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Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid
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The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures
containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body
dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the
Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same
time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with
a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show
that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport
properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski
relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature,
effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically
temperature independent. We have shown that both effects have their physical origin in the athermal lattice
vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics
calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only
valid in a narrow range between ∼300 and ∼700 K. The diffusivity becomes temperature independent on the
low-temperature side while increasing linearly with temperature on the high-temperature side.
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I. INTRODUCTION

The mobility and diffusivity of an interstitial solute atom
(ISA) are commonly modeled within the one-body approxi-
mation as a random walker jumping among trapping centers
at periodic lattice sites, with well-defined equilibrium and
saddle-point configurations and energies [1–3]. Based on the
transition-state theory (TST), the mean ISA jump frequency νJ

can be expressed within classical Boltzmann-Gibbs statistics
as the product of the attempt frequency ν0 and the escape
probability exp(−�Gm/kBT ). Here �Gm is the free-energy
barrier that must be overcome for the detrapping of the ISA,
kB is the Boltzmann constant, and T the absolute temperature.
Assuming detailed balance, the ISA diffusivity D can then be
written in the Arrhenius form [1–3]:

D = D0e
Sm/kB exp(−Em/kBT ). (1)

In Eq. (1), D0 is the prefactor that depends on the jump
geometry and vibration frequency of the ISA; Sm and Em

are, respectively, the migration entropy and enthalpy. If a
reversible path can be assumed, �Gm can be evaluated via
a thermodynamic integration approach.

Although Eq. (1) provides a convenient conduit that allows
diffusion measurements to be physically interpreted, the
dynamics involved in the mobility and diffusivity of interstitial
solute atoms (ISAs) in a crystalline solid at finite temperatures
is not one-body, but many body, in nature. The motion of the
ISA and the “migration barrier” it encounters are coupled to
the vibrating lattice. In principle, the many-body dynamics
of a specific system can be readily treated numerically by
directly solving the coupled equations of motion among all
particles of the system, such as is achieved in a molecular
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dynamics approach. At the same time, the equation of motion
of a state variable in a many-body system can also be formally
expressed through a projection operator formalism in the
form of a one-body generalized Langevin equation, with the
dissipation and fluctuation terms expressed via the Liouvillian
operator [4,5]. This representation of the many-body problem
provides us with a route to an analytic solution via a
pseudo-one-body scheme in which many-body effects may be
subsumed into parametrized random forces and the associated
dissipative friction. Indeed, in the earlier works of Einstein
[6] and Smoluchowski [7], the many-body environment of
a diffusing Brownian particle was already modeled using
random forces and associated dissipative friction related
through the classical fluctuation-dissipation theorem [4,8].
The mobility and diffusivity derived this way had a form
not bearing any obvious resemblance to the Arrhenius law.
Kramers [9], who studied the transition-state theory within
the same framework, also showed that such stochastic effects
derived from many-body dynamics are important unless the
activation barrier is much higher than the thermal energy of the
atoms; i.e., Em � kBT . Chandrasekhar [10] obtained similar
results alternatively based on the linear response theory.

Based on the Mori-Zwanzig formalism [4,5], Munakata
and Tsurui [11] and Combs and Kunz [12] showed that the
dynamics of a highly mobile defect in a crystal can be modeled
as a particle under stochastic forces in a periodic force field.
Recent works using similar stochastic methodology on many
other related areas also reported similar conclusions, such as
adatom diffusion on the surface [13], kink diffusion along
dislocation lines [14], solute diffusion [15], and migration of
dislocation loops [16].

Nevertheless, key to the foregoing analyses is the use of
the classical fluctuation-dissipation theorem [4,8], in which
the quantum nature of lattice vibrations in a phonon theory
is unaccounted for. The statistical distribution of the vibration
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modes of the crystal used in deriving these results is thus in-
accurate [17]. Epic glitches that ensued, such as the ultraviolet
catastrophe, are well known.

As a consequence of the noncommunicative relation, the
importance of quantization in the thermal excitations of
the crystal lattice is well known [18] in the explanation of
the failure of the classical theory of low-temperature specific
heat and the associated divergence of the classical entropy.
Due to energy quantization, the excitation of phonons with
frequency ω becomes increasingly improbable with decreasing
temperature T . This limits the applicability of Boltzmann
statistics only to the regime above the Debye temperature. The
situation is similar regarding spin vibrations in ferromagnetic
metals, but the constraint is even more serious [19].

Quantum uncertainty, similar to energy quantization, is
another consequence of the noncommutative relation. Through
the zero-point vibrations associated with the phonon ground
state, quantum uncertainty in the free energy of the many-body
system is expected to affect the dynamics of the ISA. Indeed,
zero-point fluctuations have been envisaged as responsible
for many physical effects, such as the Lamb shift, the
Casimir force, the natural linewidths of energy levels, and the
broadening of neutron scattering resonance lines in solids [20].

Despite their fundamental importance, quantum statistical
effects of the lattice vibrations on the transport properties of
the solid state, such as mobility and diffusivity, are not clearly
understood. Indeed, even the scale of the errors involved is not
well known. The aim of the present paper is to analyze and
demonstrate such quantum statistical effects on the transport
of solute atoms in a crystalline solid. In this regard, our
present scope does not include consideration of effects due
to coherent quantum tunneling caused by the spread of the
one-particle wave function of the ISA over different sites
across the migration barrier. Nevertheless, as we will further
discuss, it is normally appreciable only for the diffusion of
very light particles.

The present paper is organized as follows. In Sec. II, the
thermodynamics of a system of particles in a noisy medium is
shown to be completely governed by its fluctuation-dissipation
ratio which can be formally related to the kinetic energy of the
system. In a harmonic quantum crystal, this relation depends
on the phonon density of state (DOS) and the thermodynamic
temperature which we call the quantum fluctuation-dissipation
relation (QFDR). In Sec. III, using the derived QFDR the
many-body dynamics of the mobility and diffusivity of a model
particle in a sawtooth potential is solved within a pseudo-one-
body approach using the Langevin equation by following the
Mori-Zwanzig theory [4,5]. In Sec. IV, with a Langevin heat
bath based on QFDR, the many-body dynamics is directly
solved for the mobility and diffusivity of He in bcc W by
following the MD approach. Results of Secs. III and IV are
compared and discussed. The paper is concluded with Sec. V.

II. FORMULATION

A. Statistical thermodynamics of a system of interacting
particles in a noisy medium

We consider the dynamics of a general interactive
system of atoms with Hamiltonian H expressed in the

form

H =
∑

n

p2
n

2mn

+ U ({rn}), (2)

where mn, pn, and rn, respectively, are the mass, momentum,
and position of the nth atom. U ({rn}) is the total potential
energy due to interatomic interactions corresponding to the
configuration {rn}. For simplicity, we assume that the atoms
are nonmagnetic.

Within the framework of the Ehrenfest theorem, the
equations of motion for each atom can be written as [21]

d〈rn〉E
dt

= 〈pn〉E
mn

, (3a)

d〈pn〉E
dt

= −
〈
∂U

∂rn

〉
E

, (3b)

where 〈· · · 〉E denotes the expectation value of an observable.
If one may subsume the difference between the quantum

and classical forces 〈 ∂U
∂rn

〉E − ∂U (rn)
∂rn

that account for the
quantum uncertainty due to the noncommutative relation
between r and p into the Mori-Zwanzig random forces that
account for the fluctuations due to many-body and quantum
effects, one may formally put the equations of motion in
Eqs. (3a) and (3b) in the Langevin form. We note that
within this approximation, coherency of the one-particle wave
function of the atoms over different sites is neglected, which is
justifiable noting that the de Broglie wavelength of an atom in
crystals is λ ≈ h̄

mvG
≈ 10−12 m which is much smaller than the

interatomic distances under consideration. In an alternate but
equivalent route, the direct application of the Mori-Zwanzig
formalism [4,5] to the expectation values of the Heisenberg
equation of motion also yields the same result.

Within this approximation, the dynamics of the nth atom
in the many-body environment of the rest of the crystal can be
treated with an equivalent set of pseudo-one-particle equations
of motion in the Langevin form, assuming a local memory
function,

drn

dt
= ∂H

∂pn

= pn

mn

, (4)

dpn

dt
= − ∂U

∂rn

− g

mn

pn + fn(t), (5)

where we have dropped the notation 〈· · · 〉E to simplify. In
Eq. (5), the random forces on the atom n due to its environment
(the bath or the rest of the crystal) arecharacterized by the
dissipative friction with drag coefficient g and delta-correlated
remnant fluctuations with strength characterized by s:

〈fn(t)〉 = 0 and 〈fin(t)fjl(t
′)〉 = sδij δnlδ(t − t ′). (6)

Subscripts i and j denote Cartesian components and
〈· · · 〉 denotes the statistical mean taken over all the possible
realizations of the stochastic forces.

The corresponding phase-space probability density
W ({rni},{pni},t) of the crystal is determined by the

032133-2



QUANTUM STATISTICAL EFFECTS IN THE MASS . . . PHYSICAL REVIEW E 96, 032133 (2017)

Fokker-Planck equation:

∂W

∂t
+

∑
n,i

{
pni

mn

∂

∂rni

−
(

∂U

∂rni

)
∂

∂pni

}
W

=
∑
n,i

∂

∂pni

[
g

pni

mn

+ s

2

∂

∂pni

]
W. (7)

Statistically averaging 〈H 〉 over W ({rni},{pni},t), one may
write down the rate of change of the ensemble averaged energy
Ē,

dĒ

dt
=

∑
n,i

〈{
pni

mn

dpni

dt
+ ∂U

∂rni

pni

mn

}〉

=
∑
n,i

{
−g

〈
p2

ni

〉
m2

n

+ 〈fni(t)pni〉
mn

}
. (8)

The last term in Eq. (8) can be further simplified via the
formal solution of Eq. (5), using Eq. (6). Thus,

〈pn(t) · fn(t)〉 = g

mn

∫ t

0
〈pn(t ′) · fn(t)〉dt ′

+
∫ t

0
〈fn(t ′) · fn(t)〉dt ′ = 3s

2
. (9)

The first integral on the right-hand side vanishes because
the argument of the integral 〈pn(t ′) · fn(t)〉 is equal to zero
everywhere in the interval t ′ ∈ [0,t), except for the point t ′ = t

where it has a finite magnitude. The second term, on the other
hand, integrates to give 3s/2 according to Eq. (6). Equation (8)
is a simple statement that the change of the internal energy of
the system is equal to the work done by the fluctuation reduced
by the energy dissipated (heat generated) by the friction, i.e.,
the first law.

In thermal equilibrium, W ({rni},{pni}) is the stationary
solution of Eq. (7) with ∂W/∂t = 0. W can then be solved with
a trial function of the form W = C exp(−κH ), where κ is an
unknown parameter to be determined and C is a normalization
constant. Substituting the trial solution into Eq. (7), we obtain∑

n,i

pni

mn

(
g − κs

2

)
W = 0, (10)

yielding the solution (necessary and sufficient) κ−1 =
s/2g ≡ η, the fluctuation-dissipation ratio which defines the
Langevin heat bath for the canonical ensemble. The corre-
sponding phase-space probability density is then given by

W ({rni},{pni}) = Z exp[−κE({rni},{pni})]. (11)

The probability of the j th state of the 3N degrees of
freedom is given by Pj = Z exp(−κεj ), where εj is the corre-
sponding energy and Z = ∑3N

j=1 e−κεj is the partition function
of the many-body system. The thermodynamics of this system
can be parametrized in terms of η ≡ s/2g ≡ κ−1. Thus, by
definition, Z yields the mean crystal energy E = − ∂ ln Z

∂κ

and entropy S = κE + ln Z (in units of kB). In this regard,
F ≡ −η ln Z = E − ηS is the corresponding Helmholtz free
energy of the stochastic system. Since both E and S are
functions of κ that dictate the phase-space probability density
we may write dS = κdE + Edκ + d ln Z

dκ
dκ , in which the last

two terms cancel, yielding dE
dS

= η. Thus, the thermodynamics
(equilibrium) of the system is completely defined, if the
functional relation between η and the temperature T is known,
which is our next task. Noting that the effects of fluctuation
and dissipation are balanced at equilibrium, Eq. (10) yields
explicitly

∑
n,i

g

mn

{
−

〈
p2

ni

〉
mn

+ η

}
= 0

⇒ η =
∑

n
2

3mn

( 〈p2
ni 〉

2mn

)
∑

n
1

mn

= 2

3
EK, (12)

where EK is the mean kinetic energy of the ensemble. In
Eq. (12), we have used the fact that the mean kinetic energy of
all atoms is equal at equilibrium. Equation (6) then becomes

〈fin(t)fjl(t
′)〉 = sδij δnlδ(t − t ′) = 4

3N
gδij δnlδ(t − t ′)EK.

(13)

It is important to note that Eq. (12) holds formally
independent of whether quantum or classical statistics is
employed. If quantum effects are neglected, the equiparti-
tion theorem gives EK = 3NkBT/2, yielding η = kBT , the
classical fluctuation-dissipation relation (CFDR) [4,8]. In this
case, the temperatures of the system (and the Langevin heat
bath) are directly defined by dE

dS
= kBT , and the Helmholtz

free energy is given by F = E − kBT S, a standard result of
classical thermodynamics.

B. Quantum fluctuation-dissipation relation
in a crystalline solid

If we take into account the noncommutative relation in the
dynamics of lattice vibrations in accord with the Bose-Einstein
statistics, Eq. (12) yields [17]

η(T )= 2

3N
EK = 1

3N

∑
k

3∑
α=1

h̄ωα(k)

[
1

eh̄ωα(k)/kBT − 1
+ 1

2

]
.

(14a)

In this case, η is a nonlinear function of temperature,
defined by the phonon (vibration) spectrum.

We shall call η(T ) defined by Eq. (14a) the quantum
fluctuation-dissipation ratio (QFDR). From the foregoing it
is clear that all thermodynamic properties of the crystal are
functions of temperature via the QFDR η(T ) in Eq. (14a).

Within the Debye model, Eq. (14a) yields convenient
analytic expressions for all thermodynamic functions of the
vibrating lattice via η(T ) [17], where

η(T ) = 3

8
kB�D + 3kB�D

(
T

�D

)4 ∫ �D
T

0

x3

ex − 1
dx (14b)

satisfies quantum statistics. Here �D is the Debye temperature.
In the high- and low-temperature limits, η(T ) in Eq. (14b) has
the following values:

η(T ) →
{

kBT for T � �D[
3
8 + π4

5

(
T

�D

)4]
kB�D for T � �D

. (14c)
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The relation between η and T provides a direct bridge to the
thermodynamic properties of the crystal. The heat capacity, for
example, is given by CV (T ) = ∂E

∂η

dη

dT
= 3NkBfD(�D

T
), which

is precisely the well-known expression for the heat capacity
that can be derived within the Debye model directly from quan-
tum statistics. The vibrational entropy S = ∫ η(T )

η(0)
1
η′

dE
dη′ dη′ =

3N ln[ η(T )
η(0) ] can be derived from the thermodynamic relation

dE
dS

= η obtained earlier. As T → 0, S → 3N [ 8π4

15 ( T
�D

)
4
],

which vanishes with T and obeys the third law, contrasting
the diverging behavior of the entropy derived from the CFDR.
At high temperatures, S → 3N ln( 8T

3�D
), which is consistent

with the classical result.
It is clear from Eq. (14c) that at low temperatures η(T )

has an athermal component ηQ = 3kB�D/8 attributable to the
phonon ground state, which has a pure quantum origin from the
noncommutative relation between r and p. In this regard, Van
Kampen interpreted that the ensuing quantum uncertainty is
effectively an internal noise [22]. Within this interpretation,
the athermal term in the fluctuation-dissipation ratio η is
simply a reflection of the contribution of quantum noise on the
stochastic dynamics of the ensemble. This term corresponds
to the difference between the quantum and classical forces
〈 ∂U

∂rn
〉E − ∂U (rn)

∂rn
we mentioned earlier in the discussion of

Eq. (3b).
In Eq. (14c), when T > �D , the thermal component is

dominant. However, as temperature decreases this situation
begins to reverse near T ≈ �D/3. Indeed, at �D/3 the
athermal component is already ∼50% bigger than the thermal
one and becomes 20 times bigger at �D/5. Thus, in this
temperature range (i.e., below �D/3), the main activation force
is a nonclassical one provided by ground-state phonons that
(a) lowers the activation barrier by screening and (b) provides
the momentum required for the jumps. This is effectively
activation by phonon-assisted tunneling [23]. The foregoing
will be further discussed in the specific case of diffusion and
drag in the following section.

III. LANGEVIN DYNAMICS OF A PARTICLE IN A
CRYSTAL AND THE RELATED DIFFUSIVITY AND

MOBILITY

According to the foregoing, the many-body dynamics,
classical or quantum, of an ISA in the environment made up of
the rest of the crystal may be modeled by the pseudo-one-body
Langevin dynamics of the ISA subjected to an applied force
and the periodic potential that represents its interactions with
the static periodic host lattice in its equilibrium configuration.
Within this framework, the equations of motion of the ISA can
be written in the form

dr
dt

= v

m
dv
dt

= F − mγLv + σLζ (t). (15)

Here m, r, and v are respectively the mass, position,
and velocity of the ISA; F = −∇U (r) + Fext is the applied
conserved force, including the periodic crystal potential U (r)
and an external applied force Fext; −mγLv is the viscous drag,
γL being the friction due to the lattice vibration; σLζ (t) is

0 a-a

C

BA
x

U x

Em

FIG. 1. Sawtooth model potential U (x) for a Brownian particle
in Eq. (1).

the corresponding random force on the ISA, where ζ (t) is a
Gaussian noise, i.e., 〈ζ (t)〉 = 0 and 〈ζi(t)ζj (t ′)〉 = δij δ(t − t ′),
with i,j denoting the Cartesian components. In this regard, the
ISA described by Eq. (1) is like a Brownian particle embedded
in the phonon gas under the action of an external force field.

Let us model the migration barrier U (r) by a sawtooth
potential with barrier height Em (Fig. 1) in each of the three
Cartesian directions. Analytic expressions of the diffusivity D

and mobility μ can be derived by solving the Fokker-Planck
equation associated with the Langevin equation (15). The
lengthy derivation is detailed in the Appendix, with the results
summarized in the following simple equations:

D = ηL(T )

m(γL + γm)
, μ = D/ηL(T ), (16)

where γL is the friction due to the phonon scattering and
γm, that due to the migrating barrier effectively corrected for
phonon screening. γL and γm are related via a function of
temperature according to

γm

γL

= eξ − 1 − ξ − 1
2ξ 2

1
2ξ 2

, ξ = Em

ηL(T )
. (17)

Here ηL(T ) is the fluctuation-dissipation ratio expressed in
terms of the temperature-dependent energy of the phonons.
γm/γL generally increases as temperature decreases.

According to Eq. (16), the mobility and diffusivity are
governed by the same effective dissipative friction, which has
two components. The first one, −mγL, is friction due to energy
dissipation of the ISA motion resulting from phonon scattering
(phonon wind). The second one, −mγm, is friction due to
heat dissipation required to climb the vibrating migration
barrier. In general, these components dominate the mobility
and diffusivity of the ISA at high and low temperatures,
respectively. In this regard, we note that the effectiveness of
the sawtooth potential as a barrier to the migration of the ISA
is reduced by the vibrating lattice (phonons) as the phonon
density (amplitude of the vibrations) increases. This effective
reduction of the migration barrier may also be interpreted as
due to phonon screening of the interaction between the ISA
and the host atoms and described as phonon-assisted tunneling
[22]. These will be discussed in more detail in the following.
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At high temperatures, i.e., ξ � 1, γm

γL
≈ ξ

3 � 1 according
to Eq. (17). In this case, due to the relatively high vibrational
energy ηL(T ), phonon density is high and phonon scattering
dominates. The friction on the ISA is controlled by γL.
γm is ineffective due to heavy screening of phonons at
these temperatures. The high-temperature (i.e., well above the
Debye temperature) mobility μHT = (mγL)−1 and diffusivity
DHT = μHT kBT then follow from Eq. (16). Accordingly,
γL can be measured directly from the high-temperature
mobility using the relation γL = (mμHT )−1. Comparing with
the Einstein-Smoluchowski relation DE = μkBT = kBT

mγL
[6,7],

DHT is thus the same as Einstein’s Brownian diffusivity DE .
For low temperatures, ηL is small. In this case, phonon

density is low and the friction due to the migration barrier
dominates. Indeed, putting ξ � 1 in Eq. (17) yields γm

γL
≈

2ξ−2 exp(ξ ) − 1 � 1. According to Eq. (16), the mobility of
the ISA faces a friction dominated by γm. The low- and high-
temperature mobilities are related by

μLT ≈ μHT

2

(
Em

ηL

)2

exp

(
−Em

ηL

)
. (18)

We note that the foregoing results are independent of
whether classical or quantum statistics is used in the derivation.
Since classical results can be recovered from the quantum ver-
sion by taking the limit h̄ → 0, we only need to continue along
the quantum route. In this regard, the quantum fluctuation-
dissipation relation (QFDR) evaluated from Eq. (14) using the
phonon density of state (DOS) can be written as

ηL(T ) =
∫ ∞

0
h̄ω

(
1

2
+ 1

eh̄ω/kBT − 1

)
g(ω)dω, (19)

where g(ω) is the phonon DOS of the crystal environment
with g(ω) = 4πk2�

(2π )3
1

∇kω
where � is the atomic volume and

k the phonon wave vector. The DOS can be obtained from
experiments, or from first-principle calculations, or by simply
using the Debye model if one pursues an analytic route, as done
in Refs. [17,19]. From Eq. (19), it is clear that the friction due
to phonon scattering involves both thermal vibrations 〈n〉h̄ω

and the ground-state athermal ones h̄ω/2.
For high temperatures, h̄ω/kBT � 1 and ηL ≈ kBT . The

QFDR is reduced to the classical fluctuation-dissipation
relation (CFDR), and the traditional Einstein-Smoluchowski
relation between the mobility and diffusivity, namely, D =
μkBT , is recovered.

For very low temperatures, the density of the phonon
gas is low; i.e., 〈n〉 → 0. However, the energy h̄ω/2 due to
the phonon ground state allows the probable appearance of
the ISA on the other side of the migration barrier without
thermal excitation, a phenomenon we may identified as
ground-state-phonon-assisted tunneling. Within the Debye
model, ηL(T ) = [ 3

8 + π4

5 ( T
�D

)
4
]kB�D [17], where �D is the

Debye temperature. It is then clear that as temperatures
decreases below ∼�D/3, the second term in the square

brackets decreases rapidly as T 4, as ηL tends to a constant value
of ηL ≈ 3

8kB�D . Following Eq. (18), the near-zero mobility
μZ and diffusivity DZ are related to the high-temperature
mobility μHT and can be written as

μZ ≈ μHT

2

(
8Em

3kB�D

)2

exp

(
− 8Em

3kB�D

)
, and

DZ ≈ 3μHT kB�D

16

(
8Em

3kB�D

)2

exp

(
− 8Em

3kB�D

)
, for

T <
�D

3
and �D � 8Em/kB. (20)

Both are nonzero and both are independent of temperature.
The complete departure of the diffusivity and mobility in
Eq. (20) from the Arrhenius behavior and the Einstein-
Smoluchowski relation is obvious. Thus, for a tungsten crystal
with �D ≈ 360 K and an ISA migration barrier of 0.1 eV,
μZ ≈ 0.01μHT which is nonzero even at 0 K. The nonzero
quantum transport at 0 K in Eq. (20) is a consequence of
quantum uncertainty discussed earlier in this paper. In addition,
we note that from a third of the Debye temperature down to
absolute zero, the quantum statistical version of the Einstein
relation between the diffusivity and mobility is changed to
DEinstein

Z = 3
8μkB�D in which both the mobility (or viscosity)

and diffusivity are temperature independent. Indeed, below
the Debye temperature the conventional Einstein relation
D = μkBT no longer holds due to quantum effects. This
relation may have important consequences in the interpretation
of solid-state transport in low-temperature experiments.

Figure 2(b) plots the variable ξ (T ) = Em

ηL(T ) as a function
of temperature T in an example where for simplicity Em

is hypothetically put equal to the Debye energy of bcc W;
i.e., Em = kB�D = 0.032 eV [24]. It can be easily seen that
above the Debye temperature, i.e., T > �D , quantum effects
disappear and ξQ ≈ ξC . Below the Debye temperature, i.e.,
T < �D , CFDR neglects the freezing out of phonons and
overestimates the phonon density. This is reflected in Fig. 2(b)
in the large difference between ξC → ∞ calculated using
CFDR and ξQ = 8/3 calculated using QFDR as T → 0.
The use of ξC instead of ξQ in Eq. (17) results in a large
overestimation of the friction due to γm, causing a serious
underestimation of both the diffusivity and mobility. Thus,
quantum diffusivity and mobility are much larger than their
classical counterparts. Indeed, referring to Fig. 2(b), at T =
10 K, QFDR gives a value of ξQ ≈ 8/3 yielding a D ≈ 0.1DE ,
while CFDR gives a value of ξC ≈ 40 yielding a D ≈ 10−14DE

which is 13 orders of magnitude smaller. Alternatively, the en-
hanced transport may also be understood in terms of quantum
tunneling.

In the following section, results of the foregoing Langevin-
equation approach for the diffusion and mobility of interstitial
helium in bcc tungsten will be compared with those obtained
by directly solving the many-body problem via an MD ap-
proach. The diffusivity and mobility according to Eqs. (16) and
(17) are evaluated as functions of temperature with migration
energy Em obtained using conjugate-gradient techniques.
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FIG. 2. (a) The ratio of diffusivity of the impurity in a periodic
potential and the diffusivity of free Brownian motion, D/DE , against
the ratio ξ of the height of migratory energy barrier Em and the
fluctuation-dissipation ratio η = σ 2/2mγ ; i.e., ξ = Em/η. (b) ξ as
function of temperature based on classical fluctuation-dissipation
relation (CFDR), ξC = Em/kBT , and quantum fluctuation-dissipation
relation (QFDR) ξQ = Em/η(T ), where η(T ) is given in Eq. (4) and
Em = kB�D = 0.032 eV.

IV. QUANTUM STATISTICAL MD SIMULATION OF
MOBILITY AND DIFFUSIVITY OF He IN bcc W

Helium (He) is chosen in this study because it is one of the
common insoluble impurities in metals, the accumulation and
complex formation of which is a fundamental cause of many
adverse effects affecting the usefulness of metals and alloys
as structural components [25]. A well-known example is the
high-temperature embrittlement of deflector materials in fu-
sion reactors of the international thermonuclear experimental
reactor (ITER) type caused by He bubble formation in bcc W.
In such cases, the diffusion of He inside the metallic crystals
is often the first step of kinetic processes in the clustering
dynamics.

The diffusion behavior of helium in W is complex.
Theoretical and experimental studies reveal that diffusion of
He in metals may occur via the interstitial mechanism [26].
Interpreted in terms of the Arrhenius law, He diffusion in W
measured between 90 and 110 K with atom-probe field-ion
microscopy (FIM) was characterized by an enthalpy of 0.24–
0.32 eV [27,28]. However, first-principle static calculations
yield a much smaller energy barrier of 0.06 eV [29,30], which
is more consistent with the activation enthalpy of ∼0.1 eV
obtained from recent molecular dynamics (MD) simulations
[31–33]. Higher-temperature measurements between 1120 and
1400 K, on the other hand, yield diffusivities consistent with
a much larger migration enthalpy of 0.71 eV [34,35]. MD
simulations found that He diffusion in bcc tungsten in this
temperature range did not obey the Arrhenius law. The lack
of coherency in the Arrhenius interpretation in the foregoing
seems to bear out the problems in the understanding of
interstitial solute diffusion in crystalline solids based on a
one-particle classical picture which has been discussed at some
length in the foregoing sections.

In this section, direct solution of the many-body dynamics
of a bcc tungsten crystal with an interstitial helium atom is per-
formed using canonical molecular dynamics (MD) simulation.
The heat bath is constructed based on the quantum statistical
frameworks described in Sec. II [see Eq. (14)]. The mobility
and diffusivity obtained from the MD simulation is compared
with those from Eqs. (16) derived within the Langevin equation
approach. A migration energy Em = 0.12 eV determined from
constrained energy optimization using the conjugate-gradient
method is employed [36]. The accuracy and the range of
applicability of the classical treatment is also evaluated by
comparing with the quantum results.

The MD simulation is based on a Hamiltonian of the many-
body system in a thermal bath which can be written in the
general form

H =
∑

n

p2
n

2mn

+ U ({Rn}) + HB, (21)

where mn, pn, and Rn, respectively, are the mass, momentum,
and position of the nth atom, and U ({Rn}) is a many-body
interatomic potential corresponding to the lattice configuration
{Rn}. Here, the dynamics of He is modeled by the ensemble of
interacting atoms embedded in a noisy environment HB that
represents a thermal heat bath at temperature T . The equation
of motions of each atom in Eq. (19) can be written in the
Langevin form:

dRn

dt
= pn

mn

dpn

dt
= − ∂U

∂Rn

− γBpn + σBζn(t), (22)

where γB = mnγn characterize the corresponding dissipative
drags −γBpn on the atom. The random forces σBζn(t) of the
Langevin thermostat are defined in a Gaussian and frequency-
independent delta-correlated form according to 〈ζk(t)〉 = 0
and 〈ζnα(t)ζlβ(t ′)〉 = δnlδαβδ(t − t ′). Noting that the bath is
in equilibrium with the phonon system, the fluctuation-
dissipation ratio of the bath is given by σ 2

B = 2γBηL(T ), where
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FIG. 3. The mobility of helium in bcc W (700 K < T < 3300 K)
calculated using drag dynamics simulations. The average μ =
(mγ )−1 = 8.4 × 10−8 m2/s/eV. The solid line is to guide the eye.

ηL(T ) is given by Eq. (19) with the DOS given by the Debye
model [17].

We performed NVT MD simulations for helium diffusion in
tungsten according to Eq. (22) using embedded-atom poten-
tials, with W-W interactions from Ackland and Thetford [37]
as modified by Juslin and Wirth [38], and He-W interactions
from Juslin and Wirth [38]. The simulation cell contains 30 bcc
W unit cells along each dimension in a Cartesian coordinate
system, for a total of 54 000 W atoms. The helium atom
is introduced into a tetrahedral interstitial site (TIS) of the
bcc W host lattice, near the center of the simulation cell.
Periodic boundary conditions are applied and simulation-cell
dimension dependence checked. The Langevin heat bath
and zero-external-pressure equilibrium atomic volume at the
corresponding temperature are used to define the lattice
constants. The computation is performed using the velocity
Verlet method, with a time step of 1 fs. Trajectories of the
helium atom (with 4-ns durations) are generated and recorded
for various temperatures.

From the phase-space trajectory r(t) of He obtained,
the diffusivity can be calculated using the Einstein formula
derived independent of the transport mechanism; i.e., D =
limt→∞〈[r(t) − r(0)]2〉/6t [6]. At sufficiently high tempera-
tures, the diffusivity of He can also be evaluated from the
mobility μ, i.e., D(T ) = μηL(T ), which can be obtained by
performing drag dynamics simulations, where

μ = lim
Fd→0

vd

Fd

. (23)

Here vd is the terminal velocity of the He atom under the
action of applied external drag force Fd . For temperatures
above 700–3300 K, the mobility obtained this way is shown
in Fig. 3, which is practically temperature independent, with a
mean value of μHT = 8.4 × 10−8 m2/s/eV.

Figure 4(a) is an Arrhenius plot of the MD simulated
He diffusivity we obtained. The most prominent feature is
the constant value of the diffusivity below a third of the
Debye temperature, i.e., ∼120 K down to 0 K, as predicted
by Eq. (20). Plotted in comparison are the diffusivities

FIG. 4. (a) The diffusivity of He in bcc W at temperatures
from 10 to 3300 K, calculated using the Einstein formula D =
limt→∞〈[r(t) − r(0)]2〉/6t , where the He trajectory r(t) is collected
from the many-body dynamical simulation [Eq. (6)] with the QFDR
used to control the temperatures of bcc W, as well as the comparisons
with the estimation of diffusivity DQ and DC , derived from the
analytical model [Eq. (2)] based on QFDR and CFDR, respectively.
Here, in the analytical expression [Eq. (2)], Em = 0.12 eV is obtained
using the modified conjugated-gradient method (MCG) [36,39]; the
mobility μ = 8.4 × 10−8 m2 s−1 eV−1 is calculated from the drag
simulation following Eq. (7). The simulation details were documented
in Ref. [39]. (b) The relative error of DC with respect to DQ, i.e.,
ε = |DC/DQ − 1| at temperatures ranging from 10 to 1200 K.

DQ and DC , analytically calculated from Eqs. (16)–(18),
using QFDR-derived ξQ and CFDR-derived ξC , respectively.
Figure 4(a) shows that above the Debye temperature there
is little difference among the diffusivities DQ and DC from
MD simulation and those from Eq. (16). On the other hand,
below the Debye temperature, DQ becomes much larger than
DC as temperature decreases. Similar results are also reported
in a recent calculation on the low-temperature diffusivity of
self-interstitial defects in tungsten [40].
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The foregoing behavior is predicted in the Langevin
formulation in Sec. III. The difference at low temperatures
can be traced to the difference between quantum and classical
statistics used in the two cases. Indeed, within the Debye
model [17], using a value of 8Em/3kB�D = 10, Eq. (20)
gives DZ

DE
= 2.27 × 10−3 for temperatures below �D/3 which

verifies the MD results in Fig. 4(a). In this regard, the
corresponding classical value is DC → 0, demonstrating the
remarkable difference between results from quantum and
classical statistics. This difference vanishes when quantum
effects in the many-body dynamics are neglected, i.e., when
�D → 0.

Based on a Debye frequency of 8 × 1013 the de Broglie

wavelength of the W atoms is λW =
√

πh
mWωW ≈ 0.1 Å. At

equilibrium the kinetic energies of all atoms are equal,
from which the de Broglie wavelength of the He can be
estimated at ∼0.43 Å, indicating a negligible multisite spread
of the one-particle wave function and coherent tunneling
probability. Indeed, using the Wentzel, Kramers, and Brillouin
(WKB) approximation, the tunneling probability of a He
atom through a barrier of height 0.12 eV and width
0.1 nm at 0 K is on the order of 10−12. It dominates over
the thermal jump rates and thus the diffusivity only below
∼40 K, at which the corresponding Arrhenius diffusivity is
at least six orders of magnitude smaller than that due to the
momentum transfer from the phonon ground state which is
already apparent below 120 K [see Fig. 4(a)]. This confirms
that the effect on the He diffusivity due to coherent tunneling is
negligible compared with that due to the ground-state-phonon-
assisted tunneling presently considered.

Figure 4(a) shows that the quantum statistical effects
are important when considering He diffusion below the
Debye temperature of the host crystal. We calculate the
relative error ε = |DC/DQ − 1| and plot it in Fig. 4(b). It
can be seen that ε is small for T > �D , e.g., ε = 2.6% at
500 K, but increases rapidly as the temperature dips below the
Debye temperature, i.e., T < �D , where quantum statistical
effects become significant. For example, ε = 64.3% at 50 K,
which means quantum diffusion is three times faster than the
corresponding classical results.

V. SUMMARY AND CONCLUSION

The dynamics involved in the mobility and diffusivity of
interstitial solute atoms (ISAs) in a crystalline solid at finite
temperatures is many body in nature. As such, the motion of
the ISA and the “migration barrier” it encounters are coupled
to the lattice vibrations via the interaction between the ISA
and the ground-state phonons. The aim of the present paper is
to investigate the impact of such quantum effects.

Modeling the difference between Ehrenfest and Newtonian
forces in the equations of motion of the atoms as a perturbative
stochastic noise, the characteristic fluctuation-dissipation ratio
(FDR) is formally related to the thermodynamic temperature
via the phonon DOS of the crystal. The many-body dynamics
can be directly solved by following the MD approach with a
Langevin heat bath based on the quantum FDR. At the same
time, the Mori-Zwanzig theory allows one to also describe the
many-body dynamics of the crystal via the pseudo-one-particle

Langevin equation approach, using a phonon DOS based on
the Debye model. Both approaches are used in the present
paper, yielding results which are in excellent agreement with
each other. Below the Debye temperature of the host lattice,
ground-state phonons are found to produce a major effect on
the transport properties of the ISA, causing them to seriously
depart from the Arrhenius law of diffusion as well as the
Einstein-Smoluchowski relation between the mobility and
diffusivity. Thus, below a third of the Debye temperature all the
way down to 0 K, both the quantum mobility and diffusivity
are essentially constant and are orders-of-magnitude larger
than the classical results and those due to coherent tunneling.
The diffusivity of He in bcc W obtained from the molecular
dynamics simulation is found to only follow the Arrhenius law
in a narrow temperature range between ∼300 and ∼700 K,
and tends to a constant on the low-temperature side while
obeying Einstein’s theory and becoming a linear function of
temperature on the high-temperature side. The mobility, on
the other hand, is basically temperature independent, except in
the temperature range between ∼100 and 700 K, in which its
value drops 100-fold with the phonon density as temperature
decreases.
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APPENDIX

We consider in this Appendix the finite-temperature dy-
namics of a particle in a noisy medium under the action of
an external force field, governed by Langevin equation (15).
We assume that the friction is such that |γLv| � |v̇|. When
�F → 0, the corresponding probability density P (r,t) of the
ISA at location r and time t is governed by the Fokker-Planck
equation [18],

∂

∂t
P (r,t)=∇ ·

[ ∇U

mγL

P (r,t)
]

+ DE∇2P (r,t) = −∇ · j(r,t),

(A1)

where DE ≡ σ 2
L/2(mγL)2 is the Einstein diffusivity for a

free Brownian particle. The fluctuation-dissipation ratio ηL =
σ 2

L

2mγL
is a function of temperature from which the tempera-

ture dependence of DE is derived, through DE = ηL/mγL.
Classically, ηL = kBT , and quantum mechanically, ηL is a
nonlinear function of T given by Eq. (14). We may also define
the Einstein mobility accordingly as μE ≡ (mγL)−1. When
∇U �= 0, Eq. (A1) is called the Smoluchowski diffusion
equation [16]. The corresponding flux of Brownian particles
can be written in the mesoscopic scale as

j(r,t) = −DEe−U (r)/ηL∇[eU (r)/ηLP (r,t)]. (A2)

Within the pseudo-one-particle model in our case, the ISA
moves in a one-dimensional sawtooth potential field U (x),
jumping from troughs A(xA = −a) to B(xB = a), across the
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saddle point C(xC = 0), as shown as in Fig. 1, i.e.,

U (x) =
{
Em(1 + x/a) −a < x < 0
Em(1 − x/a) 0 < x < a

, (A3)

where Em = U (xC) − U (xA) is the migration-energy barrier.
According to Eq. (A2), the one-dimensional flux is given by

j (x,t) = −DEe−U/ηL
∂

∂x
(eU/ηLP ). (A4)

Performing the integration on both sides of Eq. (A4), we
obtain ∫ B

A

jeU (x)/ηLdx = −DE(eU/ηLP )|BA. (A5)

Instead of an explicit consideration of the ISA motion from
A to B, we will solve a closely related steady-state problem,
assuming that P (xA) = PA, and P (xB ) = 0. This assumes the
near-equilibrium condition that particles at the point x = xA

are replaced as quickly as they leak away, and taken out at
the point x = xB as quickly as they arrive there. In this case,
the populations of the wells A and B remain time independent
[∂P (x,t)/∂t = 0], and the flux j between the wells can be
calculated as

j = eUA/ηLPADE

{∫ B

A

eU (x)/ηLdx

}−1

. (A6)

From Eq. (A3), we have∫ B

A

eU (x)/kBT dx

= 2
∫ a

0
eEm(1−x/a)/ηLdx = 2a

ηL

Em

(eEm/ηL − 1). (A7)

Thus

j = DEPA

2a

Em

ηL

1

eEm/ηL − 1
. (A8)

One may check that the probability density satisfying
Eq. (A4) with j = const is

P (x) = j/DE exp

[
−U (x)

ηL

]{∫ a

−a

eU (x)/ηLdx

−
∫ x

−a

eU (x ′)/ηLdx ′
}
. (A9)

For the specific case of U (x) given in the sawtooth form by
Eq. (A3), we obtain

P (x) = j/DE
aηL

Em

{
2e

− Emx
aηL − 1 − exp

[
−Em(1 + x/a)

ηL

]}
,

x � 0, (A10)

P (x) = j/DE
aηL

Em

{
1 − exp

[
−Em(1 − x/a)

ηL

]}
, x � 0,

(A11)

and

dP

dx
= −j/DE − ∇U

ηL

P = −j/DE ∓ Em

aηL

P (x). (A12)

Integrating Eq. (A12) over the intervals [−a,0] and [0,a],
we obtain

P (0) − P (−a) = −ja/DE − Em

aηL

∫ 0

−a

P (x)dx

≡ −ja/DE − Em

aηL

P[−a,0], (A13)

P (a) − P (0) = −ja/DE + Em

aηL

∫ a

0
P (x)dx

≡ −ja/DE + Em

aηL

P[0,a]. (A14)

Taking the sum of the last two equations, we obtain

PA = 2ja

DE
+ Em

aηL

�PAB, (A15)

where �PAB = P[−a,0] − P[0,a] is the difference of the proba-
bilities to find a particle in the corresponding intervals.

The number of particles moving from one well to another
during the time dt is given by jC(t)dt , where jC(t) is the
flux across the saddle point C. This results in �PAB changing
by [−2jC(t)dt]; i.e., d�PAB(t)/dt = −2jC(t). One may then
calculate the effective particle transfer rate τ−1 defined by the
decay equation d�PAB(t)/dt = −�PAB/τ according to

1

τ
= 2j

�PAB

= DEEm

a2ηL

2ja/PADE

(1 − 2ja/PADE)

= EmDE

a2ηL

1

(PADE/2ja − 1)

= ηL

mγLa2

(Em/ηL)2

(eEm/ηL − Em/ηL − 1)
. (A16)

To cross the saddle point C a particle that originated at
the point A has to move over a distance equal to a. Thus the
average square distance 〈l2〉 traveled by the particle during the
time τ can be approximated by a2, and the long-range diffusion
coefficient of particles D can be found from the conventional
relation 2Dτ = 〈l2〉 ∼= a2; i.e.,

D = a2

2τ
= ηL

mγL

1
2 (Em/ηL)2

(eEm/ηL − Em/ηL − 1)
. (A17a)

Modeling the ISA in the foregoing as a Brownian particle
in a noisy medium with an effective friction coefficient γ ∗,
D may be written as D = ηL

mγ ∗ . Physically, γ ∗ emulates the
increased friction on the ISA due to the presence of migration
barriers in a dissipative medium. For this reason we may write
γ ∗ = γL + γm, where γm represents the contribution to the
friction from the migration barrier. From Eq. (A17a), defining
ξ = Em/ηL we may write

1 + γm

γL

= 2(eξ − 1 − ξ )

ξ 2
, (A17b)

from which it can be seen that γm � γL at low temperatures
and γm � γL at high temperatures. In the former case, we may
say that the diffusion is migration-barrier controlled, while in
the latter case, it is phonon-drag controlled.

The mobility of the Brownian particle can be obtained
from the change in current density due to the application of a
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small constant external force �F on the particle. In this case,
Eq. (A9) still holds as a stationary solution of Eq. (A1) with
the total potential given by U (x) − �Fx. Equations (A13) and
(A14) then become

P ′(0) − P ′(−a) ∼= −ja/DE − Em

aηL

P ′
[−a,0] + �F

ηL

P[−a,0],

(A18)

P ′(a) − P ′(0) ∼= −ja/DE + Em

aηL

P ′
[0,a] + �F

ηL

P[0,a],

(A19)

where P ′(x) replaces P (x) as the probability density to account
for �F . Since �F is small in the atomic scale, only terms
linear in �F need to be kept on the right-hand sides of
Eqs. (A18) and (A19).

Similarly, one may also replace Eq. (A15) by

P ′
A = 2ja

DE
+ Em

aηL

�P ′
AB − �F

ηL

∫ a

−a

P (x)dx. (A20)

Since the periodic potential is symmetrical at x = 0,
Eq. (A9) gives

P ′
A = j/DE exp

(
−�Fa

ηL

){∫ a

−a

eU (x)/ηLdx

}

∼= PA − j

DE

2a2�F

Em

(eEm/ηL − 1). (A21)

Using Eq. (A15), Eq. (A21) can be rewritten as

−2ja2

DE

�F

Em

(eEm/ηL − 1)

= Em

aηL

(�P ′
AB − �PAB) − �F

ηL

∫ a

−a

P (x)dx. (A22)

Integration of Eqs. (A10) and (A11) gives∫ a

−a

P (x)dx = 2ja2

DE

(
ηL

Em

)2

[eEm/ηL − 2 + e−Em/ηL ].

(A23)

As a result,

�P ′
AB − �PAB = −�Fa

ηL

2ja2

DE

(
ηL

Em

)2[
eEm/ηL − 1

− ηL

Em

(eEm/ηL − 2 + e−Em/ηL)

]
. (A24)

Thus the effective particle transfer rate (τ ′)−1 in the presence
of F is given by

1

τ ′ = 2j

�P ′
AB

∼= 2j

�PAB

(
1 − �P ′

AB − �PAB

�PAB

)

= 1

τ

(
1 − �P ′

AB − �PAB

�PAB

)

= 1

τ

(
1 − �P ′

AB − �PAB

2jτ

)
. (A25)

If l (a stochastic variable) is the actual jump distance
between the two spatial intervals, then it is related to the
particle diffusivity D in the presence of a drift velocity vd

by

〈(l − vdτ
′)2〉 = 2Dτ ′, (A26)

Using Eq. (A25) and 〈l2〉 = 2Dτ , for small velocities,
Eq. (A26) gives

vd = −D(τ ′ − τ )

〈l〉τ ′ = − D

〈l〉 (1 − τ/τ ′)

= − D

〈l〉
�P ′

AB − �PAB

2jτ
. (A27)

Defining

〈l〉 ≡ a
eEm/ηL − 1 − ηL

Em
(eEm/ηL − 2 + e−Em/ηL)

eEm/ηL − Em/ηL − 1
, (A28)

and substituting Eq. (A16) for τ using Eq. (A24), Eq. (A27)
gives the well-known expression relating the mobility to the
diffusivity through the Einstein particle mobility,

μ(T ) = D(T )

ηL

= 1

m(γL + γm)
, (A29)

if we define the mobility μ(T ) through the drift velocity vd

according to vd = μ(T )�F . We note that the Einstein relation
here is expressed via the fluctuation-dissipation ratio ηL which
is a natural variable in the present stochastic formulation. The
traditional formula μ = D/kBT can be obtained by using
the classical equipartition theorem which does not apply to
quantum vibrations (phonons).

We note that according to Eq. (A28), 〈l〉 = a in both limits
Em � ηL and Em � ηL. This is particularly important in the
case of Arrhenius diffusion where the diffusing particle does
move over a distance equal to a during the transfer between
the wells.
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