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Monte Carlo simulations of the XY vectorial Blume-Emery-Griffiths model in multilayer
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The XY vectorial generalization of the Blume-Emery-Griffiths (XY -VBEG) model, which is suitable to be
applied to the study of 3He-4He mixtures, is treated on thin films structure and its thermodynamical properties
are analyzed as a function of the film thickness. We employ extensive and up-to-date Monte Carlo simulations
consisting of hybrid algorithms combining lattice-gas moves, Metropolis, Wolff, and super-relaxation procedures
to overcome the critical slowing down and correlations among different spin configurations of the system. We
also make use of single histogram techniques to get the behavior of the thermodynamical quantities close to the
corresponding transition temperatures. Thin films of the XY -VBEG model present a quite rich phase diagram with
Berezinskii-Kosterlitz-Thouless (BKT) transitions, BKT endpoints, and isolated critical points. As one varies
the impurity concentrations along the layers, and in the limit of infinite film thickness, there is a coalescence
of the BKT transition endpoint and the isolated critical point into a single, unique tricritical point. In addition,
when mimicking the behavior of thin films of 3He-4He mixtures, one obtains that the concentration of 3He atoms
decreases from the outer layers to the inner layers of the film, meaning that the superfluid particles tend to locate
in the bulk of the system.
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I. INTRODUCTION

The general progress in the production and characterization
techniques of thin film materials have enabled a deeper
understanding of the physics of two-dimensional systems. In
addition, it is now well known that the physical properties of
monolayer films can, in some cases, drastically differ from
their bulk three-dimensional (3D) counterpart. As a matter of
example, the molybdenite [1], phosphorene [2], and silicene
[3] present nowadays a high potential for electronic industry
devices. On the other hand, superfluid helium in thin films
also have distinct characteristics of their 3D bulk geometry
and, as a consequence, these new features have led to a better
understanding of rich phenomena such as Casimir effect [4,5],
turbulence in superfluids [6], and phase transitions [7–9],
among others.

In particular, the critical phase transitions in 3D superfluid
4He permit an experimental study with unprecedented high res-
olution and with no complexities arising from impurities and
crystalline imperfections [10–12]. In lower dimensions, the
4He monolayer film shows a Berezinskii-Kosterlitz-Thouless
(BKT) phase transition, which is different from the 3D bulk
behavior, where the phase transition is always of second
order. This characteristic of the films arises because of the
translational symmetry breaking in one of the spatial direction.

On the other hand, computational studies by Schultka and
Manousaki [13,14] have shown that multilayer films for the
XY model (which belongs to the same universality class as
4He), although exhibiting BKT transition, presents a superfluid
density that varies along the layers, becoming stronger on the
inner layers. This effect can be ascribed to the free boundary
condition on the surfaces of the film.

The effect of boundary conditions have also been ex-
perimentally investigated in thin films of 3He-4He mixtures

in different substrates [15–18]. In these mixtures, the 3He
atoms act as impurities, which reduce the superfluid transition
temperature and drives the system toward a phase separation
[19,20].

On the theoretical point of view, in 1971, Blume, Emery, and
Griffiths [21] proposed a simple discrete spin model that could
mimic the basic features of the bulk phase diagram of 3He-4He
mixtures [22,23]. The model was first solved in the mean-field
approximation and, for reasonable values of the parameters, it
was able to qualitatively reproduce the experimental phase
diagram of the 3He-4He mixture, including the tricritical
point. The so-called Blume-Emery-Griffiths model (BEG) still
continues being applied to treat several problems in condensed
matter physics (see, for instance, Refs. [24,25] and references
therein).

Despite the success in representing the physical realization
of the 3He-4He mixtures in three dimensions, the BEG model
presents a second-order phase transition in two-dimensional
films, inconsistent with the experimental result of a BKT-like
phase transition. This disagreement is related to the fact that
the BEG model does not consider the rotational symmetry
of the superfluid order parameter (the wave function of
superfluid helium). Berker and Nelson [26], and independently
Cardy and Scalapino [27], proposed a planar rotator model
to account for the behavior of films of 3He-4He mixtures,
known as the vector Blume-Emery-Griffiths model (VBEG).
The phase diagram of the model was then investigated in two
dimensions by using the Migdal-Kadanoff recursion relations
and no tricritical point was found for any values of the
Hamiltonian parameters. However, for the three-dimensional
planar-rotator VBEG model, mean-field approximation and
Monte Carlo simulations show critical endpoints, isolated
critical or tricritical points, depending on the values of the
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parameters [28]. Similar results to the plane-rotator model
have also been obtained in the XY version of the VBEG
model in three dimensions by using extensive Monte Carlo
simulations [23] (the great advantage, in this latter model, is
the presence of a true dynamics of the spins). Nevertheless, up
to our knowledge, no results have been reported in the literature
about the important properties of the XY -VBEG model on
thin film structures, mainly regarding the topological BKT
phase-transition as a function of film thickness, as well as the
concentration of impurities on different layers of the thin film.

Thus, our purpose here is exactly to study 3He-4He
mixtures on multilayer films using the XY -VBEG model,
which presents three-dimensional spins. We will employ
Monte Carlo simulations, combined with single histogram
techniques, to examine the transition behavior as one gets
from the two-dimensional system to the three-dimensional
limit. This study on thin films will help us understand how
the Berezinskii-Kosterlitz-Thouless endpoint and the isolated
critical point, on two-dimensional lattices, tend to coalesce to a
single tricritical point in the three-dimensional system. We can
also address the important question of how the concentration
of impurities varies along the layers of the film.

The scope of the paper is as follows. The model is defined in
Sec. II. Section III is devoted to some details of the simulational
methods, and the main results are presented in Sec. IV. The
conclusions are briefly discussed in the last section.

II. MODEL AND THIN FILM STRUCTURE
OF THE LATTICE

The XY vectorial generalization of the Blume-Emery-
Griffiths model can be defined by the following Hamiltonian:

H = −J
∑
〈ij〉

(
Sx

i Sx
j + S

y

i S
y

j

) − K
∑
〈ij〉

�S2
i
�S2
j + �

N∑
i=1

�S2
i , (1)

where �Si represents a three-dimensional classical spin with
components �Si = (Sx

i ,S
y

i ,Sz
i ), and 〈i,j 〉 means that the sums

are taken only over nearest-neighbor pairs i,j on a thin film
lattice of N sites. It is the first part of the above Hamiltonian
that gives us the XY interaction (with exchange J ) and mimics
the superfluidity, as soon as one has an ordered spin state in
the xy plane. On the other hand, this XY model can be viewed
as embedded in a lattice-gas model, if we consider that the
magnitude of the spin can take values �S2

i = (Sx
i )2 + (Sy

i )2 +
(Sz

i )2 = 1 or 0. This accounts for the existence of two different
types of particles in the system: magnetic particles with �S2

i = 1
(4He atoms), whose interactions play the role of the superfluid
degrees of freedom, and nonmagnetic particles, with �S2

i = 0
(3He atoms). Thus, the second term in the Hamiltonian arises
from a phenomenological modeling of the interaction energy
between pairs of helium particles of the same or different
species. The parameter �, also known as the crystal field
constant, is essentially the chemical potential difference μ3 −
μ4 of 3He and 4He, respectively. In fact, this crystal field
controls the density of impurities, which, in the present model,
corresponds to the concentration of 3He atoms. More details
about the model can be found in reference [23]. As a matter of

FIG. 1. Example of a configuration of the model described by
Eq. (1) in a cubic lattice of size L = 30. The pins are the spin vectors
representing 4He atoms and the small black spheres represent the 3He
atoms. The concentration of 3He (or similarly 4He) atoms depends
on the value of the crystal field �.

visualization, Fig. 1 depicts an example of a configuration of
the model Eq. (1) on a cubic lattice with linear size L = 30.

We consider here J = K = 1 and the reduced crystal field
variable d = �/J . These parameters correspond to the same
typical values considered in different papers studying the
system on a cubic lattice, both for the XY version as well
as for the planar-rotator version of the model [29,30].

In this work, however, instead of treating a 3D lattice, we
are going to consider the model on thin films of different
thickness. A typical simulated film is outlined in Fig. 2. It
is composed of a square lattice of size L × L with periodic
boundary conditions in the x and y directions, and free
boundary conditions in the z direction with thickness given
by h. These boundary conditions have been chosen because
the study of helium films on different substrates shows that
the superfluid order parameter vanishes on the boundary
of the film [31]. The free boundary condition can be interpreted
as a Dirichlet boundary condition to the value of zero field
on the surfaces [32]. An alternative choice of free boundary
conditions is the staggered boundary condition. Numerical

FIG. 2. Schematic drawing of a simulated multilayer film where
the dots are the lattice sites. In the x-y plane we have an L × L square
lattice (with L = 20 in this figure) with periodic boundary conditions
in both directions, and free boundary conditions in the z direction
with thickness given by h (h = 3 in this example).
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results in other types of models have shown, however, that
free and staggered boundary conditions have the same results
for the corresponding universal quantities [33].

III. SIMULATIONAL METHODS

To get the thermodynamic quantities and the corresponding
phase diagram of the present model, we have used analytical
and Monte Carlo simulation techniques. In the simulations, we
have employed algorithms such as lattice-gas moves combined
with spin-reorientation updates.

The lattice-gas moves account for the phase separation in
the model. The lattice-gas update attempts to insert a magnetic
particle with a randomly selected spin orientation at a site
where a nonmagnetic one is located, or to replace the magnetic
particle present at a site by a nonmagnetic one. The acceptance
probability is set by the local heat-bath rule

p(�E) = 1/[exp(�E/kBT ) + 1], (2)

where �E is the change in configurational energy of the
proposed move, kB is the Boltzmann constant (set to unity in
the present work), and T is the temperature of the system. The
single spin-reorientation update is done as in the Metropolis
algorithm, but the acceptance probability is also given by the
local heat-bath rule given by Eq. (2).

The spin reorientation updates are related to the long-
range magnetic order, which corresponds to the superfluid
phase. We also applied nonergodic versions of the Wolff
algorithm [34,35] and overrelaxation updates of the spins at
constant configurational energy [36,37]. Each update method
is performed in sweeps over the full lattice and each method is
preceded by a lattice-gas sweep. Thus, the Monte Carlo update
algorithms, each one preceded by the lattice-gas update, are
all combined resulting in a hybrid Monte Carlo method to
reduce correlations between successive configurations in the
simulation.

The Wolff update affects only the in-plane components of
the spin-1 particles, while the z component is unchanged to
obey detailed balance. Analogously, the overrelaxation method
is performed with a rotation solely of the in-plane component
of the spins to keep the configurational energy fixed. Although
the Wolff and the overrelaxation updates are both nonergodic,
with the spin-reorientation updates and the lattice gas moves
included, the combined algorithm will satisfy the ergodicity
condition. This comes from the fact that for each lattice-gas or
spin reorientation moves, the new spin direction is randomly
selected from the even distribution on a unit sphere. Thus, what
we will henceforth call a hybrid Monte Carlo step (MCS) is
defined by one spin-reorientation sweep, one Wolff cluster
update, and one overrelaxation sweep. Of course, different
combinations of these algorithms can also be chosen, but this
choice has been proven to be efficient in terms of reducing the
correlations and time consuming.

Simulations have been done on lattices with dimensions
L × L × h, with periodic boundary conditions perpendicular
to the direction of the film thickness and free boundary
conditions in the direction of the thickness h. The runs
comprised 5 × 103 MCS for equilibration and the preliminary
measurements were made on 105 hybrid MCS for each lattice.
The lattice sizes ranged from L = 16 to L = 128, and the

thickness h = 1, 2, 3,... up to 11 (in some special cases we
also considered h = 20). When needed, additional lattices with
sizes L = 256 and L = 512 have also been simulated. The
routine RAN2 [38] was the random number generator used in
all simulations.

The global phase diagram, as a function of the theoretical
parameters, has been obtained through the location of the
BKT transition temperature by analyzing the behavior of
the magnetic susceptibility, as well as the helicity modulus.
At some special points of the phase diagram, which needed
a better accuracy, we have employed the single histogram
technique [39]. For these special points, the system has been
again simulated with 5 × 103 MCS for equilibration and
now 5 × 106 hybrid MCS for getting the single histogram
calculations.

It has been noticed that the absence of well-defined peaks
in the thermodynamic quantities makes a precise location of
the BKT transition temperature more difficult in this model.
Therefore, different approaches have been carried out to
estimate the BKT transition point and verify which one best
fits the analysis of the XY -VBEG model. Several quantities
have been studied to obtain the complete phase transition
diagram, as well as to check if the whole characteristics of
BKT transitions are preserved at all points of the diagram for
films of different thickness h.

Although model Eq. (1) does not present a finite mag-
netization in the absence of an external magnetic field in
two dimensions, it does present (in the thermodynamic
limit) a phase transition in which the in-plane susceptibility
diverges exponentially as the Berezinskii-Kosterlitz-Thouless
temperature (TBKT) is approached from above and stays infinite
for T � TBKT in such a way that an entire line of critical points
appears in the phase diagram [40].

On the other hand, for finite systems of linear size L and
h = 1, the above susceptibility for T � TBKT is finite, but
should behave as

χ ∝ L2−η, (3)

where η = η(T ) is the corresponding correlation function
exponent which depends on temperature. It is known that at the
BKT transition temperature the exponent η has an established
value of η(TBKT) = 1/4 [41] for pure and diluted systems
[42,43]. This equation is, in general, used to estimate the
BKT transition temperature [42–45]. We will assume here
that a similar behavior can also be valid for lattices where the
thickness h is different from h = 1.

IV. RESULTS

As has been discussed above, we have considered herein the
case where K = J = 1, since these values of parameters have
already been considered in the study of the three-dimensional
version of the model Eq. (1) and a comparison can be
achieved by just analyzing the results in the limit of very large
thickness h.

A. Transition temperatures and phase diagrams

We have first computed the in-plane-magnetization suscep-
tibility by averaging the square in-plane magnetization [40],
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FIG. 3. Rescaled magnetic susceptibility as a function of the
temperature for different lattice sizes L and thicknesses h. In this
case d = −4. For a question of clarity, the Monte Carlo data have
been omitted and only the lines are shown in this figure.

χ = χxy = 〈
m2

xy

〉
, (4)

where

m2
xy = 1

N

N∑
i=1

[(
Sx

i

)2 + (
S

y

i

)2]
, (5)

and N = L × L × h is the number of lattice sites.
In Fig. 3 it is shown the behavior of χ/L2−η as a function of

temperature for lattice sizes ranging from L = 16 to L = 128,
and thicknesses h = 1,2,3,4, for d = −4, with the value of
the critical exponent η = 1/4 at the BKT transition. The
temperature T here is measured in units of the Boltzmann
constant. This value of the crystal field has been chosen
because it gives a good quantitative view of the results. Note
that for negative values of d one has a higher concentration
of 4He atoms, the concentration being 100% only in the limit
d → −∞. On the other hand, for positive values of d, a higher
presence of 3He atoms is expected and, as we shall see below,
a first-order transition will take place for some high enough
3He concentration. Eventually, even the first-order transition
will disappear when the crystal field continues to increase.

The intersections of curves for different lattice sizes, as
depicted in Fig. 3, can give a good estimate for the BKT
transition temperature. We can observe that the qualitative
behavior of the curves for different thicknesses h is very
similar, i.e., the curves for different values of L intersect at
a single point, with the intersection temperatures increasing
as the value of the film thickness h increases (as expected,
since more interactions are introduced into the system).
The temperatures so obtained are shown in Table I. For
the monolayer film h = 1 the BKT transition temperature
T

χ

BKT = 0.6975(14) is slightly smaller than the corresponding
one for the two-dimensional XY model TBKT = 0.700(5) [46].

Another thermodynamic quantity that has been investigated
is the helicity modulus ϒ , also known as stiffness, which is
a thermodynamic quantity often employed in the XY model
study. It was introduced by Cuccoli [40] to define the coherence

TABLE I. BKT transition temperature obtained by the scaling
law susceptibility (T χ

BKT) and the helicity modulus (T ϒ
BKT) in different

film thicknesses for K = J = 1 and d = −4.

h T
χ

BKT T ϒ
BKT

1 0.6975(14) 0.700(1)
2 1.0305(5) 1.030(3)
3 1.1895(20) 1.189(5)
4 1.281(1) 1.282(8)

length of a 4He superfluid, which corresponds to superfluid
density on the XY model formalism. ϒ describes then the
resistance of the system to a turning of the planar spin
components at a certain direction. The helicity modulus can
be expressed as

ϒ = ∂2F

∂δ2

∣∣∣∣
δ=0

, (6)

where F = −kBT ln(Z) is the free energy of the system, Z its
canonical partition function, and δ a phase twist applied to the
boundaries along the x direction. Developing Eq. (6), one is
able to arrive at a general expression given by [47]

ϒ =
〈

∂2H
∂δ2

∣∣∣∣
δ=0

〉
− 1

kBT

〈(
∂H
∂δ

)2
∣∣∣∣∣
δ=0

〉

− 1

kBT

〈
∂H
∂δ

∣∣∣∣
δ=0

〉2

, (7)

where H is the Hamiltonian of the system. For the particular
XY -VBEG model, Eq. (1), one has

∂H

∂δ

∣∣∣∣
δ=0

= −J
∑
i �=j

(�rij · x̂)
(
Sx

i S
y

j − S
y

i Sx
j

)
, (8)

∂2H

∂δ2

∣∣∣∣
δ=0

= J
∑
i �=j

(�rij · x̂)2
(
Sx

i Sx
j + S

y

i S
y

j

)
, (9)

where �rij is the vector distance of the spin �Si to spin �Sj and x̂

is the unit vector along the x direction.
In the thermodynamic limit, the helicity modulus presents

a jump from 2T/π to 0 at the BKT transition temperature for
a monolayer system [41]. So, the helicity modulus can also
be used to estimate the BKT transition temperature [48–50].
Although this behavior has been obtained for unalloyed
case, its extension to the diluted system has shown to be
still valid [43]. In addition, arguments from self-consistent
harmonic approximation (SCHA) have shown that the helicity
module at (2TBKT/π ) should be independent of the impurities
concentration (see, for instance, Ref. [51]). On the other hand,
in multilayer films the helicity module shows a jump of 2T/πh

at the corresponding BKT transition temperature [13,14], with
h being the number of film layers.

In Fig. 4 we have the helicity modulus as a function of
temperature of the XY -VBEG model for different (larger)
lattice sizes L and the same thicknesses h as before, for
d = −4. It was obtained from Monte Carlo simulations using
Eqs. (7), (8), and (9). We have estimated the transition
temperature from the crossings of the helicity modulus with
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FIG. 4. Helicity modulus curve as a function of temperature of
the XY -VBEG model for different lattice sizes L and thickness h.
The full circles are simulation results, and the lines are guide to the
eyes. The dashed lines correspond to the linear equation 2T/πh. The
error bars are smaller than the symbol sizes.

the straight line 2T/πh, as shown in Fig. 4. The temperatures
so obtained are also shown in Table I. In this table, one can
observe that the temperature obtained from the susceptibility
scaling law is comparable to that from the helicity modulus,
however, the former one has a better precision. Therefore, the
BKT transition line of the phase diagram for other values of
the reduced crystal field d, as well as thickness of the films
h, has been determined utilizing the susceptibility scaling
law (3). Note also that the transition temperature for the
monolayer system, namely T ϒ

BKT = 0.700(1), is in this case
also comparable to the pure XY model transition temper-
ature TBKT = 0.700(5) [46], which means that at d = −4
one practically has the 4He superfluid system.

To see the behavior of the transition temperature as a
function of the thickness of the film, in Fig. 5 we have the BKT

5 10 15 20
h

0.8

1

1.2

1.4

1.6

T

TBKT(h)
Tc

d =-4

FIG. 5. BKT transition temperature as a function of film thickness
h for d = −4. The full line is a fit to Eq. (10). The horizontal dashed
line marks the transition temperature of the corresponding three-
dimensional system.

2 4 6 8 10 12
h

0.8

1

1.2

1.4

T
d=0
d=1
d=2

FIG. 6. BKT transition temperature as a function of film thickness
h for different values of crystal field d . The lines are fits to Eq. (10).

transition temperature as a function of h for d = −4, together
with the critical temperature for the corresponding 3D lattice,
which is clearly approached when h → ∞. Figure 6 shows
the BKT transition temperature as a function of the thickness
h for other values of crystal field. It can be noticed a similar
behavior for different values of h. However, as expected, the
transition temperature decreases as one increases the value of
d. This is so because as one increases the crystal field one also
increases the concentration of nonmagnetic particles, implying
a decrease of the corresponding transition temperature.

As has been reported by Schultka and Manousakis [13,14],
the BKT transition temperature of the XY model defined on
thin films follows a scaling relation with the film thickness h.
For the particular case of the planar rotator model, this scaling
relation is given by

TBKT(h) = T 3d
c

[
1 + a

(h + b)1/ν

]
, (10)

where a and b are nonuniversal constants, ν and T 3d
c are the

critical exponent and the critical temperature of the three-
dimensional system, respectively. It is interesting to notice
that the above equation also fits very well the results of the
present more general XY -VBEG model. In fact, the full line
in Fig. 5 has been obtained by using the known parameters
of Eq. (10), that is, the exponent of the three-dimensional
system ν = 0.6717(1) [52] and the critical temperature of
the three-dimensional system T 3d

c = 1.5518(2). Adjusting
the respective constants one obtains a = 1.587(8) and b =
−2.25(1). In Fig. 6 it is shown the same fit for other
crystalline field values where different values for a and b

have been obtained. The corresponding temperature of the
three-dimensional system has been taken from Freire et al.
[23]. From the quality of the fits one can clearly see that
Eq. (10) can also account for the behavior of the transition
temperature as a function of the film thickness for the present
more general XY -VBEG model.

To have a better picture of the phase transition properties of
the present model as we change the thickness h, we have also
computed the constant volume specific heat cv , which is given
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FIG. 7. Specific heat cv as a function of the temperature for
different lattice sizes L and thicknesses h for d = −4. The longer
vertical arrows indicate the BKT transition. As in Fig. 3, the Monte
Carlo data have been omitted for clarity.

by

cv = N
〈E2〉 − 〈E2〉2

T 2
, (11)

where E is the energy per spin and T is the temperature of
the system. Figure 7 shows the specific heat as a function of
temperature for the crystal field d = −4, for three different
lattice sizes, and thicknesses h = 1, 2, and 3. As can be seen,
the specific heat has a maximum at a temperature higher than
the transition temperature TBKT with no detectable singularity.
As in the monolayer lattice (h = 1), this maximum is caused
by the gradual dissociation of vortex pairs [26] and there is
no clear correlation between the simulated lattice size L and
the corresponding height of the maximum for small values
of h. However, for h � 3, we have observed that a correlation
between L and the maximum specific heat for these lattice sizes
starts taking place, in such a way that as the lattice increases,
the peak also systematically increases (as for h = 3 shown in
Fig. 7). In addition, the temperature at which the maximum
of specific heat happens is approaching the BKT transition
temperature with the increase of h. As a matter of example,
the difference between the temperature of the maximum of
the specific heat peak and the BKT transition temperature
for L = 64 and h = 1 is 0.073(2), for h = 2 is 0.059(1), and
for h = 3 is 0.053(1). As a result, the film exhibits indeed a
BKT-type transition, but with some features that are similar to
a second-order transition at higher temperatures (just similar,
because there is a kind of crossover from one behavior to the
other and the true second-order transition will only be achieved
in the limit h → ∞). Although such specific heat behavior can
be seen for larger values of h, there is not a second-order finite
size scaling for it and, from the present simulations, we cannot
provide a more detailed discussion on the underlying physical
mechanisms leading the unconventional BKT phase transition
to become a conventional continuous one.

Thus, the global phase diagram, for a given finite value
of the film thickness, can be obtained through the location of
the BKT transition by analyzing the behavior of the magnetic

0 1 2 3
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0.6

0.7

0.8

T

h=1

FIG. 8. Phase diagram in the temperature versus reduced crystal
field plane for J = K = 1 and h = 1. The full circles indicate BKT
transitions and open circles first-order transitions. The full square
and diamond represent the BKT transition endpoint and the isolated
critical point, respectively. The lines are guide to the eyes.

susceptibility, as given by Eq. (4). However, as we change the
crystal field, possible first-order transitions can be set up in the
model, and multicritical points will also be present depending
on how the second-order line meets the first-order line. To
seek for first-order transitions we have analyzed the hysteresis
observed in the susceptibility χxy and also in the concentration
q of 3He (nonmagnetic) particles. The 3He concentration q can
be easily obtained from

q = 1

L2

N∑
i

[
1 − 〈

S2
i

〉]
. (12)

It turns out q to be an order parameter that allows us to identify
first-order transitions present in the studied system. Although
through this approach the location of the first-order transition
line is not as precise as the corresponding second-order
transition line, it is sufficient to determine the full phase
diagram for a given value of the film thickness as a function
of the crystal field, mainly close to the multicritical points. As
an example, Fig. 8 depicts the result for the special case of a
monolayer film (h = 1), where we can clearly see the presence
of a BKT transition endpoint and an isolated critical point.
This is the same feature that was obtained for the triangular
lattice [29].

The corresponding phase diagrams, in the crystal field
versus temperature plane, of the XY -VBEG model for K =
J = 1 and different thicknesses are shown in Fig. 9. Although
the three-dimensional model has a second-order transition line
and a tricritical point, for any finite value of the thickness h

one has a BKT transition line, a BKT endpoint and an isolated
critical point. The BKT endpoint and the isolated critical point
get close together as the film thickness increases and eventually
coalesce into the tricritical point in the h → ∞ limit. Figure 10
shows such behavior in the temperature versus crystal field
plane.

Regarding the three-dimensional model, the concentration
of nonmagnetic particles at the tricritical point qTCP, and the
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1.4

1.6

T

h=3

h=1

h=2

3d

FIG. 9. Phase diagrams in the temperature versus reduced crystal
field plane for J = K = 1 and films with different thicknesses h. The
data for the three-dimensional model have been taken from Ref. [23].
The full circles indicate BKT transitions, the stars second-order phase
transitions, and open circles first-order transitions. The full squares,
diamonds, and the triangle represent BKT transition endpoints,
isolated critical points, and the tricritical point, respectively. The lines
are guide to the eyes.

ratio TTCP/T 0
c , where TTCP is the tricritical temperature and

T 0
c = T 3d

c is the temperature of the superfluid transition for
pure 4He, are two parameters that can be used to compare the
theoretical results with the experimental data (see, for instance,
Ref. [23] for the three-dimensional model). Similarly, in this
work we can study equivalent quantities (although we are not
aware yet of such experimental results), which are the con-
centration of 3He at the BKT transition endpoint (qBKTEP) and
the ratios TBKTEP(h)/T 0

BKT(h) and TCP(h)/T 0
BKT(h) to verify

how the new free boundary conditions influence the behavior
of these parameters. In the above relations, TBKTEP(h) is the
temperature of the BKT endpoint, T 0

BKT(h) the temperature
of the BKT transition of the pure system, and TCP(h) is the

2.4 2.6 2.8 3 3.2 3.4
d

0.7

0.8

0.9

1

1.1

1.2

1.3

T

BKTEP
CP
TCP

h=11

h=1

3d

h=2

h=3

FIG. 10. Isolated critical points (CP) and BKT transition end-
points (BKTEP) coalescing into the tricritical point (TCP) as the film
thickness increases. The lines are just guide to the eyes.

2 4 6 8 10
h

0.
85

0.
9

0.
95

1
1.

05
T/

T0

TCP(h)/T0
BKT(h)

TBKTEP(h)/T0
BKT(h)

TTCP/T0
c

FIG. 11. Ratios TCP(h)/T 0
BKT(h) and TBKTEP(h)/T 0

BKT(h) of the
XY -VBEG model with K = J = 1 for different thicknesses h. The
lines are guide to the eyes. The ratio TTCP/T 0

c of the three-dimensional
model [23] is represented by the dot-dashed line.

temperature of the isolated critical point, all quantities as a
function of the film thickness h. Figure 11 shows the ratios
TBKTEP(h)/T 0

BKT(h) and TCP(h)/T 0
BKT(h) obtained in this work

and TTCP/T 0
c for the three-dimensional system taken from

Ref. [23]. It is noted that the ratios TBKTEP(h)/T 0
BKT(h) and

TCP(h)/T 0
BKT(h) rapidly approach TTCP/T 0

c with the increasing
of film thickness.

B. Layer distribution of 3He particles

It is interesting now to analyze the behavior of the distri-
bution of 3He particles q as a function of h. Figure 12 shows
the mean concentration of 3He particles at the BKT critical
endpoint for films of different thicknesses. It is quite interesting
to notice that there is no convergence to the tricritical point
value of the three-dimensional model in this case, as should
be expected. For film thickness h = 11, for example, at the

0 2 4 6 8 10
h

0

0.1

0.2

0.3

q

qBKTEP
qTCP

FIG. 12. Average concentration of 3He at the BKT endpoint as a
function of thickness. Dots are results from simulations, the dashed
horizontal line is the result for the three-dimensional model, and the
solid line is just a guide to the eyes.
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0 0.2 0.4 0.6 0.8q
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P(
q)
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MC

outer layer

inner layer

d=3.3145
T=1.23
h=11

FIG. 13. Probability distribution of the nonmagnetic 3He particles
P (q) at several layers of a thin film with thickness h = 11 and L = 40.
The full circles are simulational results and the lines a Gaussian fit to
the corresponding data.

BKT transition endpoint one has qBKTEP = 0.312, almost
twice the concentration of the three-dimensional model at
the tricritical point, which is qTCP = 0.17 [23] (the 3He
concentration at the tricritical point of the three-dimensional
system was experimentally measured as qTCP = 0.67 [20]).
This anomalous growth of q with the thickness indicates
that higher concentrations of non-magnetic particles can be
achieved as a result of the free boundaries present on the thin
films.

A better way to track what is happening with the distribution
of the nonmagnetic particles, due to the presence of the free
surfaces, is to compute their concentrations on each layer of
the film, instead of the total mean concentration as depicted
in Fig. 12. Of course, layers with the same distance from the
free surfaces will have the same concentrations, owing to the
symmetry of the lattice. As an example, let us see the results
for a thin film of thickness h = 11 and linear size L = 40.
Thus, the concentrations to be analyzed are provided only by
the first six layers, where the first layer is the outermost one
and the innermost one is the sixth layer of the film. Figure 13
shows the probability distribution of the concentration of 3He
that comes from the simulation results at the specific point
T = 1.23 and d = 3.3145 for each one of the six layers. In
this particular point the system is in the superfluid phase very
close to the first-order transition line. The figure also shows a
Gaussian fit to the data, from which one can easily calculate
the average and variance of the nonmagnetic concentration.
One can see that the average concentration of 3He decreases
from the outer layer (layer one) to the inner layer (layer six)
and the superfluid particles tend to locate in the bulk of the film
(note that, for the outer layer, 〈q〉 = 0.73372(6) in this case).
This means that, for very large values of the thickness h, the
bulk of the film behaves as a three-dimensional system, with
its proper concentration of 3He . However, due to the presence
of the free surfaces at the edges of the film, the concentration
of 3He tends to increase in layers close to the surface. In this
way, the total concentration of 3He particles in the film will
surely be greater than the corresponding concentration for the

2.4 2.6 2.8 3 3.2
d

0

0.2

0.4

0.6

q

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6

T=1.23

FIG. 14. Concentration of 3He in each layer as a function of
crystal field. Dots are results of the simulation and the lines are
guides to the eye.

three-dimensional infinite lattice. This explains in some way
the results depicted in Fig. 12.

In Fig. 14 it is shown the average concentration of the
nonmagnetic particles as a function of the reduced crystal field
d for the six layers with h = 11 at the temperature t = 1.23.
It is also observed that the increase of q with the crystal field
is more sensitive at the outer layers.

Finally, in Figs. 15(a)–15(d) we show the concentration
distribution of 3He at the first-order transition point T = 1.23
and d = 3.315. It can be seen that, as expected, the distribution
has now two peaks for each layer. In the first layer the peaks
have different heights and as one goes to the inner layers, the
corresponding two peaks get more separated and tend to have
the same height.

0 0.5 1

0
0.

05
0.

1
0.

15
0.

2
P(

q)

0 0.5 1

0
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1
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2

0 0.5 1
q

0
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15
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2
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q)
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0
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05
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1
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15
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2

first layer second layer 

fifth layer sixth layer

(a) (b)

(c) (d)

FIG. 15. Probability distribution of nonmagnetic particles in
different layers at a point on the line of first-order transition. Dots
are simulation results and the dashed lines are Gaussian fits. (a) First
layer, (b) second layer, (c) fifth layer, and (d) sixth layer.
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V. CONCLUDING REMARKS

In this paper, we have studied the XY -VBEG model
in thin films using Monte Carlo simulations and histogram
techniques. This model has an experimental appeal because it
is suitable to describe 3He-4He mixtures. The multilayer films
of this model showed a phase transition of BKT type with the
same characteristics of the corresponding monolayer film. The
results have been obtained for the particular case K = J = 1,
since for these values one can compare to the corresponding
results obtained in the literature for the three-dimensional
model.

Using a finite-size scaling relation of the in-plane magnetic
susceptibility with exponent η = 1/4 for films of different
thicknesses, we have obtained the BKT transition temperature
that matches the BKT temperature obtained from the helicity
modulus. Thus, one can say that the exponent η = 1/4 does
not vary with film thickness and it can be used to obtain BKT
transition lines for films of different thicknesses.

On the other hand, the BKT transition temperature increases
with the film thickness and tends to the second-order transition
temperature of the three-dimensional model when the film
thickness goes to infinity. A good fit of the BKT transition
temperature with the thickness of the film has been obtained
by using the scaling relation proposed by Schultka and
Manousakis for the planar rotator model. The same critical
exponent ν of the three-dimensional model was used for
different values of the crystal field, showing a same universality
class in this case. It is noteworthy that previous works have
showed that the critical exponents ν does not vary even with
quenched dilution [53].

The phase diagram to thin films has a BKT critical endpoint
and an single critical point. These points approach each

other with the increasing of thickness and coalesce at the
tricritical point of the three-dimensional system. However,
due to the presence of the free surfaces, the concentration of
non-magnetic particles at the tricritical point is twice the value
of the bulk system for large values of h. It means that although
the transition temperatures approach the three-dimensional
value as h → ∞, without being sensitive to the boundary
conditions, the concentration of magnetic and nonmagnetic
particles are quite different and strongly depends on the
layer distance of the surface. This layer dependence of the
concentration is mainly seen at the first-order transition lines.

The first-order phase transition lines have been located by
analyzing the hysteresis observed in the susceptibility and in
the 3He concentration. However, from Fig. 15 one can clearly
see that the double peak present on the q concentration can
also be a good quantity to locate, in a more precise way,
such first-order transitions. Note that no double peak structure
is observed for d = 3.3145, while they are clear when d =
3.315. Nevertheless, we have not pursued this further in the
present work because the multicritical points, and the general
topology of the phase diagrams, will not significantly change
by using this more sophisticated approach. It will, of course,
be necessary for a more precise location of the BKT transition
endpoints and the isolated critical points.
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