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Coda reconstruction from cross-correlation of a diffuse field on thin elastic plates
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This study contributes to the evaluation of the robustness and accuracy of Green’s function reconstruction
from cross-correlation of strongly dispersed reverberated signals, with disentangling of the respective roles of
ballistic and reverberated (“coda”) contributions. We conduct a suite of experiments on a highly reverberating
thin duralumin plate, where an approximately diffuse flexural wave field is generated by taking advantage of
the plate reverberation and wave dispersion. A large number of impulsive sources that cover the whole surface
of the plate are used to validate ambient-noise theory through comparison of the causal and anticausal (i.e.,
positive- and negative-time) terms of the cross-correlation to one another and to the directly measured Green’s
function. To quantify the contribution of the ballistic and coda signals, the cross-correlation integral is defined
over different time windows of variable length, and the accuracy of the reconstructed Green’s function is studied
as a function of the initial and end times of the integral. We show that even cross-correlations measured over
limited time windows converge to a significant part of the Green’s function. Convergence is achieved over a wide
time window, which includes not only direct flexural-wave arrivals, but also the multiply reverberated coda. We
propose a model, based on normal-mode analysis, that relates the similarity between the cross-correlation and
the Green’s function to the statistical properties of the plate. We also determine quantitatively how incoherent
noise degrades the estimation of the Green’s function.
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I. INTRODUCTION

In parallel with the striking demonstration that cross-
correlation of diffuse ambient noise recorded at two points can
lead to recovery of the exact Green’s function between the two
receivers [1], the spatiotemporal correlation between a set of
receivers in the presence of an impulsive source has been inves-
tigated. The results were particularly conclusive at the seismic
scale, where coda-wave interferometry [2] was used to monitor
highly scattering media with unprecedented accuracy. When
averaged over a significant number of regional earthquakes, the
cross-correlation of the coda waves also showed the possibility
of recovering the Rayleigh surface waves between seismic
sensors spread across Mexico [3]. The present paper aims to
quantify the convergence of the correlation function toward the
Green’s function at the laboratory scale in a two-dimensional
thin-plate configuration. This property is derived from the for-
mulation of the Ward identity when the propagation medium
is covered with incoherent sources. When generalized to
continuous ambient noise (instead of one or a set of impulsive
sources), the cross-correlation theorem has resulted in both
imaging and monitoring applications in a variety of fields, such
as ultrasonics (e.g., Ref. [4]), helioseismology (e.g., Ref. [5]),
ocean acoustics (e.g., Ref. [6]), seismology from the regional
to the global scale (e.g., Refs. [7,8]), medical imaging (e.g.,
Ref. [9]), and structural engineering (e.g., Ref. [10]).

If the Green’s function of the medium is to be reconstructed
using this method, then the diffuse incident field should result
from the superposition of either decorrelated isotropic plane
waves [11] or uniformly distributed noise sources [12]. While
the first condition here is only valid in open media, the second
one assumes that the anelastic attenuation is uniform within
the medium of propagation. In both cases, it can be shown

that the time derivative of the field cross-correlations between
two points coincides with the difference between the “causal”
and “anticausal” impulse responses, i.e., the Green’s function
between the two points.

In practice, these conditions are only partially fulfilled.
The mismatch between the cross-correlation and the Green’s
function for a real noise source distribution is a measure of the
accuracy of the method. The mismatch in homogeneous open
media can be straightforwardly deduced from geometrical
considerations of the source distribution [13]. In complex
random media, only statistical quantities can be inferred, and
a mismatch appears as a fluctuation of the cross-correlation.
In the case of multiple scattering media, these fluctuations
can be relatively well predicted from a shot-noise model [14].
However, only the use of multiple-scattering wave theory leads
to fully consistent results [15,16].

Only a few studies have been devoted to the interferometric
reconstruction of Green’s functions in bounded media. The
related theory is, however, relevant to room acoustics [17] and
passive structural health monitoring [10,18]. In thin plates,
the dispersion relation for noise generated by an air jet has
been recovered [19]. More recently, an experimental and
numerical study was also conducted to determine the role
of the ballistic and coda part on the cross-correlation when
the source distribution was circular and uniform [20]. Our
study here follows Duroux et al. [21], who investigated the
convergence of the cross-correlation of vibrational waves in a
thin aluminum plate. A heuristic shot-noise model introduced
by Larose et al. [14] was used to interpret the results.

Here, similarly to Ref. [21], the use of a Doppler vibrometer
and the reciprocity theorem allows a very flexible study of the
effects of the source distribution on the cross-correlation. The
set-up allows the comparison of the cross-correlation result
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with the transient response that is estimated with an active
source. We also study the symmetry of the correlation, because
this is often an experimental proxy for the convergence toward
the Green’s function.

We also cross-correlate a part of the multiply reflected
wave (“coda”) instead of the entire reverberating time. The
results are analyzed through modal decomposition of the
cross-correlation over the eigenvibrational modes of the plate.
This modal approach leads to consistent modeling of the
cross-correlation that is governed by different regimes. When
the number of sources is large enough, the model shows that
even with a very short part of the coda, a perfect estimation
of the Green’s function can be obtained. On the other hand,
the similarity coefficient with a single source can be as small
as a factor of 1/

√
3 when the entire signal is correlated. The

effects of uncorrelated noise (e.g., electronic noise) are also
analyzed.

This paper is structured as follows: Section II introduces
the cross-correlation for flexural waves, and Sec. III describes
the experimental set-up and how the cross-correlation is built
using the reciprocity theorem. In Sec. IV, a preliminary study
is proposed in terms of the symmetry of the Green’s function
reconstruction and relates this to the signal-to-noise ratio. In
Sec. V, the quantitative similarity between the direct impulse
response and that obtained via cross-correlation of passive
signals is studied. Section VI is devoted to an estimation of the
similarity coefficient when cross-correlation is performed on
only a part of the coda and a finite number of sources. Finally,
the effects of uncorrelated noise on the correlation process are
taken into account.

II. INTERFEROMETRY WITH LAMB WAVES

The cross-correlation theorem holds under the hypothesis
of a diffuse wave field. We assume here the definition of
“diffuse” as given in Ref. [22]: A wave field is diffuse
if all of the propagation directions have equal probability.
This is approximately achieved in practice if the sources are
distributed with equal probability with respect to the position
and/or if the recordings are very long in time in the presence
of scattering and/or reverberation.

In the present experiments, we record the guided plate
waves, which are known as Lamb waves. Lamb waves
propagate according to two modes: symmetric and antisym-
metric [23]. At low frequency, the fundamental antisymmetric
and dispersive Lamb mode (A0) dominates the vertical plate
displacements. According to the Kirchhoff-Love hypothe-
sis [24], the Green’s function (G) of the A0 or flexural mode
is the solution to the equation of motion associated with an
impulsive point source,

D�2G(r − r0,t) + ρs

[
∂2G(r − r0,t)

∂t2
+ 1

τa

∂G(r − r0,t)

∂t

]
= −δ(r0)δ(t), (2.1)

where �2 is the biLaplacian operator that is defined as the
squared Laplacian, ρs is the surface density of the plate, τa is
the attenuation time, r is the position vector, t is the time, and
D = h3E/12(1 − ν2) is the bending stiffness, where E and ν

are the Young’s modulus and Poisson’s ratio, respectively, and
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FIG. 1. Experimental set-up, consisting of a duralumin plate and
five piezoelectric transducers. The normal displacement of the plate
is measured using a laser vibrometer placed on a two-dimensional
motor and at the points marked by the black circles.

h is the thickness of the plate [25]. If the signal is generated
by N point sources of identical power spectral density S(ω),
then the Fourier transform of the cross-correlation estimated
from a record of duration �T is given by

C
(
rR
l ,rR

l′ ,ω
) = �T

N∑
k=1

G
(
rR
l ,rS

k ,ω
)
G∗(rR

l′ ,r
S
k ,ω

)
S(ω), (2.2)

where G∗ is the complex conjugate of G, rR
l , and rS

k are the
lth receiver position and the kth source position, respectively.
According to Ref. [26], the cross-correlation is related to the
imaginary part of the Green’s function by

C
(
rR
l ,rR

l′ ,ω
) = �T S(ω)Nτa

ρsωA
ImG

(
rR
l ,rR

l′ ,ω
) + Q(ω),

(2.3)
where A is the plate area, and the deviation Q(ω) can be caused,
in particular, by nonuniformities in the source distribution,
as well as by instrumental error. Equation (2.3) shows that
the Green’s function associated with two locations rR

l and
rR
l′ where sensors are deployed can be reconstructed by cross-

correlation of the ambient recordings made by the two sensors,
provided that the ambient noise is diffuse [26].

III. PLATE EXPERIMENTS

A. Set-up

The experimental set-up consists of a homogeneous du-
ralumin plate of 50 × 60 × 0.3 cm, with five piezoelectric
transducers attached to the plate using instant glue (Fig. 1).
There are neither significant material heterogeneities within
the plate nor scattering obstacles attached to it. The tempera-
ture of the room is controlled by an air conditioning system.
We measured the room temperature continuously during the
experiment and no significant variation was observed. All of
the transducers are located at a minimum distance of 10 cm
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from the sides of the plate. Instead of a short pulse, a linear
“chirp” in the frequency band of 100 Hz to 40 000 Hz with the
rate of frequency change of 39 900 Hz/s is sent via these
transducers. The transducers are made of a 200-μm-thick
ceramic piezoelectric disk adhered to a thin 20-mm-diameter
and 200-μm-thick metallic disk. Effect of such a transducer
on the propagation is limited because total thickness of the
transducer is only 13% of the plate thickness (the mass of
the transducer equals 0.5 g). On the other side of the plate,
the vertical displacement induced by the vibration (i.e., Lamb
waves) is scanned with a laser vibrometer. Since the higher
Lamb modes (A1, S1, A2, S2, . . . ) have a minimum cut-off
frequency of 500 kHz, within our frequency band of interest,
we can only generate the fundamental modes A0, S0, and
SH Lamb modes. Moreover, because we are working at
less than 1/10 of the cut-off frequency, the displacements
recorded by the vibrometer are dominated by the A0 mode. The
latter, dubbed “flexural-plate mode” in the field of structural
acoustics, is very dispersive. Indeed, between 100 Hz to
40 000 Hz, the phase velocity ranges between 17 to 1000 m/s
(i.e., wavelength between 170 and 25 mm). The group velocity
has almost twice the value of the phase velocity. At such
a low-frequency range, propagation of the A0 mode is well
described by Eq. (2.1). Note that in this frequency range,
Kirchhoff-Love model holds.

Recorded signal is cross-correlated with the chirp to extract
the impulse response with the best signal-to-noise ratio.

B. Fundamental properties of the observed signal

Laser vibrometer scans are performed on a grid of about
2500 regularly spaced locations (with a uniform distance of
1 cm between two points along the x and y plate directions), as
qualitatively illustrated in Fig. 1. An example of the recorded
signals after chirp pulse compression is shown in Fig. 2. Based
on the reciprocity theorem (e.g., Ref. [27]), from now on
we think of our readings as virtually emitted at the locations
scanned by the vibrometer and virtually recorded at transducer
locations. This allows the simulation of the effects of a wide
variety of source distributions.

The envelope of the multireverberated impulse response
shows exponential decay. By fitting an exponential function
to the squared signal (intensity), an attenuation time (time
that it takes for the amplitude to decrease by 1/e of the
maximum amplitude) of 9 ms is found. At 10 kHz, this time
corresponds to about 18 reflections off the boundaries. For
a single pair of receivers separated by 12 cm and placed at
minimum distance of about 19 cm from the borders of the
plate, the cross-correlations for all of the virtual noise source
positions are gathered in Fig. 3(a), while Fig. 3(b) shows the
results of the averaging over all of the source positions. A
coherent structure clearly appears in Fig. 3(a) that appears
to be symmetric in time. This is confirmed in Figs. 3(b)
and 3(c), which are remarkably symmetric, including several
reverberated arrivals after the direct wave.

As transducers are reciprocal devices, they can also be effi-
ciently used as emitters. What we measure is the convolution
of the electroelastic response of the transducer that acts as
the source, the Green’s function, the electroelastic response
of the transducer that acts as the reciever, and the emitted

FIG. 2. (a) Example of the Lamb waves recorded by a transducer
after pulse compression of the emitted chirp signal. The source-
receiver distance is about 21 cm. The inset illustrates the envelope of
the intensity of the signal (solid line) and the exponential fit according
to exp(−t/τa) (dashed line), as a semilog scale. The attenuation time
(τa) is 9 ms. Data at negative time gives a sense of the noise level.
(b) Power spectrum of the raw signal (black) and bandpass filtered one
(gray). The data is filtered between 15 and 30 kHz using a Butterworth
filter of fourth order.

signal. Note that this G(t) is the vertical-vertical component
of the Green’s function. We assume that within the frequency
band of interest, the frequency responses of the transducers are
flat, and hence the impulse response is obtained by applying
pulse compression of the emitted signals on the recordings.
Hence, the impulse response can be measured directly between
the pair of transducers. The time-integration result of this
directly measured response after pulse compression [G(t)]
of the emitted signal is compared with the cross-correlation
to validate the theoretical result [Eq. (2.3)], as discussed in
Sec. II. There is excellent agreement between the two, even
for multiply reflected contributions, as shown in Fig. 3(b)
(similar to the results of Ref. [28]). This impulse response
corresponds to the vertical component of the Green’s function.
See the Supplemental Material (part IV) for the location of the
transducers on the plate [29].

IV. SYMMETRY OF THE CROSS-CORRELATION
OF THE OBSERVED DATA

We infer from Fig. 3 that to a good approximation, the cross-
correlation is symmetric with respect to time when averaged
over all of the available sources in the two-dimensional plate.
Its symmetry in time is often used as a signature of its
convergence toward the Green’s function (e.g., Ref. [13]). In
this section, we quantitatively study the dependence of the time
symmetry of the cross-correlation on the number of sources.

To this end, CN (t) (i.e., the cross-correlation averaged over
N sources) can be written as the sum of two terms:

CN (t) = C+
N (t) + C−

N (t), (4.1)
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FIG. 3. (a) Cross-correlation gather for all of the available virtual
point sources (2773 points) distributed uniformly on the plate.
(b) Comparison of the normalized cross-correlation averaged over
all of the source positions (black), and direct measurement of
the source-to-receiver “time-integrated" impulse response (gray).
(c) Comparison between the positive time (black) and the (flipped)
negative time (gray) contributions of the averaged cross-correlations.
All of the cross-correlations in this plot are bandpass filtered by
a Butterworth filter of fourth order between 15 and 30 kHz, and
normalization is performed with respect to the maximum energy of
the correlated signals.

where

C+
N (t) = CN (t) +CN (−t)

2
and C−

N (t) = CN (t) −CN (−t)

2
,

(4.2)

where for the sake of simplicity, rR
l and rR

l′ have been dropped
from the argument of CN .

By definition, C+
N (t) [respetively, C−

N (t)] is symmetric
(respectively, antisymmetric) with respect to time.

We then compute the ratio of the integrated squared C+
N (t)

and C−
N (t); i.e.,

rN �
∫ +∞
−∞ C+

N (t)2dt∫ +∞
−∞ C−

N (t)2dt
. (4.3)

In Fig. 4, the experimental estimation of this symmetry ratio
is plotted with respect to the number of sources used in the
averaging process. This curve is determined by repeatedly
implementing Eq. (4.3), based on a growing number of
randomly distributed sources, until all of the available sources
are taken into account.

From Fig. 4, it appears that the cross-correlation is far
from symmetric if only a limited number of sources are used
in the averaging process. In this case, the assumptions that
allowed the derivation of Eq. (2.3) do not hold. Nevertheless,
as the number of sources grows, the averaged cross-correlation
becomes more and more symmetric in time. This behavior is
directly related to the convergence of the Green’s function
reconstruction. Let us first write the cross-correlation obtained
for a subset N of all of the point sources as

CN (t) = C∞(t) + δCN (t), (4.4)

10 0 10 2 10 4

Number of point sources (N)

10 0

10 1

10 2

10 3

r N

Experimental result
Theoretical model

FIG. 4. rN as a function of the number of sources N picked
randomly, derived from the experimental data (blue star line) using
Eq. (4.3), and modeled (dashed red line) based on the theory
developed in Sec. IV and summarized by Eq. (4.11). A fourth-order
Butterworth filter between 5000 Hz and 15 000 Hz is applied to
experimental data.

where C∞(t) is the cross-correlation obtained when all of the
recordings from all of the available sources in this experimental
set-up are taken into account.

While C∞(t) is the best possible approximation of the
Green’s function, given the experimental set-up, there is no
such thing as a perfectly uniform source distribution and
infinite source density in practical applications. It follows that
C∞(t) does not exactly coincide with ImG [see Eq. (2.3)], and
should in principle be slightly asymmetric with respect to time.
After defining the symmetric and antisymmetric components
of C∞(t), similar to Eq. (4.2), and substituting Eq. (4.4) into
Eq. (4.2) and Eq. (4.3), we find that

rN = 4
∫ +∞
−∞ C2

∞(t)dt + 2
∫ +∞
−∞ δC2

N (t)dt

4
∫ +∞
−∞ [C−∞(t)]2dt + 2

∫ +∞
−∞ δC2

N (t)dt
, (4.5)

where C−
∞(t) is the antisymmetric component of C∞(t).

Equation (4.5) is directly related to the ratio of the noise level
(L), which is a measure of the quality of the reconstructed
Green’s function from a finite number N of sources compared
to the one obtained over an infinite number of sources
introduced in Ref. [30]. This can be expressed in terms of
C∞(t) and δCN (t)

L =
∫ +∞
−∞ δC2

N (t)dt∫ +∞
−∞ C2∞(t)dt

. (4.6)

Thus, Eq. (4.5) can now be rewritten as

rN = 2 + L

2ζ + L
, (4.7)

where ζ = ∫
[C−

∞(t)]2dt/
∫

C2
∞(t)dt is the relative degree of

asymmetry of the cross-correlation function when N → ∞.
For a rectangular plate, L is given by [30]

L ≈ πn0

Nτa

, (4.8)
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where τa is the attenuation time and n0 is the plate modal
density (modes per unit of frequency ω), which in turn depends
on the area of the plate surface A, the surface density ρs , and
the bending stiffness D, through the relationship [25]

n0 = A

4π

√
ρs

D
. (4.9)

Then, defining k as the ratio of the attenuation time to the
modal density,

k = τa

n0
, (4.10)

Eq. (4.7) finally becomes

rN = 1 + 2Nk/π

1 + 2ζNk/π
. (4.11)

By finding adequate values of k and ζ , the best fit is obtained
at 1.9 and 0.0035, respectively, which results in the dashed red
curve in Fig. 4. On the other hand, the experimental values for
τa and n0 are 0.009 s and 0.005 s/rad, respectively, which leads
to k = 1.8, according to Eq. (4.10). This experimental value for
k and that obtained from the fitting are consistent. The relative
degree of asymmetry ζ can be explained as a consequence of
the fact that the laser vibrometer is only sensitive to vertical
displacement (mainly A0 mode). However, to some extent, the
transducer also excites in-plane components (mainly S0 and
SH mode). As a result, the in-plane components modes do not
contribute to the reconstruction of the Green’s function.

V. SIMILARITY BETWEEN IMPULSE RESPONSE AND
CROSS-CORRELATION

The Pearson similarity coefficient between the two signals
G(t) and CN (t) is defined as (e.g., Ref. [31]),

S(G,CN ) =
〈∣∣ ∫

�θ
G(t)CN (t)dt

∣∣〉√〈 ∫
�θ

G(t)2dt
〉〈 ∫

�θ
CN (t)2dt

〉 , (5.1)

where �θ is the time-integration window to compute the
similarity coefficient, and 〈. . .〉 is the averaging over the
different sets of point sources that are picked randomly.
The latter is required for S(G,CN ) to be independent of
the measurement positions. While the word “similarity” is
preferred here for clarity, S is more often referred to in
the literature as the “correlation” coefficient [31]. Figure 5
shows S(G,CN ); i.e., the similarity coefficient between the
time-integrated impulse response and the cross-correlation of
signals recorded at transducers 3 and 4 for increasing number
of sources. The similarity coefficient S(G,CN ) is computed
over a time window with a length (�θ ) equal to the decay time
τa (see Fig. 5).

To discriminate the contribution of the direct arrival, we
have also plotted S(G,CN ) where only direct arrivals are cross-
correlated to get CN . We clearly observe a lower similarity
unless there exists a very large number of sources. However,
this contribution is negligible because when we cross-correlate
the coda, i.e., all the reverberated signal without direct arrival,
the same value of the similarity coefficient is obtained as when
all the signal is cross-correlated.

10 0 10 1 10 2 10 3

Number of point sources (N)

0

0.2

0.4
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0.8
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FIG. 5. Similarity coefficient S(G,CN ) between the CN (t) and
G(t) versus the number of point sources (picked randomly) when the
whole time signal is cross-correlated (solid line), and when only a
part of the coda signal [dT = 0.2 s; see Eq. (6.1)] is cross-correlated
(dashed line). A fourth-order Butterworth filter between 15 and
30 kHz is applied on CN (t) and G(t). �θ is equal to the attenuation
time. Curve with the star symbols is S(G,CN ), where CN (t) is the
result of the averaged cross-correlation of only direct-arrival window.
In this case, �θ is 0.7 ms.

First, for a large number of sources (N > 100), S(G,CN )
reaches a plateau (s ≈ 0.82) that is less than 1.0. From the
analysis of the symmetry of the correlation, we measured that
the latter is asymmetric with ζ = 0.0035. Assuming that the
deviation to the perfectly reconstructed Green’s function is as
much symmetric as antisymmetric, the total deviation reaches
0.0070. Consequently, the difference with the 18% mismatch
observed in Fig. 5 cannot be explained by the missing of
in-plane components to the reconstructed Green’s functions.
We interpret this increase of discrepancy by the fact that
when considering the directly measured Green’s function, the
effect of the transducer response appears as the convolution
of the two transducer responses, while when the recordings
are cross-correlated, we deal with the cross-correlation of the
transducer responses. A probably weaker effect comes from
the absorption by the transducers that induces a deviation from
the Green’s function estimation as shown in Ref. [32].

Second, somewhat surprisingly, even with only one or very
few sources the cross-correlation matches the time-integrated
Green’s function relatively well (S ≈ 0.4), even when only a
part of the coda is correlated.

In the next two sections, we propose models to explain
these behaviors. This begins with a study of the impact of the
number of noise sources and the length of the correlated coda
on the emergence of the Green’s function. Then, the effects of
uncorrelated noise are taken into account.

VI. CORRELATION OF WINDOWED CODA

We next study the contribution of different parts of the coda
signal to the reconstruction of the Green’s function. In practice,
rather than cross-correlating the entire signal, as above, the
cross-correlation is now limited to a time interval of variable
length, where the variable start point and end point are denoted
as T0 and T0 + dT , respectively. This is expressed by

CdT
N

(
rR
l ,rR

l′ ,t
)

=
N∑

k=1

∫ T0+dT

T0

G
(
rR
l ,rS

k ,τ
)
G

(
rR
l′ ,r

S
k ,τ − t

)
dτ . (6.1)
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Time(s) 10 -4

-0.1

0.1

FIG. 6. Comparison of the cross-correlation results for three
different time windows when the sources are distributed over all
of the plate, considering the whole length of the signal (black line),
only the ballistic part of the signal (dT = 0.7 ms) (blue dots), and
only a part of the coda arrivals (T0 = 0.4 ms, dT = 0.02 s) (gray
dashed line). All the cross-correlations are bandpass filtered between
15 and 30 kHz by a fourth-order Butterworth filter.

Note that there is a distinction between the two time
windows dT and �θ defined in Equation (5.1); the former
is the cross-correlation window, while the latter is the time
window over which the similarity coefficient is computed.

In Fig. 6, cross-correlations are compared when the time
window includes: only the ballistic wavefront, only the multi-
reverberated waves, and the whole wave field. We observe that
cross-correlation of only the ballistic part of the signals builds
only the ballistic part of the Green’s function, while cross-
correlation of the coda part reconstructs both the ballistic and
coda parts of the Green’s function. Moreover, the contribution
due to the ballistic path is negligible, and the recovery of the
Green’s function is dominated by the coda part.

To study the convergence process, the similarity coef-
ficient is computed between a reference cross-correlation
Cref(rR

l ,rR
l′ ,t) and the cross-correlation function obtained for

different time windows, averaged over randomly picked
sources CdT

N (rR
l ,rR

l′ ,t). We recall that Cref(rR
l ,rR

l′ ,t) is obtained
when all of the sources are emitting and all of the signals
are cross-correlated. In this section and the next one, the
reference to obtain the similarity coefficient is not the empirical
Green’s function [G(t)], but Cref(rR

l ,rR
l′ ,t). The reason for this

is that according to Fig. 5, G(t) never perfectly converges to
Cref(rR

l ,rR
l′ ,t), and they are not perfectly similar, which avoids

reaching 1.0 for the similarity coefficient even when all of
the sources are considered and the cross-correlation is over
the whole signal. Also, as explained before, this new choice
for reference circumvents any influence on the results by the
difference in the frequency response of the transducers and the
vibrometer.

The similarity coefficient S(Cref,C
dT
N ) is computed in a

window that contains the direct arrivals and that lasts as long
as the attenuation time, following Eq. (5.1). Figure 7 shows
the values of S(Cref,C

dT
N ) versus the number of point sources

(N ) for the three different correlation window lengths (dT ).
It can be seen that all of the curves have a similar trend. The
values of the similarity coefficient [S(Cref,C

dT
N )] increase with

the number of sources (N ), and the resulting cross-correlation
converges toward the reference one after a certain number of
sources, which indicates that the cross-correlation of a short
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dT=1.3 ms (experiment)
dT=2.6 ms (experiment)

FIG. 7. Similarity coefficient S(C∞,CdT
N ) between C∞ and CdT

N

(cross-correlation obtained by windowing one signal before the cross-
correlation and then averaged over a subset of available sources picked
at random). Symbols and lines show the experimental results and
theoretical model, respectively, for the various window lengths (dT ).
The starting time (T0) in all three cases is 2.3 ms, i.e., no ballistic
signal is cross-correlated.

time window (compared to the decay time τa = 9 ms) leads to
a reasonable impulse response.

See the Supplemental Material (part I) for our proposed
model based on the modal decomposition of the plate Green’s
function solution of Eq. (2.1) to derive S(Cref,C

dT
N ) [29]. Note

that in the theoretical approach, we refer to the reference
cross-correlation or the “perfect” cross-correction by C∞. This
difference in the notation between the theoretical (C∞) and
experimental (Cref) approach is a reminder for the fact that in
the experimental case we cannot have an infinite number of
sources and hence a perfect cross-correlation. S(C∞,CdT

N ) is
finally given by

S
(
C∞,CdT

N

) =
[

1 + 2

N
(1 + Z)

]−1/2

, (6.2)

with

Z =
∫

κ(δω,ω)|M̃(δω)|2dδω

|M̃(0)|2[1 + F (δr)]
, (6.3)

where F (δr) accounts for the spatial correlation of the squared
eigenmodes, N is the number of point sources, κ(δω,ω) is the
two-level correlation, and M̃ is the Fourier transform of the
time windowed (the window duration being dT ) squared mean
intensity (see the Supplemental Material for more details [29]).

The two-level correlation function, that has been formally
introduced in quantum chaos theory, is defined in terms of the
modal density [n0(ω)] as

κ(δω,ω) = 〈n0(ω)n0(ω + δω)〉
〈n0(ω)〉 . (6.4)

Lyon [33] also introduced it when analyzing the statistical
properties of sound power in structures.

In a chaotic-shaped plate, due to repulsion between the
modes, κ is null when δω = 0 and is close to n0 when
δω is larger than the modal density. The expression of κ

can be found in [34,35]. But here, as the plate geometry is
regular, the eigenfrequency statistics follow a Poisson’s dis-
tribution [33,36]. As a consequence, there are no correlations
between the eigenfrequencies, κ(δω,ω) is equal to the modal
density and Z can be simplified into

Z = πn0

τa[1 + F (δr)]
coth

(
dT

τa

)
. (6.5)
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The coefficient Z can be interpreted as the average number
of overlapping modes of the plate within the windowed cross-
correlation at angular frequency ω.

See the Supplemental Material (part III) on derivation
of the expressions for the spatial correlation of the squared
eigenmodes and F for chaotic and rectangular cavities [29]. In
the case of a chaotic cavity, based on the Berry conjecture [37],
F (δr) is given by 2J0(kδr)2, where J0 is the zeroth-order
Bessel function of the first kind. In the case of a rectangular
cavity, using the same methodology as the one that led to
the spatial correlation of the eigenmodes in a rectangular
plate [38], we find

F (δr) = J0(2k|δx|) + J0(2k|δy|)
2

+ J0(2kδr)

4
. (6.6)

Note that now the correlation of squared eigenmodes is
anisotropic because it not only depends on modulus of δr
but also on the projection dx (respectively, dy) of δr along the
x axis (respectively, y axis).

The continuous curves in Fig. 7 result from the model
described by Eq. (6.2), where F (δr) ∼ 1/2 for δr � λ and
1 + F (δr) is set to 1.5. We believe that this long-range
correlation is due to strong periodic orbits that are not taken
into account by our correlation models.

The convergence toward the Green’s function is driven
by three characteristic times: the modal density (n0), the
attenuation time of the plate (τa), and the time window selected
for the cross-correlation (dT ). Schematically, three asymptotic
cases can be identified:

(1) When τa � n0 and dT � n0, the modes of the plate
are resolved because the attenuation is low [see Fig. 8(a)].
Moreover, the integration time dT is sufficiently large to
include a sufficient amount of coda to not induce modal
overlapping by a windowing effect. In such a case, the
similarity coefficient S(C∞,CdT

N ) is high, and therefore the
“best” correlation is obtained. In the case of a single source
S(C∞,CdT

N ) is 1/
√

3.
(2) When τa � n0 and dT � τa, Z ≈ πn0/τa , the over-

lapping due to the attenuation is not negligible anymore [see
Fig. 8(b)]. The convergence of the cross-correlation toward
the Green’s function is slower. Hence, at least Z sources are
required to obtain a good estimation of the Green’s function
from the cross-correlation.

(3) Finally, when dT � τa and dT � n0, the mode over-
lapping is dominated by the effects of the coda truncation and
is given by Z ≈ πn0/dT [see Fig. 8(c)]. Again, to get a good
estimation of the Green’s function, at least Z sources have to
be used.

Hence, when N is large compared to 1 + Z, S(C∞,CdT
N )

converges toward 1.0, independent of the window length dT .
In other words, even with a very short integration time in
Eq. (6.1), the Green’s function can be completely recovered.

Figure 7 shows that the experimental results approximately
confirm this model; the similarity coefficient S(Cref,C

dT
N ) does

not converge to 1.0 exactly, which we ascribe to the presence
of a small amount of random noise in the measurements.

(a)

(b)

(c)

FIG. 8. Three schematic representations of a small part of the
Fourier transform of the window cross-correlations for different
values of the characteristic times of the system, namely as modal
density (n0), attenuation time (τa), and selected time window for
cross-correlation (dT ). The vertical arrows mark the eigenmodes
that are separated on average by 1

n0
. The dashed curves represent

Lorentzian spectra of the width 1/τa , which is the inverse Fourier
transform of the exponential attenuation. Finally, the dotted curves
show the sinc functions of the width 1/dT , which is the Fourier
transform of the window. The regimes and the corresponding
approximate values of Z are denoted at the top right-hand corner
of each plot.

VII. EFFECTS OF RANDOM NOISE

A comparison between the model and the experimental
results (Fig. 7) suggests that uncorrelated noise (e.g., electronic
noise) degrades the Green’s function. We next analyze this
effect by performing the cross-correlation over time windows
that start between T0 = 0 and T0 = 57 ms after the beginning
of the transient response and end at time T0 + dT = 250 ms
(see inset in Fig. 9). Time T0 + dT is chosen to be a lot larger
than τa , to increase the relative contribution of noise in the

FIG. 9. S(C∞,CdT
∞ ) between C∞(rR

l ,rR
l′ ,t) and CdT

∞ (rR
l ,rR

l′ ,t)
given by Eq. (6.1). The end of the time windows (T0 + dT ) is fixed
at 250 ms. S(Cref,C

dT
ref ) is evaluated in a window that includes direct

path and primary coda (�θ = 2 ms).
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correlation process. The similarity coefficient S(Cref,C
dT
ref ) is

then retrieved according to Eq. (5.1) and from the direct path
and primary coda signal (�θ = 2 ms). As for the previous
section, the reference of the similarity coefficient is the one
obtained when the number of sources is large and the effects
of noise are negligible. Note that, in this case, all of the sources
N are considered in the computation of S(Cref,C

dT
ref ), and the

similarity coefficient is plotted in Fig. 9 as a function of T0.
We observe that the effects of noise become significant

only when T0 is >15 ms. The decay of the S(Cref,C
dT
ref ) can be

explained by assuming that the field measurement is perturbed
by a constant amount of uncorrelated noise at each transducer,
according to Eq. (7.1). See the Supplemental Material (part
II) for the complete derivation of S(C∞,CdT

∞ ) [29]. Similar to
the previous section, we discriminate the experimental case
from the theoretical one by changing Cref to C∞. After some
algebra, we find

S
(
C∞,CdT

∞
) ≈

{
1 + βB(dT )

N [e−T0/τa (1 − e−dT /τa )]

}−1/2

, (7.1)

where B is the bandwidth of the system, and the dimensionless
value β is an indication of the noise-to-signal ratio.

The experimental data were fitted to Eq. (7.1). We observe
that the model explains the decay in S(Cref,C

dT
ref ) and as we

go further in time, it is the noise content that dominates,
which, consequently, causes degradation of the reconstructed
Green’s function. Note that unlike the experimental curve, the
theoretical one does not start from the value of 1.0. This is
due to a different reference in the similarity coefficient in
these two cases. On the one hand, for T0 = 0, the correlation
and the reference correlation are identical because we chose
the best correlation possible for the reference cross-correlation
(i.e., at T0 = 0). Consequently, S(Cref,C

dT
ref ) is exactly 1.0. On

the other hand, from a theoretical point of view, S(C∞,CdT
∞ ) is

smaller than 1.0 because the reference correlation is the ideal
one, i.e., the difference between the advanced and delayed
Green’s function, while the noise slightly contaminates the
cross-correlation.

VIII. DISCUSSION

As explained by Ref. [39], the process of reconstructing a
Green’s function by diffuse-field cross-correlation is closely
related to that of acoustic time reversal [40]. Accordingly, this
study has some implications in the context of time reversal. To
illustrate this point, let us assume that a pulse is sent at position
rA and the N transient responses are recorded by N receivers at
positions ri . Each response is then flipped in time and sent back
into the medium by the N emitters located at the same positions
as the N receivers. In a reciprocal medium, it can be formally
shown that the time-dependent amplitude of the time-reversed
field at position rB is proportional to the correlation CN (t)
between positions rA and rB . When only a part of the transient
responses between times T0 and T0 + dT are flipped and sent
back, the time-reversed field is then given by CdT

N (t). This
formal equivalence between the cross-correlation and the time
reversal provides new insights [40]. First, when there is only
one source, the cross-correlation behaves approximately as the
one-channel time-reversal signal of flexural waves obtained

by Draeger and Fink [41]. In particular, it has been shown
that in a lossless cavity, the time reversed field at position r1

is equal to G(r1,r1,t) ⊗ G(rA,rB, − t) [42]. For this set-up,
we infer from Eqs. (6.2) and (6.5) that when dT � τa � n0,
the similarity coefficient S(C∞,CdT

1 ) for one single source is
equal to 1/

√
3. Hence, the mismatch is due to G(r1,r1,t), i.e.,

fluctuations induced by alternation of nodes and antinodes
at r1. Second, the case where the sources are uniformly
distributed over the surface corresponds to the instantaneous
time reversal, which is also called the Loschmidt echo [43].
In this case, a field can be perfectly time reversed at time t0
by imposing the initial condition ψ(r,t0) and its negative time
derivative −∂ψ(r,t0)/∂t . Consequently, by time reversing a
very small window around time t0 of the transient responses
by many sources over all of the surface, the time-reversed field
is perfectly recovered for t < t0. This result is in agreement
with our finding that S(C∞,CdT

N>>1) converges to 1.0 as
N grows.

A popular technique used in order to improve the estimation
of the Green’s function consists of correcting the exponential
attenuation decay to artifically increase the attenuation time.
In such a case, because τa is larger [see Eq. (4.11)], the
symmetry ratio rN increases faster with the number of sources.
The similarity coefficient is also improved because τa can be
larger than the modal density (also called Heisenberg time)
and the system behaves as if the plate modes are resolved [see
Eq. (6.2)]. However, this correction also increases exponen-
tially noise-to-signal (β) and therefore limits the efficiency of
the method [see Eq. (7.1)].

In the case of continuous incoherent noise sources, the
cross-correlation converges toward the windowed cross-
correlation but with a window that includes all of the transient
signal. The present study provides new insights into the
understanding of the relative contributions of the different
parts of the transient response (e.g., ballistic and early coda,
late coda) for building the cross-correlation. Considering
the transient recorded signals that consist of direct and
later arrivals, and cross-correlating these parts of the signals
separately, we show that exclusion of the direct arrivals and
cross-correlation of only the coda arrivals is very close to the
case where we cross-correlate the full-time signals.

IX. CONCLUSIONS

Given any receiver pair, the signal that would be obtained
at either one from a source at the other can be reconstructed
experimentally by cross-correlation of the recordings of a
diffuse field. The field can be diffuse as a result of a dense,
homogeneous source distribution throughout the medium,
and/or of scattering or reverberation: This study was aimed
at the disentangling of these two effects. We conducted
experiments with a thin plate where the surface was densely
scanned by a laser vibrometer and where an array of trans-
ducers was deployed. This set-up provides almost perfect
control of the spatial distribution of the transient sources.
We first validated the theory through comparison of the
averaged cross-correlations and the directly observed Green’s
function. We also experimentally studied the symmetry (with
respect to time) of the cross-correlations, as well as their
similarity to the Green’s function, as a function of the number
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of uniformly distributed point sources. To explain these
observations quantitatively, a theoretical analytical model
was developed that predicts the observed asymmetry of the
averaged cross-correlation. We next studied the convergence
of the averaged cross-correlation for time windows of variable
lengths, which might be very short, and taken at different
points in the coda of the recordings. Here, a relatively dense or
uniform source distribution can result in good estimation of the
Green’s function. We demonstrated that this time window does
not have to include the direct-arrival part of the signals for the
estimated Green’s function to be a good approximation of the
exact one. Through statistical modal analysis, the respective
contributions of attenuation time, modal density, and number
of sources to the convergence of the cross-correlation toward
the Green’s function were identified. Finally, we demonstrated

both theoretically and experimentally that this convergence
strongly depends on the position of the correlation time
window only when additive random noise is taken into account.
The relative effects of the noise are stronger when the late coda
is cross-correlated.

ACKNOWLEDGMENTS

This project received funding from the European Union
Horizon 2020 research and innovation programme under
Marie Sklodowska-Curie Grant No. 641943, and partial
support from LABEX WIFI (Laboratory of Excellence within
the French Program “Investments for the Future”), under refer-
ences ANR-10-LABX-24 and ANR-10-IDEX-0001-02 PSL.

[1] R. L. Weaver and O. I. Lobkis, Ultrasonics without a Source:
Thermal Fluctuation Correlations at mhz Frequencies, Phys.
Rev. Lett. 87, 134301 (2001).

[2] R. Snieder, A. Gret, H. Douma, and J. Scales, Coda wave
interferometry for estimating nonlinear behavior in seismic
velocity, Science 295, 2253 (2002).

[3] M. Campillo and A. Paul, Long-range correlations in the diffuse
seismic coda, Science 299, 547 (2003).

[4] O. I. Lobkis and R. L. Weaver, On the emergence of the green’s
function in the correlations of a diffuse field, J. Acoust. Soc.
Am. 110, 3011 (2001).

[5] J. Rickett and J. Claerbout, Acoustic daylight imaging via spec-
tral factorization: helioseismology and reservoir monitoring,
Lead. Edge 18, 957 (1999).

[6] P. Roux, W. A. Kuperman, and N. A. P. L. Grp, Extracting
coherent wave fronts from acoustic ambient noise in the ocean,
J. Acoust. Soc. Am. 116, 1995 (2004).

[7] M. Campillo and P. Roux, Crust and Lithospheric Structure -
Seismic imaging and monitoring with ambient noise correla-
tions, Treatise on Geophysics 1, 391 (2015).

[8] L. Boschi and C. Weemstra, Stationary-phase integrals in the
cross correlation of ambient noise, Rev. Geophys. 53, 411
(2015).

[9] K. Sabra, S. Conti, P. Roux, and W. Kuperman, Passive in vivo
elastography from skeletal muscle noise, Appl. Phys. Lett. 90,
194101 (2007).

[10] K. G. Sabra, A. Srivastava, F. L. di Scalea, I. Bartoli, P. Rizzo, and
S. Conti, Structural health monitoring by extraction of coherent
guided waves from diffuse fields, J. Acoust. Soc. Am. 123, EL8
(2008).

[11] K. Wapenaar, J. Fokkema, and R. Snieder, Retrieving the
green’s function in an open system by cross correlation: A
comparison of approaches (l), J. Acoust. Soc. Am. 118, 2783
(2005).

[12] R. L. Weaver and O. I. Lobkis, Diffuse fields in open systems
and the emergence of the green’s function (l), J. Acoust. Soc.
Am. 116, 2731 (2004).

[13] P. Roux, K. Sabra, W. A. Kuperman, and A. Roux, Ambient
noise cross correlation in free space: Theoretical approach,
J. Acoust. Soc. Am. 117, 79 (2005).

[14] E. Larose, P. Roux, M. Campillo, and A. Derode, Fluctuations
of correlations and green’s function reconstruction: Role of
scattering, J. Appl. Phys. 103, 114907 (2008).

[15] B. A. van Tiggelen, Green Function Retrieval and Time Reversal
in a Disordered World, Phys. Rev. Lett. 91, 243904 (2003).

[16] J. de Rosny and M. Davy, Green’s function retrieval and
fluctuations of cross density of states in multiple-scattering
media, Europhys. Lett. 106, 54004 (2014).

[17] T. Nowakowski, L. Daudet, and J. de Rosny, Localization
of acoustic sensors from passive green’s function estimation,
J. Acoust. Soc. Am. 138, 3010 (2015).

[18] L. Chehami, J. de Rosny, C. Prada, E. Moulin, and J. Assaad,
Experimental study of passive defect localization in plates using
ambient noise, IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62, 1544 (2015).

[19] E. Larose, P. Roux, and M. Campillo, Reconstruction of
rayleigh–lamb dispersion spectrum based on noise obtained
from an air-jet forcing, J. Acoust. Soc. Am. 122, 3437
(2007).

[20] A. Colombi, L. Boschi, P. Roux, and M. Campillo, Green’s func-
tion retrieval through cross-correlations in a two-dimensional
complex reverberating medium, J. Acoust. Soc. Am. 135, 1034
(2014).

[21] A. Duroux, K. G. Sabra, J. Ayers, and M. Ruzzene, Extracting
guided waves from cross-correlations of elastic diffuse fields:
Applications to remote structural health monitoring, J. Acoust.
Soc. Am. 127, 204 (2010).

[22] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders,
Fundamentals of Acoustics (Wiley, Hoboken, NJ, 1999).

[23] D. Royer and E. Dieulesaint, Elastic Waves in Solids I (Springer-
Verlag, Berlin, 2000).

[24] E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory,
Analysis, and Applications (Marcel Dekker, New York, 2001).

[25] F. Fahy and P. Gardonio, Sound and Structural Vibration,
Radiation, Transmission and Response (Academic Press, San
Diego, CA, 2007).

[26] L. Chehami, E. Moulin, J. de Rosny, C. Prada, O. Matar, F.
Benmeddour, and J. Assaad, Detection and localization of a
defect in a reverberant plate using acoustic field correlation,
J. Appl. Phys. 115, 104901 (2014).

[27] K. Aki and P. G. Richards, Quantitative Seismology: Theory and
Methods, Volumes I and II (W. H. Freeman & Co, New York,
1980).

[28] T. D. Mikesell, K. van Wijk, T. E. Blum, R. Snieder, and H. Sato,
Analyzing the coda from correlating scattered surface waves,
J. Acoust. Soc. Am. 131, EL275 (2012).

032137-9

https://doi.org/10.1103/PhysRevLett.87.134301
https://doi.org/10.1103/PhysRevLett.87.134301
https://doi.org/10.1103/PhysRevLett.87.134301
https://doi.org/10.1103/PhysRevLett.87.134301
https://doi.org/10.1126/science.1070015
https://doi.org/10.1126/science.1070015
https://doi.org/10.1126/science.1070015
https://doi.org/10.1126/science.1070015
https://doi.org/10.1126/science.1078551
https://doi.org/10.1126/science.1078551
https://doi.org/10.1126/science.1078551
https://doi.org/10.1126/science.1078551
https://doi.org/10.1121/1.1417528
https://doi.org/10.1121/1.1417528
https://doi.org/10.1121/1.1417528
https://doi.org/10.1121/1.1417528
https://doi.org/10.1190/1.1438420
https://doi.org/10.1190/1.1438420
https://doi.org/10.1190/1.1438420
https://doi.org/10.1190/1.1438420
https://doi.org/10.1121/1.1797754
https://doi.org/10.1121/1.1797754
https://doi.org/10.1121/1.1797754
https://doi.org/10.1121/1.1797754
https://doi.org/10.1016/B978-0-444-53802-4.00024-5
https://doi.org/10.1016/B978-0-444-53802-4.00024-5
https://doi.org/10.1016/B978-0-444-53802-4.00024-5
https://doi.org/10.1016/B978-0-444-53802-4.00024-5
https://doi.org/10.1002/2014RG000455
https://doi.org/10.1002/2014RG000455
https://doi.org/10.1002/2014RG000455
https://doi.org/10.1002/2014RG000455
https://doi.org/10.1063/1.2737358
https://doi.org/10.1063/1.2737358
https://doi.org/10.1063/1.2737358
https://doi.org/10.1063/1.2737358
https://doi.org/10.1121/1.2820800
https://doi.org/10.1121/1.2820800
https://doi.org/10.1121/1.2820800
https://doi.org/10.1121/1.2820800
https://doi.org/10.1121/1.2046847
https://doi.org/10.1121/1.2046847
https://doi.org/10.1121/1.2046847
https://doi.org/10.1121/1.2046847
https://doi.org/10.1121/1.1810232
https://doi.org/10.1121/1.1810232
https://doi.org/10.1121/1.1810232
https://doi.org/10.1121/1.1810232
https://doi.org/10.1121/1.1830673
https://doi.org/10.1121/1.1830673
https://doi.org/10.1121/1.1830673
https://doi.org/10.1121/1.1830673
https://doi.org/10.1063/1.2939267
https://doi.org/10.1063/1.2939267
https://doi.org/10.1063/1.2939267
https://doi.org/10.1063/1.2939267
https://doi.org/10.1103/PhysRevLett.91.243904
https://doi.org/10.1103/PhysRevLett.91.243904
https://doi.org/10.1103/PhysRevLett.91.243904
https://doi.org/10.1103/PhysRevLett.91.243904
https://doi.org/10.1209/0295-5075/106/54004
https://doi.org/10.1209/0295-5075/106/54004
https://doi.org/10.1209/0295-5075/106/54004
https://doi.org/10.1209/0295-5075/106/54004
https://doi.org/10.1121/1.4934951
https://doi.org/10.1121/1.4934951
https://doi.org/10.1121/1.4934951
https://doi.org/10.1121/1.4934951
https://doi.org/10.1109/TUFFC.2014.006935
https://doi.org/10.1109/TUFFC.2014.006935
https://doi.org/10.1109/TUFFC.2014.006935
https://doi.org/10.1109/TUFFC.2014.006935
https://doi.org/10.1121/1.2799913
https://doi.org/10.1121/1.2799913
https://doi.org/10.1121/1.2799913
https://doi.org/10.1121/1.2799913
https://doi.org/10.1121/1.4864485
https://doi.org/10.1121/1.4864485
https://doi.org/10.1121/1.4864485
https://doi.org/10.1121/1.4864485
https://doi.org/10.1121/1.3257602
https://doi.org/10.1121/1.3257602
https://doi.org/10.1121/1.3257602
https://doi.org/10.1121/1.3257602
https://doi.org/10.1063/1.4867522
https://doi.org/10.1063/1.4867522
https://doi.org/10.1063/1.4867522
https://doi.org/10.1063/1.4867522
https://doi.org/10.1121/1.3687427
https://doi.org/10.1121/1.3687427
https://doi.org/10.1121/1.3687427
https://doi.org/10.1121/1.3687427


HEJAZI NOOGHABI, BOSCHI, ROUX, AND DE ROSNY PHYSICAL REVIEW E 96, 032137 (2017)

[29] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.96.032137 on similarity coefficient calcu-
lations between a reference cross-correlation and the cross-
correlation obtained in two different cases: (1) time-limited
cross-correlation and (2) instrumental noise affected recordings.

[30] E. Moulin, F. Benmeddour, H. Achdijan, L. Chehami, J. Assaad,
J. de Rosny, and C. Prada, Exploitation of the reverberant
propagation of elastic waves in structures: Towards a concept
of low-resource shm sensor network, Phys. Procedia 70, 618
(2015).

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in c, the Art of Scientific Computing
(Cambridge University Press, Cambridge, 1992).

[32] M. Davy, J. de Rosny, and P. Besnier, Green’s Function Retrieval
with Absorbing Probes in Reverberating Cavities, Phys. Rev.
Lett. 116, 213902 (2016).

[33] R. H. Lyon, Statistical analysis of power injection and response
in structures and rooms, J. Acoust. Soc. Am. 45, 545 (1969).

[34] M. L. Mehta, Random Matrices (Academic Press, San Diego,
CA, 2004), Vol. 142.

[35] M. Wright and R. Weaver, New Directions in Linear Acoustics
and Vibration: Quantum Chaos, Random Matrix Theory and
Complexity (Cambridge University Press, Cambridge, 2010).

[36] K. B. Efetov, Supersymmetry and theory of disordered metals,
Adv. Phys. 32, 53 (1983).

[37] M. Berry, Regular and irregular semiclassical wavefunctions,
J. Phys. A 10, 2083 (1977).

[38] M. W. Bonilha and F. J. Fahy, On the vibration field correlation
of randomly excited flat plate structures. i. Theory, J. Sound Vib.
214, 443 (1998).

[39] A. Derode, E. Larose, M. Campillo, and M. Fink, How to
estimate the green’s function of a heterogeneous medium
between two passive sensors? Application to acoustic waves,
Appl. Phys. Lett. 83, 3054 (2003).

[40] A. Derode, E. Larose, M. Tanter, J. de Rosny, A. Tourin,
M. Campillo, and M. Fink, Recovering the green’s function
from field-field correlations in an open scattering medium (l),
J. Acoust. Soc. Am. 113, 2973 (2003).

[41] C. Draeger and M. Fink, One-Channel Time Reversal of Elastic
Waves in a Chaotic 2d-Silicon Cavity, Phys. Rev. Lett. 79, 407
(1997).

[42] C. Draeger and M. Fink, One-channel time-reversal in chaotic
cavities: Theoretical limits, J. Acoust. Soc. Am. 105, 611 (1999).

[43] J. Loschmidt, Uber den zustand des warmegleichgewichts
eines systems von korpern mit rucksicht auf die schwerkraft,
Sitzungsberich. Akad. Wissensch. 73, 128 (1876).

032137-10

http://link.aps.org/supplemental/10.1103/PhysRevE.96.032137
https://doi.org/10.1016/j.phpro.2015.08.038
https://doi.org/10.1016/j.phpro.2015.08.038
https://doi.org/10.1016/j.phpro.2015.08.038
https://doi.org/10.1016/j.phpro.2015.08.038
https://doi.org/10.1103/PhysRevLett.116.213902
https://doi.org/10.1103/PhysRevLett.116.213902
https://doi.org/10.1103/PhysRevLett.116.213902
https://doi.org/10.1103/PhysRevLett.116.213902
https://doi.org/10.1121/1.1911422
https://doi.org/10.1121/1.1911422
https://doi.org/10.1121/1.1911422
https://doi.org/10.1121/1.1911422
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1006/jsvi.1998.1574
https://doi.org/10.1006/jsvi.1998.1574
https://doi.org/10.1006/jsvi.1998.1574
https://doi.org/10.1006/jsvi.1998.1574
https://doi.org/10.1063/1.1617373
https://doi.org/10.1063/1.1617373
https://doi.org/10.1063/1.1617373
https://doi.org/10.1063/1.1617373
https://doi.org/10.1121/1.1570436
https://doi.org/10.1121/1.1570436
https://doi.org/10.1121/1.1570436
https://doi.org/10.1121/1.1570436
https://doi.org/10.1103/PhysRevLett.79.407
https://doi.org/10.1103/PhysRevLett.79.407
https://doi.org/10.1103/PhysRevLett.79.407
https://doi.org/10.1103/PhysRevLett.79.407
https://doi.org/10.1121/1.426251
https://doi.org/10.1121/1.426251
https://doi.org/10.1121/1.426251
https://doi.org/10.1121/1.426251



