we finally investigate
the spectral function. Our results show that the eigenstate of
the system is a highly localized state at the critical point of the
ESQPT.

Here we should point out that the effects of the ESQPT
on the dynamics in the LMG model have been studied
previously. In Refs. [29,30], the decoherence of the central
spin system, which is affected by the ESQPT, was explored.
The time evolution of the LE with the initial state given
by the eigenstates of U(1) and SO(2) part of a Hamiltonian
was examined in Refs. [31]. However, our study is different
from those works in that we seek the connection between the
statistics of the LE and the ESQPT. In addition, we study the
effects of the ESQPT on the thermodynamic properties of the
system. To achieve these goals, we set the initial state, denoted
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as |ini = n〉, to be the nth eigenstate of the initial Hamiltonian.
Also, we fix the amplitude of quench in our study.

The remainder of this article is organized as follows. In
Sec. II, we briefly review the properties of the LMG model
and show that the ESQPT occurs either when varying the
controlling parameter or when varying the energy (quantum
number). In Sec. III, we study in detail the statistical properties
of LE and quantum work. We show that both two quantities
can be used to characterize the ESQPT. Section IV provides
the analysis of the spectral function. We find the onset of
localization in the eigenstate. Finally, we give our summary
and discuss our results in Sec. V.

II. THE LMG MOEDL

We study the so-called Lipkin-Meshkov-Glick (LMG)
model, which describes a set of N spin-1/2 mutually inter-
acting with each other in a transverse field. The Hamiltonian
of the LMG model reads [50–52]

H = − 1

N

∑
i<j

(
σ i

xσ
j
x + γ σ i

yσ
j
y

) + α
∑

i

σ i
z , (1)

where σ i
x,y,z are the Pauli matrices on the ith site in the spin

chain, α denotes the strength of the magnetic field, and γ is
the anisotropy parameter. For the sake of simplicity, we set
γ = 0 in our study. Here, we should point out that for γ �= 0
case, the full LMG model (1) is expected to exhibit more
complex phase diagram [26,27] than the case we studying in
this paper. However, the results and conclusions in our paper
do not change for the more general case. Using the total spin
operator Sβ = ∑N

i=1 σ i
β with β = {x,y,z}, the Hamiltonian

can be rewritten as [28–31]

H = − 1

N
(Sx)2 + α

(
Sz + N

2

)
. (2)

One can rewrite the Hamiltonian (2) into a two-level bosonic
Hamiltonian via the Schwinger transformation [28,30],

S+ = t†s = (S−)†, Sz = 1
2 (t†t − s†s), (3)

where S± = Sx ± iSy and s†,t† are the creation operators of
two species scalar bosons s and t , respectively. Finally, the
Hamiltonian (2) becomes

H = αn̂t − 1

4N
Q̂2, (4)

where n̂t = t†t , Q̂ = t†s + s†t . Obviously, the total number
of bosons is a conserved quantity, i.e., [N̂,H] = 0 with
N̂ = t†t + s†s. We can write down the Hamiltonian (4) in
the following bases

|N,nt 〉 = (t̂†)nt (ŝ†)N−nt

√
(nt )!(N − nt )!

|0〉, (5)

where N � nt � 0 and |0〉 is the vacuum state [28,30,31].
Then the dimension of the Hilbert space is Dim[H] = N + 1.
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FIG. 1. The energy levels of H as a function of α for N = 100.
The black solid curves denote the even-parity levels, while the odd-
parity levels are denoted by the red dashed curves. Inset: (a) the second
derivative of eigenenergy with respect to α for different eigenstates
|n〉, with n = 10 (right peak) and n = 20 (left peak); (b) the density
of states for H with α = 0.5 and N = 1000.

The nonzero elements of the Hamiltonian matrix read as

〈N,nt |H|N,nt 〉 = αnt + f, (6)

〈N,nt |H|N,nt + 2〉 = − 1

4N

√
(nt + 1)(N − nt )

×
√

(nt + 2)(N − nt − 1), (7)

where f = −1/(4N )[(nt + 1)(N − nt ) + nt (N − nt + 1)].
One can obtain the eigenstates and eigenenergies through
numerically diagonalizing the Hamiltonian. Hamiltonian (2)
conserves parity (−1)nt ; therefore, the eigenstates can be
labeled as even- or odd-parity eigenstates [28,31,32]. The
Hamiltonian matrix is split in two blocks, one of dimension
Dim[H]even = N/2 + 1, and the other of dimension
Dim[H]odd = N/2 [31].

It is well known that, in the thermodynamic limit, i.e., N →
∞, the LMG model undergoes a second-order quantum phase
transition (QPT) when the controlling parameter is varied
across αc = 1 [50–54]. At the critical point, the properties
of the ground state changes dramatically, and the second
derivative of the ground-state energy with respect to α shows a
discontinuity or diverges. The energy gap between the ground
state and the first excited state vanishes as �0 ∝ |α − αc|ν ,
with the critical exponent ν = 1/2 [51,52]. Interestingly, these
properties of the ground-state QPT also manifest themselves
in the excited states.

In Fig. 1, we plot the energy levels as a function of α

of the LMG model. Two remarkable features can be found
from this figure. First, for E < 0, the eigenstates are doubly
degenerate, and nondegenerate when E > 0. Moreover, each
eigenvalue E(α) undergoes an inflection around E ≈ 0 [24].
Second, when α < 1, the energy levels concentrate around
E ≈ 0. The energy gap between adjacent energy levels is close
to zero around E ≈ 0.
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According to these features, the ESQPT can be charac-
terized by two different ways. On the one hand, the ESQPT
can be defined by varying controlling parameter α. Namely,
for a specific excite state, ESQPT occurs when ∂2En(α)/∂α2

shows a divergence [see Fig. 1(a)]. This definition implies
that different eigenstates have different critical value of α. On
the other hand, one can fixed the controlling parameter α and
define the ESQPT as a singular behavior of the density of states.
As shown in Fig. 1(b), for finite N , the density of states displays
a peak around E = 0. While for N → ∞, this will lead to a
logarithmic divergence [26]. The critical energy of the LMG
model (2) is, therefore, Ec = 0. Here, we should point out that
the critical energy of ESQPT usually varies with the controlling
parameter [31], and different eigenstates will have different
critical energy. However, the critical energy of the LMG model
(2) is independent of α and eigenstate number. Although these
two different definitions seem unrelated, the relation between
them has been studied in Refs. [24,32]. In the following, for
both of these definitions, the influence of the ESQPT on the
nonequilibrium dynamics will be studied.

III. NONEQUILIBRIUM DYNAMICS

In this work, we consider a sudden quench process. That
is, the magnetic field strength is changed suddenly at time
t = 0. The initial state is chosen to be the nth eigenstate of the
system, i.e., |ini = n〉, with α0 = α. The initial Hamiltonian
is H0 = H(α). Then at t = 0 we make a sudden quench
α0 → αf = α + δα, where δα denotes the amplitude of the
quench. We study the time evolution of the system under the fi-
nal Hamiltonian Hf = H(αf ), |ψ(t)〉 = exp(−iHf t)|n〉. The
central quantity that we study is the time-dependent overlap

O(t) = 〈n| exp(iH0t) exp(−iHf t)|n〉 = eiE0
nt 〈n|ψ(t)〉, (8)

where E0
n is the eigenenergy of |n〉. From this quantity, we

can get several important signatures that can be used to probe
the ESQPT.

In this section, we mainly study two important quantities,
namely, the Loschmidt echo (LE) and the quantum work distri-
bution. Both of them can be derived from the time evolution of
the overlap (8) and have been widely used in many fields (e.g.,
see Refs. [15,53–61] and references therein). In particular, it
has already been demonstrated that both of these quantities
can be used as the detector of the ground-state QPTs [9,62].

A. Statistics of the Loschmidt echo

The LE is defined as the modulus square of the overlapO(t):

L(t) = |O(t)|2 = |〈n|ψ(t)〉|2, (9)

which serves as the time-dependent fidelity and gives a
measure of the instability of quantum evolution under small
perturbation. Using the eigenstates of the final Hamiltonian,
the initial eigenstate state |n〉 can be decomposed as
|n〉 = ∑

k ck|kf 〉,where

ck = 〈kf |n〉 (10)

is the expansion coefficient and satisfies
∑

k |ck|2 = 1. Here,
|kf 〉 denotes the kth eigenstate of the final Hamiltonian Hf

with eigenenergy E
f

k . Then the LE in Eq. (9) can be rewritten

FIG. 2. Time evolution of the LE for different controlling param-
eters: (a) α = 0.1, (b) α = 0.48, and (c) α = 0.8. Here, N = 400 and
δα = 0.01. The initial state is the 77th eigenstate of H0.

in the following compact form:

L(t) =
∣∣∣∣∣
∑

k

|ck|2e−iE
f

k t

∣∣∣∣∣
2

. (11)

Obviously, the time evolution of the LE is determined by the
spectrum of the quenched Hamiltonian Hf and its associated
weight factors ck . At t = 0, according to the normalization
condition of ck , LE is equal to unity, while for t > 0, the LE
begins to decay. The value of the LE may approach zero under
strong quenches. For finite-size systems, due to the finite-size
effect, the LE will show a collapse and revival behavior after a
sufficiently long time. However, the LE will eventually reach
an asymptotic value L∞ (equal to the long time average) for
infinite-size systems [63].

In Fig. 2, we plot the LE for different controlling parameters
with the initial state chosen to be the 77th eigenstate and N =
400. Here, according to the behavior of the second derivative of
E77 with respect to α, one can find that, in this case, the critical
point locates around α = 0.48. From Fig. 2, one can see that,
in general, the LE shows a periodic oscillatory behavior for
small quenches, while for the values of controlling parameter
around α = 0.48 the LE exhibits more complicated behaviors
and there is no periodicity. Moreover, for small values of α, the
LE periodically achieves orthogonality (L = 0) [see Fig. 2(a)].
Therefore, the underlying ESQPT has strong influences on the
properties of the LE.

In order to study the effects of ESQPT on the LE in
a quantitative way, we numerically evaluate the probability
distribution of the LE [63,64]

P (L) = δ[L − L(t)] = lim
T →∞

1

T

∫ T

0
δ[L − L(t)]dt, (12)

where T is the total time of evolution. To calculate this
distribution, the evolution time of the system should be chosen
to be long in order to capture all the intricacies of the
evolution. From the experiment point of view, one needs to
prepare many copies of the initial states, evolve each of them
independently, and measure the LE of individual states at
different times ti [63]. Finally, from the measured data, the
probability distribution of the LE can be constructed. In our
simulation, we take T = 5000, and we find that the results do
not change for larger values of T .

In Fig. 3, we plot the probability distribution of the LE for
different controlling parameters. It can be seen that depending
on the value of α the probability distributions of the LE exhibit
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FIG. 3. The probability distribution of the LE for different
controlling parameters with N = 400 and δα = 0.01. The initial state
is the 77th eigenstate of H0.

quite different behaviors. The double-peaked distribution of
the LE for small value of α implies the quasiperiodicity of the
LE after a quench. However, when the value of α is large,
the LE has a winged distribution which indicates the beating
pattern behavior of the LE. Around the point α = 0.48, the
probability distribution of the LE approximately obeys the
Gaussian distribution. The time evolution of the LE exhibits
a complex noisy behavior in this case. Here, we stress that
increasing the system size N with fixed δα will make the
distribution of the LE approach an exponential one, which is
similar to the Ising model shown in Ref. [63]. However, for
the large N case, in order to investigate the different properties
of the LE, the value of δα also should be smaller. Therefore,
qualitatively similar distribution shapes (see Fig. 3) can be
obtained for any finite N .

To quantify the effects of ESQPT on the probability
distribution of LE, we calculate the time-averaged value of
the LE [63],

L̄ =
∫ 1

0
LP (L)dL = lim

T →∞
1

T

∫ T

0
L(t)dt =

∑
k

|ck|4. (13)

Obviously, the information of all excited states of Hf are
incorporated in the averaged LE. In Fig. 4, we show the
averaged LE as a function of α for two different system sizes.
It can be seen that in the vicinity of the critical point the
averaged LE has a cusp, thus signaling the ESQPT. Therefore,
the signatures of ESQPT can be revealed by the statistical
properties of the LE. It is worth pointing out that for fixed
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FIG. 4. L̄ as a function of α for different N with δα = 0.01.
The initial states are |ini = 77〉 for N = 400, while |ini = 157〉 for
N = 800. The vertical green dashed lines indicate the position of
α = 0.48.

δα, the decaying of the LE will be enhanced by increasing the
system size N (cf. Fig. 4).

Here, we stress that although the point α = 0.48 is obtained
from 77th eigenstate with N = 400, the critical point of
ESQPT is fixed for different system size. We find that for
any N , the number of the eigenstate which shows an ESQPT
around α = 0.48 is given by |n〉 = |N/5 − 3〉.

The ESQPT can also be characterized by the singularity in
the density of states at the critical energy with fixed controlling
parameters. Therefore, we need to study if the critical energy
of the ESQPT can be determined by the statistics of the
LE. In Figs. 5(a)–5(c), we plot the time evolution of LE for
different initial states with fixed α and δα. For E > Ec = 0
and E < Ec, we can see the regular oscillatory behaviors of
the LE. By contrast, for E ≈ Ec = 0, we see that the time
evolution of the LE is irregular, and the value of LE cannot
reach unity dynamically. Similar to the different controlling
parameter cases, the probability distribution of the LE will
exhibit different behaviors for different initial energies. The
critical energy of ESQPT therefore can be probed through the
statistical properties of the LE. Indeed, the averaged value
of the LE shows a cusp near the critical energy Ec = 0 [see
Fig. 5(d)]. The cusp becomes sharper as the size of system
increases and its location approaches Ec = 0 as N → ∞. Note
that there are many similarities between the behaviors of the
LE at α ≈ αc and at E0

n ≈ Ec.

B. Quantum work distribution

In this subsection, we study the ESQPT through the work
W done on the system during a sudden quench process. We
first give a brief review of the work probability distribution
P (W ), point out the relation between P (W ) and O in Eq. (8),
and illustrate the key findings with our numerical results.

For the sudden quench process, the Hamiltonian of the
system before and after the quench can be written in the
following form: H0 = ∑

n E0
n|n〉〈n|, Hf = ∑

k E
f

k |kf 〉〈kf |.
In order to write down a simple expressions of the work
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FIG. 5. Time evolution of the LE for different initial states: (a) |ini = 20〉 with E20/N = −0.0468, (b) |ini = 80〉 with E80/N = 3.8 × 10−4,
and (c) |ini = 300〉 with E300/N = 0.285. Here, N = 400, α = 0.48, and δα = 0.01. (d) L̄ as a function of the scaled eigenenergies of H0 for
different N with α = 0.4 and δα = 0.01. The vertical green dashed lines indicate the position of Ec = 0.

distribution and the lth moment of the work distribution,
we assumed that there is no degeneracy in the eigenvalues.
However, in our numerical simulations, the degeneracy in
eigenvalues has been considered. The work distribution of this
process can be written as [57,65]

P (W ) :=
∑
n,k

p0
np(kf |n)δ

[
W − (Ef

k − E0
n)

]
. (14)

Here, p0
n = Tr[P 0

n ρ0] denotes the probability with which the
energy value E0

n is observed in the initial energy measurement,
and P 0

n = |n〉〈n| is the projection operator. The probability
of obtaining the eigenvalue E

f

k at the final moment of time,
conditioned on the observation of E0

n at the initial time, is given
by p(kf |n) = |〈kf |Û |n〉|2, where Û is the unitary evolution
operator.

From the work distribution (14), the characteristic function
of work, defined as the Fourier transformation of P (W )
[57,62,65], can be expressed as

χ (t) =
∫

dWeitWP (W ),

=
∑
n,k

exp
[
i
(
E

f

k − E0
n

)
t
]|〈k(f )|Û |n〉|2p0

n. (15)

Because Û equals to the identity operator in the sudden quench
process, χ (t) then is reduced to the complex conjugate of the
time-dependent overlap O(t) with the average taken on the
initial state ρ0 [62].

The lth moment of the work distribution in the sudden
quench process can be obtained through the lth derivative of
χ (t) with respect to t at t = 0, and the result is [57]

〈Wl〉 = Tr

[
l∑

m=0

(−1)m
(

l

m

)
H(l−m)

f Hl
0ρ

′
0

]
, (16)

where ∀l ∈ N and ρ ′
0 = ∑

n P 0
n ρ0P

0
n is the initial projected

state. For the sudden quench process starting from the nth
eigenstate of the system, Eq. (16) reads

〈Wl〉 =
∑

k

|ck|2[Ef

k − E0
n]l . (17)

Let us study the effects of ESQPT on the statistics of the
work W during a sudden quench process. In Fig. 6(a), we
plot the averaged work as a function of α for different N . For
every N we choose the eigenstate that exhibits an ESQPT at

about αc = 0.48. Clearly, it can be seen that the averaged work
shows a cusp around αc. Moreover, as the size N of the system
increases, the cusp of the averaged work becomes sharper. The
exact position of the cusp changes with the size N of the system
and approaches αc as N → ∞ [66]. The standard deviation
of work distribution σW =

√
〈W 2〉 − 〈W 〉2 as a function of α

has been plotted in Fig. 6(b). Similar to the averaged work,
around αc the standard deviation of work distribution also
exhibits a cusp, its location approaches αc as N increases.
Both the averaged work and the standard deviation of the
work distribution exhibit a sharp drop at the critical point of
ESQPT.

To study the scaling behaviors of the averaged work, we
plot the derivative of the averaged work with respect to α as
a function of α for different N in Fig. 7. One can see that the
derivative of the averaged work has a minimum around αc =
0.48. The amplitude of the minimum is significantly enhanced
by increasing the system size N . Moreover, the location αm

of the minimum in d[〈W 〉/N]/dα, which can be regarded as
the precursor of the critical point αc, moves toward the critical
point when N increases and approaches αc = 0.48 as N → ∞
(see the inset of Fig. 7).

The absolute value of the minimum d[〈W 〉/N ]/dα as a
function of N is plotted in Fig. 8. Clearly, one can see that as
the system size N increases, the value of the minimum of the
derivative of the averaged work diverges as

ln

∣∣∣∣∣
(

d〈W 〉
Ndα

)
αm

∣∣∣∣∣ = κ1 ln N + C, (18)
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FIG. 6. (a) 〈W 〉/N as a function of α for different N . (b) σW /N

as a function of α for different N . In both figures, the amplitude
of the quench equals δα = 0.01. The initial states are |ini = 13〉 for
N = 80, |ini = 29〉 for N = 160, and |ini = 61〉 for N = 320. The
vertical green dashed lines indicate the critical point αc = 0.48.
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FIG. 7. The derivative of the scaled averaged work as a function of
α for different N with δα = 0.01. The initial states are |ini = 17〉 for
N = 100, |ini = 57〉 for N = 300, and |ini = 117〉 for N = 600. The
vertical green dashed line indicates the critical point αc = 0.48. Inset:
exact position αm (corresponding to the minimum in d[〈W 〉/N ]/dα)
as a function of N . The initial state for each N is |ini = N/5 − 3〉.

where C is a constant and κ1 = 0.641. To get more information
about the ESQPT from the averaged work, we plot the
behavior of ln[|d(〈W 〉/N )/dα|] in the vicinity of αm for a
large N case in Fig. 9. From the figure, we found that in the
neighborhood of αm, ln[|d(〈W 〉/N )/dα|] has the following
asymptotic expression:

ln

∣∣∣∣d〈W 〉
Ndα

∣∣∣∣ = κ2 ln(αm − α) + D, (19)

where κ2 = −0.676 and D is a constant. According to the
finite-size scaling theory of the phase transition [66], the value
of the critical exponent νe is given by νe = |κ2/κ1| ≈ 1 [67].
Here, we should point out that although the values of κ1 and
κ2 are dependent on controlling parameters, νe is a constant
for a given system.

We further investigate the averaged work and the standard
deviation of work distribution for different initial states. In
Fig. 10, we plot the averaged work and the standard deviation

ln(N )
4 4.5 5 5.5 6

ln
|(d

W
/N

d
α
) α

m
|
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-3.8

-3.6

-3.4

-3.2

-3
Numerical results

y = κ1 ln(N) + C

κ1 = 0.641

FIG. 8. The absolute value of the minimum d[〈W 〉/N ]/dα (in
logarithmic scale) as a function of N (in logarithmic scale). The
amplitude of the quench is δα = 0.01, and the initial state for each
N is |ini = N/5 − 3〉.

ln(αm − α)
-5.3 -5.2 -5.1 -5 -4.9 -4.8

ln
|d

W
/N

d
α
|

-3.75

-3.7

-3.65

-3.6

-3.55

-3.5

-3.45
Numerical results

y = κ2 ln(αm − α) + D

κ2 = −0.676

FIG. 9. The absolute values of d[〈W 〉/N ]/dα (in logarithmic
scale) as a function of αm − α (in logarithmic scale). The amplitude
of the quench is δα = 0.01, the system size is N = 800, and the initial
state is |ini = 157〉.

of work distribution as a function of E0
n. Obviously, in the

neighborhood of the critical energy, both the averaged work
and the standard deviation of work show a cusplike shape and
become sharper as N increase. The locations of the cusp in 〈W 〉
and σW change as the size of the system grows and approach
an asymptotic value Ec = 0 as N → ∞. Finally, we remark
that qualitatively very similar results can be obtained for any
other higher moment of the work distribution. Therefore, the
signature of the ESQPT can be captured by the work during a
sudden quench process.

It is worth pointing out that the right panels of Figs. 6 and
10 look very similar. Actually, Fig. 6 displays the influence of
ESQPT on the averaged work and the standard deviation of
work for specific excited states, with the different controlling
parameter. Figure 10 exhibits the influence of ESQPT on
the averaged work and the standard deviation of work for
every excited states with fixed controlling parameter. The
results shown in these two figures correspond to two different
definitions of the ESQPT.

IV. SPECTRAL FUNCTION AND LOCALIZATION

To get a better understanding of the nonequilibrium dynam-
ics of the system, in this section we do a spectral analysis of
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10-3
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FIG. 10. (a) Rescaled averaged work as a function of E0
n/N for

different N . (b) Rescaled variance of work as a function of E0
n/N

for different N . In both figures, the controlling parameter is α = 0.4
and δα = 0.01. The vertical green dashed lines indicate the critical
energy Ec = 0.
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FIG. 11. Spectral function for different controlling parameters: α = 0.1 (a), α = 0.48 (b), and α = 0.8 (c), with N = 1000 and δα = 0.01.
The initial state is |ini = 197〉. The green arrows indicate the value of |A(ω)| corresponding to the initial state.

O(t). For the sudden quench process, the spectral function,
which is defined as the real part of Fourier transformation of
O(t) [63,64,68], can be written as

A(ω) = R

[∫ ∞

−∞
dteiωtO(t)

]
,

=
∑

k

|ck|2δ
[
ω − (

E
f

k − E0
n

)]
. (20)

It describes the fundamental excitations that govern the
subsequent quantum dynamics. Obviously, it is related to the
work distribution probability in Eq. (14). We plot spectral
functions for several controlling parameters: α < αc,α = αc,
and α > αc, in Fig. 11. We stress that even though our results
are obtained for N = 1000, qualitatively similar results can be
obtained for much larger systems.

In Fig. 11(a), we take α = 0.1. It can be seen that in this
case the spectral function spreads over several energy levels.
The highest peak does not correspond to the initial state.
This implies that the dynamics of the system is dominated by
several eigenstates, which results in dynamical orthogonality.
The large values of the averaged work and the standard
deviation of work can also be explained by this property of the
spectral function. The peak corresponding to the initial state
has approximately the same amplitude as peaks corresponding
to other excited states. This in turn allows us to understand the
periodic behavior of the LE.

In Fig. 11(c), α = 0.8. One can also see that several excited
states contribute to the dynamics of the system. However, in
this case, the highest peak corresponds to the initial state.
These properties of the spectral function explain why one
cannot witness the dynamic orthogonality in the behavior
of LE, even though the behavior of the LE is periodic.
Compared with Fig. 11(a), the width of the spectral function
is narrower. Therefore, both of the averaged work and the
standard deviation of work distribution have a smaller value in
this case.

In Fig. 11(b), we show the critical case with α = αc =
0.48. The localization of the spectral function implies that the
averaged work and the standard deviation of work distribution
sharply decay at the critical point. The small contributions of
the initial state and some excited states to A(ω) explain why
the time evolution of the LE is complex and why there is no
periodicity at the critical point. Finally, it is worth pointing out
that depending on the parity of the system, the Hilbert space
can be divided into two subspaces with even and odd parities,

respectively. Therefore, only the states which have the same
parity as the initial state play a role in the dynamics.

The features of the spectral function shown in Fig. 11
strongly suggest that the initial state of the system is localized
at the critical point of ESQPT. To verify this conjecture,
we evaluate the inverse participation ratio (PR) [31], which
measures the localization of a state in a chosen basis. For the
case that we study here, PR is defined as

PR(ini)
Hf

= 1∑
k |ck|4 , (21)

where ck is given by Eq. (10). We should point out that
depending on the parity of the initial state, the sum in Eq. (21)
involves either even or odd values of k.

A localized state will lead to a small value of PR, while a
delocalized state gives a large value of PR. Comparing with
Eq. (13), we find an interesting relation between the averaged
LE and PR, i.e., PR(ini)

Hf
= 1/L̄. Therefore, at the critical point,

the cusplike peak in the averaged LE will induce a cusplike dip
in PR. This means that PR will decrease sharply at the critical
point.

In Fig. 12, we show PR(ini)
Hf

as a function of α for two
different N with different initial states that have an ESQPT
at αc = 0.48 (see caption for details). It is obvious that a
pronounced dip become noticeable in the neighborhood of
the critical point. Moreover, as the size of system increases,

α
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FIG. 12. Participation ratio (PR) as a function of α for different
sizes of system with δα = 0.01. The initial states are |ini = 77〉 for
N = 400, |ini = 197〉 for N = 1000. The vertical green dashed line
indicates the critical point αc = 0.48.
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FIG. 13. Participation ratio (PR) of all the initial states of the
even-parity sector; E0

n/N is the scaled eigenenergy of the nth initial
state. The parameters are α = 0.4 and δα = 0.01. The vertical green
dashed line indicates the critical energy Ec = 0.

the dip becomes more pronounced and the location of the dip
moves toward the critical point. Therefore, the inverse PR can
be used as a useful tool to detect ESQPT.

We also plot PR(ini)
Hf

for all eigenstates of H0 as a function

of scaled initial eigenenergy E0
n/N in Fig. 13. Here, we fix

α = 0.48 and δα = 0.01. We can see clearly at the edges of the
spectrum that the eigenstates are localized with small values
of PR. Particularly for the initial states with energies close to
the critical energy Ec = 0, the value of PR has a dip, which
becomes more pronounced as the size of system N increases.
From these results we can confirm that at the critical point of
the ESQPT the initial state of the system becomes a localized
state and PR serves as a good indicator of ESQPTs [31].

V. CONCLUSIONS

In conclusion, we have studied in detail the effects of an
ESQPT on the nonequilibrium dynamics of a quantum many-
body system, i.e., LMG model, by quenching its controlling
parameter. Unlike the studies in Refs. [29–31], in our study

the effects of the ESQPT are analyzed through the statistics of
the LE and quantum work. We set the initial state to be the nth
(n > 1) eigenstate of the system and fix the amplitude of the
quench. We have shown that the probability distributions of the
LE and work exhibit distinct behaviors when the controlling
parameter locates at and away from the critical point. For
different initial states, the same phenomenon can be observed.

The probability distribution of the LE shows a double-
peaked or winged shape when the controlling parameter is
far away from the critical value. While at the critical point, the
distribution of the LE is approximately given by a Gaussian
distribution. To quantify the effects of the ESQPT on the
statistics of the LE, we studied the averaged LE. The cusplike
shape of the averaged LE with a singularity localized at the
critical point αc/Ec has been found. By analyzing the quantum
work distribution, we have found that both the averaged work
and the standard deviation of work can be used to characterize
the ESQPT. The scaling behavior of the averaged work around
the critical point of ESQPT has been studied. We obtained the
critical exponent νe, which characterizes the divergence of the
correlation length [67] near the critical point.

To fully understand the influence of ESQPT on the
nonequilibrium dynamics in the LMG model, the spectral
function was analyzed. We have found that the inverse PR
shows a dip at the critical point. Hence, at the critical point,
the initial state becomes a localized state. Our results highlight
the relation between ESQPT and the nonequilibrium quantum
dynamics, induced by quenching the controlling parameters of
a quantum system. Unveiling how the nonequilibrium dynam-
ics is influenced by ESQPTs may provide more understanding
about the ESQPT.
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