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Conditional 1/ f α noise: From single molecules to macroscopic measurement
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We demonstrate that the measurement of 1/f α noise at the single molecule or nano-object limit is remarkably
distinct from the macroscopic measurement over a large sample. The single-particle measurements yield a
conditional time-dependent spectrum. However, the number of units fluctuating on the time scale of the experiment
is increasing in such a way that the macroscopic measurements appear perfectly stationary. The single-particle
power spectrum is a conditional spectrum, in the sense that we must make a distinction between idler and nonidler
units on the time scale of the experiment. We demonstrate our results based on stochastic and deterministic models,
in particular the well-known approach of superimposed Lorentzians, the blinking quantum dot model, and
deterministic dynamics generated by a nonlinear mapping. Our results show that the 1/f α spectrum is inherently
nonstationary even if the macroscopic measurement completely obscures the underlying time dependence of the
phenomena.
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I. INTRODUCTION

In many applications, a fluctuating signal I (t) is analyzed
in the frequency domain using the sample spectrum

S(ω) = |It (ω)|2
t

= 1

t

∣∣∣∣
∫ t

0
I (t ′) exp(−ıωt ′)dt ′

∣∣∣∣
2

, (1)

where the measurement time t is assumed to be long. The
power spectrum of many processes exhibits 1/f α noise,

S(ω) ∝ ω−α, (2)

with 0.5 < α < 1.5. This behavior is practically universal
as it is found in a wide range of systems ranging from
electronic devices, geological data, blinking quantum dots,
and currents in ion channels, to name only a few examples
[1–11]. Such 1/f α fluctuations are found down to the lowest
frequencies measured, which are of the order of 2π/t , where
t is the measurement time. For example, t is roughly an
hour for blinking quantum dots [8], three months for careful
measurements of voltage fluctuations in semiconductors [9],
or years for geological data [10].

Many papers and reviews, with careful analysis of macro-
scopic data, propagate the idea that the 1/f α phenomenon
is based on standard concepts of stationarity [2,4,5], “in the
absence of overwhelming evidence to the contrary” [2]. This
has a vast consequence, since stationarity implies the standard
definition of the spectrum, and its connection to the underlying
stationary correlation function through the Wiener-Khinchin
theorem holds [12].

The 1/f α spectra, Eq. (2), are problematic because when
α � 1, the integral over the spectral density, which gives the
total power of the system,

∫∞
1/t

ω−αdω, diverges when the
measurement time goes to infinity due to the low-frequency
behavior. However, clearly for a bounded process the total
power must be finite,

∫∞
0 S(ω)dω < ∞ [12]. The demand for

a finite total power and the measurements of 1/f α noise in a
vast array of systems seem to contradict each other [1,2,4,5].

One way to resolve this low-frequency paradox is to
assume that the underlying process is nonstationary [13–16].
Mandelbrot suggested that the 1/f α power spectrum ages,
which means that St (ω) ∝ ω−2+βt−1+β , so α = 2 − β [13].

Importantly, here the spectrum depends on the measurement
time t (see details below), and the total power remains finite,∫∞

1/t
St (ω)dω = const [14,16]. The time-dependent amplitude

of St (ω) provides a normalizable spectral density, therefore it
should naturally appear in a bounded process. In this scenario,
the spectrum is a density, as it should be, in the sense that
St (ω) is normalizable [16]. Models of such nonstationary
behavior are found in the theory of glasses [17,18], blink-
ing quantum dots, analytically and experimentally [8,14],
nanoscale electrodes [19], and interface fluctuations in the
(1+1)-dimensional Kardar-Parisi-Zhang (KPZ) class, both
experimentally and numerically, using liquid-crystal turbu-
lence [20]. Thus one school of thought supports the idea
that the sample spectrum exhibits nonstationary features of
a particular kind [16,19,21–23]. However, others argue that
while Mandelbrot’s nonstationarity scenario is theoretically
elegant, it is not a universal explanation since it is backed only
by a few experiments [8,19,20].

Why, 50 years after Mandelbrot has pointed out the
idea of an aged spectrum, is there only a small amount of
experimental evidence for a nonstationary power spectrum?
In particular, why do many measurements of 1/f α noise in
condensed-matter physics seemingly support the stationarity
scenario? The key issue is the difference between macroscopic
and microscopic measurements. A macroscopic measurement
contains many microscopic realizations. For example, consider
a current I (t) flowing through a disordered medium. The
macroscopic system has many channels of current in it, dis-
tributed in a complicated way in the sample. The macroscopic
measurement of the power spectrum corresponds to the total
signal I (t) generated in the sample, e.g., the spectrum of
the total current. By microscopic measurements we mean
local observations of individual units, e.g., the internal
channels of current in the medium. Of course the signals
from all those units, added together, yield the macroscopic
measurement.

Following Mandelbrot [13], we consider conditional mea-
surements, which are important in the context of measuring
noise in the microscopic approach. We denote the currents
of units in the sample with Ij (t), where j = 1, . . . ,N is the
unit’s index. The core of the concept is to separate the set
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{Ij (t)}Nj=1 into two subsets, one with the realizations Ij (t) that
appear stationary on the measurement time interval (this set is
called B). The other set, the complementary one, contains all
the other realizations (the set Bc). Of course, to distinguish
between the two subsets one needs to be able to perform
measurements one nano-object at a time, namely microscopic
measurements, e.g., when one measures a local observation
of current in one small junction in the system. Traditional
spectral theory, based on the Wiener-Khinchin theorem, holds
for the stationary realizations in subset B. For a single-particle
measurement we consider a conditional measurement that is
observed only from realizations that appear stationarity in
the measurement time interval. Then we average over set B
(i.e., averaging over the measured realizations set). Note that
the size of set B depends on the measurement time; as we
increase the measurement time, the number of realizations in
B is changing. Hence, a conditional spectrum, averaged over
set B, may depend on time, as we show in detail below.

Our goal in this paper is to show that there is a profound
difference between measurements of 1/f α noise on the single-
particle level if compared with macroscopic measurements
(defined below). As we will show, on the microscopic level,
where one conditionally measures single particles, the power
spectrum ages. However, macroscopic measurements yield
a time-independent spectrum. In that sense, the tension
between the two conflicting approaches to 1/f α noise, i.e., the
stationary versus the nonstationary communities, is reduced.
As we show below, the aged spectrum is valid even for the
most basic model of 1/f α noise, namely the distributed kinetic
models for a variety of processes, e.g., the two-state model,
the Ornstein-Uhlenbeck model, etc.

To demonstrate the broad validity of the main results, we
consider two classes of models. We begin with the widely
popular distributed kinetic approach. Here, at least in principle,
if one measures in a long time interval, the processes are
stationary. In the second part of the paper we consider
a very different class of processes, which are inherently
nonstationary. We investigate stochastic models of blinking
quantum dots and a deterministic model of intermittency.
While the two classes of models are vastly different, the main
conclusion is the same: there is an essential difference between
single-particle and macroscopic measurements.

II. MACROSCOPIC VERSUS SINGLE-PARTICLE
MEASUREMENTS

Consider a large set of N independent processes {Ij (t ′)} ob-
served in the time interval [0,t], where j ∈ {1,2, . . . ,N} is the
unit’s label. The single-particle spectrum is given by the peri-

odogram Eq. (1), i.e., Sj (ω,t) = t−1| ∫ t

0 Ij (t ′) exp(−iωt ′)dt ′|2
when t is long. For a stationary process, this sample spectrum
is given by the cosine Fourier transform of the autocorrelation
function of the observable Ij (t) via the Wiener-Khinchin
theorem [12]. Additional smoothing of the sample spectrum
is also routinely performed [24]; see also [14,25]. In single-
particle measurements, one samples ns trajectories, i.e., Ij (t ′),
where j = 1, . . . ,ns , and then defines an average with respect

to the measured processes, namely

〈St (ω)〉sp =
ns∑

k=1

Sk(ω,t)/ns, (3)

where 1 � ns � N . Here 〈.〉sp stands for single-particle
measurements with ensemble averaging over a subset with
size ns . For a macroscopic measurement, the spectrum of many
independent processes, all measured in parallel, is

St (ω)mac =
N∑

j=1

Sj (ω,t) (4)

(see also Appendix E). Only if all the processes are statis-
tically identical and stationary we find that the macroscopic
measurement is simply related to the single-particle procedure
via S(ω)mac = N〈S(ω)〉sp. Our goal is to show that this
time-independent relation does not hold for models of 1/f α

noise. This is related to the way experimentalists choose
the subensemble of single-particle measurements, as we now
demonstrate with a simple two-state model.

III. RANDOM TELEGRAPH SIGNAL

Consider a two-state telegraph process, where Ij (t) = I0

or Ij (t) = −I0 with sojourn times in each state, {T j

1 ,T j

2 , . . .},
that are exponentially distributed with mean τj . After each
waiting time, the realization switches to the other state. For a
long measurement time, the process is stationary and ergodic
such that [26]

〈Ij (t0)Ij (t0 + t ′)〉 = I 2
0 exp(−2t ′/τj ), (5)

hence, using the Wiener-Khinchin theorem, the spectrum is

Sj (ω) = I 2
0

4τj

4 + ω2τ 2
j

. (6)

The value of τj varies from one molecule to the other. It is a
quenched random variable in the sense that it is fixed for each
process Ij (t). This is a crude model for a single molecule in
low-temperature glasses; see, e.g., [27,28].

Consider a set of N telegraph processes in which the
characteristic time scale τj is varying from one molecule to
another, with a common probability density function (PDF)

P (τ ) = N τ−β, (7)

with 0 < β < 1. For such a distribution to be meaningful,
we introduce an upper and a lower cutoff, τ ∈ [τmin,τmax],
thus the normalization constant is N = (1 − β)/[(τmax)1−β −
(τmin)1−β].

The model of superimposed Lorentzian-shaped spectra with
heavy-tailed distributed characteristic time τ is considered
one of the best known explanations to the 1/f α phenom-
ena [1,2,5,29,30]. It was first developed nearly eight decades
ago for vacuum tubes [30], and later in the middle of the 1950s
for semiconductors [29]. See further discussion in Sec. VII.

Now assume that a realization j did not move at all on
the time scale of the experiment, namely it is localized in its
initial state during the entire measurement period, e.g., a unit
with τj 	 t . This noiseless unit does not contribute to the
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long τ

short τ
time −→

FIG. 1. An illustration for eight dichotomous Poisson processes
with a characteristic time scale τj varying from one realization to
another. The realization with the longest τ is given at the top (dark
red), and then τ changes gradually where the shortest τ realization
is given at the bottom (dark blue). It is clear that while changing the
measurement time, the size of the set of moving realizations changes
as well.

spectrum, since

St (ω) = I 2
0

t

∣∣∣∣
∫ t

0
exp(−ıωt ′)dt ′

∣∣∣∣
2

(8)

= I 2
0

4 sin2(ωt/2)

ω2t

∣∣∣∣
ω=2πn/t

= 0,

namely its sample spectrum vanishes at natural frequencies
ω = 2πn/t when n is a positive integer. Since units with no

activity are not detectable, i.e., they are noiseless, experimen-
talists measure only the active units’ subensemble. Hence the
single-particle spectrum is a conditional measurement.

The probability of a realization with a given relaxation time
τ to move in the time interval [0,t] is

Pmov
0 (t |τ ) = 1 − exp(−t/τ ), (9)

which is equivalent to the probability that the first sojourn time
in the initial state is longer than the measurement time, i.e.,
T1 < t ; see Fig. 1.

Now we sample the spectrum of moving realizations only,
thus we defined a conditional measurement of the spectrum.
This protocol leaves us with a subset of {τj } of the moving
objects, and the ensemble averaging is taken with respect to
this subset. The normalized distribution of τ for the moving
realization subset {τj } is P (τ )Pmov

0 (t |τ )Nt , where the time-
dependent normalization constant is given by

N−1
t =

∫ τmax

τmin

Pmov
0 (t |τ )P (τ )dτ

=
∫ τmax

τmin

(1 − e−t/τ )
(1 − β)τ−β

τ
1−β
max − τ

1−β
min

dτ ≈ �(β)

(
t

τmax

)1−β

,

(10)
where the limit τmin � t � τmax was taken. Averaging over
the active particles’ spectra yields

〈St (ω)〉sp

∼ Nt I
2
0

∫ τmax

τmin

4τ

4 + ω2τ 2
Pmov

0 (t |τ )P (τ )dτ

= Nt I
2
0

∫ τmax

τmin

4τ

4 + ω2τ 2
(1 − e−t/τ )

(1 − β)τ−β

τ
1−β
max − τ

1−β
min

dτ. (11)

In the limit τmin � t � τmax we approximate the integration
interval to [0,∞). Then we find using MATHEMATICA

∫ ∞

0

4τ

4 + ω2τ 2
(1 − e−t/τ )τ−βdτ = −t2−β�(β − 2) 1F2

[
1;

3

2
− β

2
,2 − β

2
; − 1

16
t2ω2

]

−π21−βωβ−2 csc

(
πβ

2

)[
sec

(
πβ

2

)
cos

(
πβ + tω

2

)
− 1

]
, (12)

where 1F2[a; b1,b2; x] refers to the hypergeometric function.
Then with the limit ωt 	 1 we obtain the single-particle spec-
trum, conditioned on measurements of the moving processes

〈St (ω)〉sp � I 2
0 Aβω−2+βt−1+β (13)

with Aβ = 21−β (1 − β)π csc (πβ

2 )/�(β) for 0 < β < 1. The
conditional spectrum Eq. (13) thus provides the averaged
spectra per contributing unit.

As was mentioned, from all N units only a fraction
are contributing to the spectrum. The number of movers
is Nt ≈ N × �(β)(t/τmax)1−β when τmin � t � τmax. The
macroscopic measurement, therefore, is

S(ω)mac = Nt 〈St (ω)〉sp. (14)

The number of movers is increasing like t1−β while the
spectrum 〈St (ω)〉sp [Eq. (13)] is decreasing as tβ−1, and we
get from Eq. (14) a macroscopic spectrum

S(ω)mac � N (I0)2Bβω−2+β (τmax)β−1 (15)

with Bβ = 21−β (1 − β)π csc (πβ

2 ). This spectrum is found in a
range of frequencies as low as 1/t : there is no flattening effect,
and the macroscopic measurement appears stationary since it
is measurement-time-independent.

The macroscopic noise in Eq. (15) is proportional to N

(as expected) multiplied by (τmax)β−1, so unless one knows N

(which includes also noiseless idlers), we cannot determine
the upper cutoff time τmax, which remains nondetectable as
long as it is much larger than t . We comment that while both

032132-3



N. LEIBOVICH AND E. BARKAI PHYSICAL REVIEW E 96, 032132 (2017)

10
−4

10
−2

10
0

10
0

10
5

10
10

ω

S(
ω
) m

a
c

10
−4

10
−2

10
0

10
−2

10
0

10
2

10
4

ω

S
t(

ω
)

sp

(a)

(b)

FIG. 2. Simulation results for the macroscopic spectrum [panel
(a)] and the single-particle conditional spectrum [panel (b)]. We
use N = 105 particles all following the two-state telegraph process
with I0 = 1 and relaxation times {τj } drawn from the fat-tailed PDF
with β = 1/2, τmin = 1, τmax = 108, and K = 0. The spectrum was
measured at measurement times; t = 103 (yellow squares), t = 104

(cyan circles), t = 105 (green triangles), t = 106 (blue stars), and
t = 107 (pink crosses). The lines represent Eqs. (13) and (15).
The macroscopic approach appears stationary while the conditional
measurements reveal aged spectra.

N and τmax are nondetectable, N (τmax)β−1 is a measurable
quantity since the number of movers is Nt ∝ (t/τ̃N )1−β , where
τ̃N = τmaxN

1/(β−1) may, in principle, be measured.
In Fig. 2 we present the simulation results (symbols) and

analytic results (solid lines) for the two-state telegraph noise
processes. The characteristic time scale τ varies from one
realization to another following the PDF in Eq. (7) with β =
1/2, τmin = 1, and τmax = 108. We show the aging effect for
the single-particle spectrum: the spectrum is reduced as we
increase the measurement time, and the whole spectrum is
shifted to the red since the lowest measured frequency is of the
order of 1/t , in agreement with Eq. (13). Furthermore, finite-
time simulation results show that the macroscopic approach
appears stationary following Eq. (15).

It is rewarding that the superposition model, which is
probably the most well-known model of 1/f α noise, shows
aging if analyzed carefully. In contrast, when we measure
the macroscopic power spectrum, an apparently stationary
spectrum is found. This resolves the conflict between many
empirical results, which found a time-independent 1/f α spec-
trum (e.g., [2,4,5]), and the nonstationary nature of 1/f α noise.
Here, even though the macroscopic measured spectrum seems
stationary, it still has a finite power; see further discussion in
Sec. VII.

We note that the spectrum that is measured in the single-
particle level, i.e., Eq. (13), depends neither on τmin nor
τmax. The reason is simple: the PDF of the relaxation times,
P (τ ) ∼ τ−β , where 0 < β < 1, must have an upper bound for
convergence, while a lower cutoff is not necessary and can
go to zero. The measurement time t effectively serves as the
upper cutoff. This means that the nature of the distribution, a
heavy-tailed PDF, causes the measurement-time dependence

of Eq. (13) while the spectrum is independent of the inherent
cutoffs, τmin and τmax, of the relaxation-time distribution. In
Appendix A we discuss the cases in which the tail of P (τ ) is
“less heavy” in the sense that P (τ )τ decays to a constant or to
zero for large τ , i.e., P (τ ) = O(1/τ ).

A. Condition of K transitions

So far we defined the single-molecule conditional measure-
ment, based on the criterion of whether I (t) jumped at least
once from one level to another within the measurement time
window [0,t]. This conditional measurement is not unique,
and experimentally one may define other criteria; see further
discussion in Appendix C. However, the main effect, an
aging spectrum, is generally valid. For example, we define
a process as measured if the number of jumps between the
two states is more than K transitions, while a realization is
not measured if the number of its transitions is less than or
equal to K . In particular, the case K = 0 was considered in
the previous section. Then the probability of a realization with
a characteristic sojourn time τ to be conditionally measured is

Pmov
K (t |τ ) = 1 − e−t/τ

K∑
k=0

[t/τ ]k

k!
= 1 − �(1 + K,t/τ )

K!
(16)

and

N−1
t ≈ �(β + K)(t/τmax)1−β

K!
, (17)

where the limit τmin � t � τmax is taken. Here we obtain the
power spectrum for microscopic measurements,

〈St (ω)〉sp = Nt I
2
0

∫ τmax

τmin

4τ

4 + ω2τ 2

×
(

1 − �(1 + K,t/τ )

K!

)
(1 − β)τ−β

τ
1−β
max − τ

1−β
min

dτ,

(18)

and we recover the aging spectrum (13) with Aβ =
K!21−β(1 − β)π csc (πa

2 )/�(β + K) for 0 < β < 1, i.e.,

〈St (ω)〉sp ≈ I 2
0 21−β (1 − β)π csc

(πa

2

) K!

�(β + K)
tβ−1ωβ−2;

(19)

see Fig. 3. A detailed derivation is given in Appendix B. As
mentioned, here we take into consideration only units with
more than K transitions, where K � 1. Those realizations are
effectively units with τj shorter than t/K , hence the spectrum
has a natural cutoff at ωc ∼ K/t . This means that the spectrum
flattens when ω < ωc. This effect is unique to the conditional
spectrum and is not found for the macroscopic measurement
since the latter is not sensitive to the measurement condition
and it follows Eq. (15) as before. The relation between the
macroscopic spectrum and the conditional spectrum, Eq. (14),
holds for frequencies higher than the crossover frequency ωc

(see also Appendix B).

032132-4



CONDITIONAL 1/f α NOISE: FROM SINGLE . . . PHYSICAL REVIEW E 96, 032132 (2017)

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

10
4

ω

S
t(

ω
)

sp

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

10
4

ω

S
t
( ω

)
sp

K = 100

(a)

(b)

K = 10

FIG. 3. Single-particle conditional spectrum, using the same
parameters as in Fig. 2, however now altering the condition on
the number of transitions, K = 10 [panel (a)] and K = 100 [panel
(b)]. The aging effect is recovered, however now we have a cutoff
frequency ωc ∼ K/t below which we observe a flattening effect of
the spectrum. Solid lines represent Eq. (19).

IV. ORNSTEIN-UHLENBECK PROCESS

Our observation of the aging effect in the single-particle
approach with conditional measurements is not limited to
the two-state model. In the telegraph process in Sec. III,
we defined two populations via the number of transitions
between the states. In a real data set, the population can
split into other categories, and in some cases the distinction
between subsets of the populations is not obvious. For that
reason, we consider N overdamped oscillators in contact with
a thermal bath with temperature T . The process Ij (t) is the
position of the particle j , which is modeled with the Ornstein-
Uhlenbeck process İj = −(mω2

0/γj )Ij + η(t) [31]. η(t) is a
white Gaussian noise with 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), where
D = kBT /γ satisfies the fluctuation-dissipation relation. The
autocorrelation function of the j th particle is

〈Ij (t0 + t ′)Ij (t ′)〉 = kBT

mω2
0

exp(−t ′/τj ) (20)

with a relaxation time τj = γj/(mω2
0), which is drawn from the

mentioned PDF P (τ ) ∝ τ−β with 0 < β < 1. For a particle j ,
when t 	 τj , the spectrum of the process is Lorentzian since
then it is effectively stationary,

Sj (ω) = kBT

mω2
0

2τj

1 + ω2τ 2
j

. (21)

In the opposite limit, when t � τj , this j th spectrum is far
from Lorentzian and appears random due to the nonergodic
behavior on these time scales (see also Appendix C). Unlike the
two-state process, here we have two populations with distinct
nontrivial spectra, i.e., we do not have noiseless units.

We distinguish between two populations: the first set
contains realizations with τj < t , which apparently exhibit
Lorentzian spectra, and the second set contains realizations
with τj � t . The probability that a particle with a given
relaxation time τ is measured is:

Pmov(t |τ ) = 1 − �(τ − t), (22)
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FIG. 4. Simulation results for the Ornstein-Uhlenbeck process
with N = 104, kBT = 1, and mω2

0 = 1. The relaxation times are
fat-tailed distributed with β = 1/2, τmin = 1, and τmax = 106. The
measurement time of the spectrum was t = 103 (cyan circles),
t = 3162 (green crosses), and t = 104 (blue stars). The analytic
predictions Eqs. (23) are presented as solid lines. The conditional
measurements of spectra reveal an aging effect, while the macroscopic
approach obscures the nonstationarity.

where �(x) is the Heaviside function. As in the previous
model, the number of particles with Lorentzian spectra
increases with time, Nt ≈ N (t/τmax)1−β . Therefore, the mi-
croscopic and the macroscopic measured spectra present a
similar behavior to Eqs. (13) and (15) (respectively) with
Aβ = Bβ = (1 − β)π csc (πβ

2 ) and I 2
0 = kBT /(mω2

0), namely
we obtain

〈S(ω)〉sp ≈ kBT

mω2
0

(1 − β)π csc

(
πβ

2

)
tβ−1ωβ−2,

S(ω)mac ≈ N
kBT

mω2
0

(1 − β)π csc

(
πβ

2

)
τβ−1

max ωβ−2. (23)

In Fig. 4, we present the simulation results where the power
spectra of single particles (macroscopic samples) age (appear
stationary). Optimization of single-molecule measurements
and more advanced tools for distinguishing between popu-
lations are briefly discussed in Appendix C.

V. BLINKING QUANTUM DOT MODEL

So far we have considered two models in which the
underlying kinetics is stationary in the sense that at least in
principle, if we measure for an infinite time, the spectrum
of each particle is Lorentzian. Here we consider a stochastic
model of blinking quantum dots, which are nanocrystals
that emit light with intensity I (t) when interacting with a
continuous-wave laser field. The stream of photons emitted
blinks, and the process I (t) exhibits on-off intermittency,
with a power-law distribution of sojourn times in the on
and off states. The power spectrum of single nanocrystals,
measured one at a time, exhibits 1/f α fluctuations with
clear nonstationary effects [8,32,33]. Here we focus on two
unanswered questions: Do we observe the aging effect in
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macroscopic measurements? How do Smac(ω) and 〈St (ω)〉sp

differ?
To answer these questions, we define the following model.

The signal, namely the light intensity, I (t), takes two possible
values, either I (t) = I0 (state “on”) or I (t) = 0 (state “off”).
The blinking “on” ↔ “off” sequence, for a single dot,
is described by the set of “on” and “off” waiting times
(T on

1 ,T off
2 , . . . ). These sojourn times are statistically indepen-

dent, identically distributed random variables with a common
PDF ψ(τ ) ∝ τ−(1+β). This model is a variant of both the trap
model for dynamics in glasses [17,34,35] and the velocity
in the Lévy walk model [36]. In particular, [17] showed a
nonstationary effect of the power spectrum of models of glassy
dynamics, where the spectrum depends on the waiting time tw
defined below. In the blinking model, all the processes Ij (t) are
statistically identical, unlike the superposition model (Secs. III
and IV), where each unit has its own time scale associated with
it. In what follows, we assume 0 < β < 1, hence the average
waiting time diverges.

The N processes are initially, at time t = 0, in the state
“on.” We wait a long time tw during which many transitions
from “on” to “off” and vice versa take place. We then measure
the spectrum by following the process in the time window
[tw,tw + t], so t is the measurement time. Also here we get
two populations: a fraction of processes are jumping between
the two states in the time window of observation (the movers),
while other processes are stuck. In the single realization level,
the idler’s spectrum is zero. The movers are recorded in single-
molecule experiments, and the conditional spectrum when t �
tw reads [37]

〈St (ω)〉sp � I 2
0

2
�(2 − β) cos

(
βπ

2

)
tβ−1ωβ−2. (24)

The spectrum ages with the measurement time t and is
independent of the much longer waiting time tw. To analyze
the macroscopic measurement, we use a known formula for
the probability to make at least one move in the time interval
[tw,tw + t] [26], thus the average number of movers in the
measured interval is

Nt � N
sin πβ

π (1 − β)

(
t

tw

)1−β

(25)

when t/tw � 1. Here as we increase tw, leaving t fixed, we
get fewer and fewer moving processes. This is expected since
the longer tw is, more and more processes get localized in one
state in the observation window [38]. Using Eq. (14) we get a
macroscopic spectrum that is measurement-time-independent,

S(ω)mac ∼ I 2
0 N

β cos
(

πβ

2

)
2�(1 + β)

(tw)β−1ω−2+β. (26)

Essentially this is similar to the superposition model, when we
replace τmax with tw, however the latter is a control parameter,
together with the finite measurement time, in the experimental
protocol. In Fig. 5, we show the simulation (symbols) and
analytic (lines) results of both single-particle spectra and
macroscopic ones, where the distinction is made visual.

To conclude, in Eq. (26) we see an aging spectrum in the
spirit of the result of [17] in the sense that the spectrum depends
on tw. Equation (24) describes single-particle measurements of
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FIG. 5. Simulation results for the blinking-quantum-dot model
with β = 1/2, N = 104, I0 = 1, and tw = 106 at measurement time
t = 103 (red squares), t = 104 (pink crosses), and t = 105 (purple
dots). The lines represent Eqs. (24) and (26). The conditional
spectrum ages, unlike the macroscopic measurements that appear
stationary.

the spectrum, and of course there is no contradiction between
the two.

VI. INTERMITTENT MAP

The essential difference between the method of measure-
ments, i.e., the macroscopic and single-particle spectra, is not
limited to stochastic processes. We have further extended the
analysis to deterministic models, generating an intermittent
signal from a Pomeau-Manneville type of map [39,40], and
obtaining the spectra.

We consider a deterministic signal generated by the follow-
ing map:

It+1 = M(It ), (27)

where t is a discrete time with unit time steps, and the map is
given by

M(It ) =

⎧⎪⎨
⎪⎩

It + (aIt )1+1/β, 0 � It < ξ1,

It−ξ1

ξ2−ξ1
, ξ1 � It � ξ2,

It − [a(1 − It )]1+1/β, ξ2 < It � 1.

(28)
The signal is bounded, 0 < It < 1, and It is a function of a
discrete time t . This map has two unstable fixed points, at
It = 0 and 1. The discontinuities ξ1 and ξ2 are determined by
ξ1 + (aξ1)1+1/β = 1 and ξ2 − [a(1 − ξ2)]1+1/β = 0. The initial
condition is uniformly distributed, and the process evolves via
Eq. (28). Then we find for each realization its power spectrum
corresponding to the signal recorded in the interval [tw,tw + t].

The signal It exhibits a noisy on-off intermittency, due to
the unstable fixed points. It is known [41,42] that the PDF of
the sojourn times in the vicinity of each of the unstable fixed
points is ψ(τ ) ∼ τ−1−β , and that renewal theory discussed
in Sec. V describes many properties of this deterministic
process [41,42]. We distinguish between movers and idlers by
the rule that if a signal crosses the threshold, e.g., I ∗ = 1/2, at
least once in the time interval [tw,tw + t], it is considered
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FIG. 6. The deterministic signal It [panel (a), blue] generated
from the Pomeau-Manneville map (28) with a = 1 and β = 1/2.
A realization is considered as a mover where It crosses the
threshold I ∗ = 1

2 (represented in a dashed line) at least once in the
measurement-time period. The signal It is modeled with a two-state
stochastic process Ĩ (t) [panel (b), pink].

a mover (see Fig. 6). We record N = 103 realizations for
averaging over the initial condition. In Fig. 7 we present
the simulation results of the spectrum corresponding to the
deterministic signals It . The macroscopic spectrum appears
nonstationary while the conditional spectrum presents aging.
This deterministic map is different, of course, if compared
with the idealized stochastic on-off process discussed in the
previous section; see Sec. V. Still the predictions of the
simple stochastic two-state model Eqs. (24) and (26) presented
as black lines in Fig. 7 seem to capture the main effects
of aging.
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FIG. 7. A comparison between macroscopic (a) and single-
particle measured spectrum (b) in the two-unstable-fixed points
deterministic map (28). The waiting time is tw = 106, β = 0.5, and
N = 103 for three measurement times: t = 103 (green), t = 104

(pink), and t = 105 (blue). The black lines represent Eqs. (25)
and (26).

VII. DISCUSSION

A. Convergence of the total power

The appearance of 1/f α noise with α � 1 seems at first
glance unphysical due to the divergences

∫∞
1/t

ω−αdω = ∞
when t → ∞. For an ergodic or a bounded process, the
total power must be finite for the following reason: the
total power when t → ∞ is

∫∞
1/t

S(ω)dω ∝ ∫ t

0 I (t ′)2dt ′/t

from Parseval’s identity, therefore for a stationary ergodic
process

∫ t

0 I (t ′)2dt ′/t = 〈I 2〉, which is finite. Furthermore, for
a bounded process, i.e., |I (t)| � Imax, regardless of whether it
is ergodic or not,

∫ t

0 I (t ′)2dt ′/t � I 2
max, which is finite as well.

This contradiction between the finite total power and the 1/f α

measurements is sometimes called the “infrared catastrophe”
or the “1/f paradox,” e.g., [11,13,14], as was mentioned in
the Introduction.

The time-dependent 1/f α noise solves the contradiction
between the vastly measured 1/f α noise and the convergence
of the total power [16]. In this paper, we have found that the
macroscopic measured spectrum appears stationary, i.e., it is
time-independent. For example, consider the random telegraph
model presented in Sec. III. This model is bounded, Imax = I0,
and its macroscopic measured spectrum is time independent,
S(ω)mac ∝ N (I0)2ω−2+βτ

−1+β
max , following Eq. (15). Neverthe-

less, it still poses a finite power since∫ ∞

1/t

S(ω)macdω ∝ N (I0)2
∫ ∞

1/t

ω−2+βτ−1+β
max dω

= N (I0)2

(
t

τmax

)1−β

� N (I0)2 (29)

in the limit t � τmax. In the opposite limit, t 	 τmax, the
spectrum bends at a frequency of order of τ−1

max and there
is no low-frequency divergence anyway. A similar result,∫∞

1/t
dω S(ω)mac � N (I0)2, is given for the quantum dot model

(Sec. V) when we replace τmax with tw, and t � tw. Thus
we conclude that for both microscopic and macroscopic
measurements, the “low-frequency paradox” is solved.

B. Superposition model

We now discuss the problematic (in our opinion) analysis
of 1/f α noise that we have found in the literature. As was
mentioned, a widely used model that generates 1/f α noise,
originally suggested in the late 1930s by Bernamont in the
context of resistance fluctuations in thin films, is based on the
superposition of many Lorentzian spectra [2,5,29,30]. This is
also called the distributed kinetics approach to 1/f α noise,
and it is probably the most well-known explanation of the
phenomenon. As we consider in Secs. III and IV, the spectrum
of the unit j is a measurement-time-independent Lorentzian

Sj (ω) = 〈I 2〉 2τj

1 + ω2(τj )2
(30)

with the time scale τj varying from one unit j to another with
a common PDF,

P (τ ) = N τ−β, (31)

with 0 < β < 1 and τmin < τ < τmax. Then the normaliza-
tion constant is N = (1 − β)[(τmax)1−β − (τmin)1−β]−1. By
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averaging over the spectrum Eq. (30) we get an equation that
serves as a starting point to many articles in the field [1,2,5],

〈S(ω)〉 = N 〈I 2〉
∫ τmax

τmin

2τ

1 + ω2τ 2
τ−βdτ. (32)

This formula must be used with care, since the spectrum
Eq. (32) depends on τmax, which is unphysical in the context
of 1/f α fluctuations, for two reasons. It is clear that we must
consider two cases, the first being when the measurement time
t is shorter than τmax. This is a typical situation, for example,
in glassy systems in which τmax was estimated to be of the
order of the universe’s age [17,18]. In this case, Eq. (32) does
not describe either macroscopic or microscopic spectra, since
it depends on the cutoff time τmax, which is not detectable on
the time scale of the experiment. The second option, t > τmax,
is an experimental possibility, at least in principle, but if this
holds we will not detect 1/f α noise at low frequencies [43]. In
other words, at frequencies of the order of 1/t , one observes
a flat spectrum in disagreement with the very basic definition
of the phenomenon. Indeed, many have searched for the bend
down of 1/f α noise, mostly unsuccessfully; see, e.g., [9,10].

Therefore, the power spectrum Eq. (32) describes neither
macroscopic nor microscopic measurements. On the one
hand, Eq. (32) does not depend on the ensemble size N ,
and it cannot be considered as “macroscopic.” On the other
hand, Eq. (32) does not represent a microscopic measurement
since it is independent of the measurement time t ; see
Eqs. (13), (19), (23), and (24).

C. A note on conditional measurements

Today, with advanced measurement techniques, one is able
to record a signal from a single molecule or a nano-object;
see, e.g., [44,45]. Therefore, the power spectrum of a micro-
scopic unit, and further the conditional spectrum, becomes
measurable. In the context of measurement of diffusion of
single molecules in the live cell, conditional measurements are
routinely performed. In this situation, one detects mixtures of
spatially diffusing tracers and localized trapped particles, and
the diffusivity is conditionally measured, i.e., averaged with
respect to the moving subpopulation [38,46,47]. As we have
shown here in the context of the 1/f α noise, these conditional
measurements reveal an aging effect in basic models of 1/f α

noise.

VIII. SUMMARY AND CONCLUSIONS

We have shown theoretically that an aging effect of the
power spectrum is found in single-particle experiments, where
measurements are conditional. However, the aging is totally
obscured by the ensemble averaging, and it is not detected
by macroscopic approaches. Our results are valid both for
processes that exhibit stationarity at infinite time (e.g., random
telegraph noise) and those that are essentially nonstationary
(e.g., the quantum dot model). Certain aspects of the condition
induce nonuniversal features, e.g., the cutoff ωc = K/t [see
Eq. (19)], while other features such as an aging spectrum are
robust and in that sense universal. Our work is timely since
today, with the advance of single molecule measurements,
the distinction between the two types of measurements has

become important. Thus conditional measurements, with their
peculiar distinction from macroscopic ensemble averages,
must be considered as a separate class of measurement
protocol. We hope that this solves one of the oldest conflicts
in nonequilibrium statistical mechanics. The nonstationary
scenario for 1/f α noise, which was clearly overlooked in many
reviews in the field, is a valid description of the most basic
models of the field.

ACKNOWLEDGMENT

We thank the Israel Science Foundation for funding.

APPENDIX A: SUPERIMPOSED LORENTZIAN SPECTRA
WITH OTHER RELAXATION-TIME PDF P(τ )

1. Derivation for β = 1

β = 1 is an important special case, since it gives exactly
1/f noise. When β = 1 we find the normalization constant
N = [ln(τmax) − ln(τmin)]−1. Then the fraction of moving
realizations is

N−1
t =

∫ τmax

τmin

(1 − e−t/τ )
τ−1

ln(τmax) − ln(τmin)
dτ

≈ ln(t/τmin)

ln(τmax/τmin)
, (A1)

when τmin � t � τmax. The single-particle spectrum, there-
fore, is given by

〈S(ω)〉sp = I 2
0

∫ τmax

τmin

4τ

4 + ω2τ 2
(1 − e−t/τ )

τ−1

ln(t/τmin)
dτ

≈ I 2
0 π

ln(t/τmin)ω
, (A2)

and the macroscopic spectra read

S(ω)max ≈ N (I0)2π

ln(τmax/τmin)ω
. (A3)

We conclude that when β = 1, the spectrum depends on both
bounds—upper and lower—of the relaxation times.

2. Discussion about the case in which 1 < β < 2 and other
relaxation-time distributions

When 0 < β < 1 we find that the low relaxation-time
cutoff, τmin, does not affect the asymptotic results. This,
however, would not be the case in which 1 < β < 2. We
assume a fat-tailed relaxation-time distribution with P (τ ) ≈
[(β − 1)/τ 1−β

min ]τ−β , where the limit τmin � τ � τmax is taken.
The probability that a realization with a relaxation time τ

moves in the measurement interval [0,t] is Pmov
0 (t |τ ) = 1 −

exp(−t/τ ). Then the normalized distribution of the measured
τ is P (τ )Pmov

0 (t |τ )Nt , where

N−1
t =

∫ τmax

τmin

dτ Pmov
0 (t |τ )P (τ )

≈
∫ τmax

τmin

dτ (1 − e−t/τ )
β − 1

τ
1−β
min

τ−β τmin�t−→ 1. (A4)

032132-8



CONDITIONAL 1/f α NOISE: FROM SINGLE . . . PHYSICAL REVIEW E 96, 032132 (2017)

That means that the fraction of the measured particles
converges to 1, i.e., all particles are measured. Therefore, we
obtain

〈S(ω)〉sp ≈ I 2
0 21−βπ csc

(
πβ

2

)
τβ−1

min ωβ−2, (A5)

which appears stationary. The intuitive explanation is the
following. The relaxation times PDF P (τ ) ∝ τ−β decay
rapidly at long τ , and the fraction of units with long relaxation
times is almost zero. Then the contribution to the spectrum
from realizations with long relaxation times does not affect
the spectra, and a finite measurement time will not change the
measured spectra.

A stationary conditional spectrum is also found when the
relaxation-time distribution decays faster than 1/τ , i.e., when
P (τ ) = o(1/τ ), which means that limτ→t− P (τ )τ → 0. For
example, P (τ ) follows a Gaussian distribution or decays
exponentially.

APPENDIX B: CONDITION OF K TRANSITIONS

We consider a blinking process that is defined by a two-
state signal switching between I (t) = +I0 and I (t) = −I0.
The sojourn times in each state are independent identically
exponentially distributed random variables with characteristic
mean τj for the j th particle. Thus, for a given unit, we draw
the random waiting time T j

1 from the mentioned exponential
distribution; the unit is in state +I0 in the interval [0,T j

1 ).
Then we generate T j

2 and renew the process by switching to

state −I0, and so on. Then for a realization j the process is
defined by the array of random variables {T j

1 ,T j

2 ,T j

3 , . . .}. As
mentioned in the text, for unit j the mean of the variables {T j },
τj , is fixed, and it varies from one unit to the other.

The stationary correlation function of realization j is

〈Ij (t)Ij (t + t ′)〉 = I 2
0 exp(−2t ′/τj ), (B1)

where the relaxation time is τj . The corresponding spectrum
is obtained from the Wiener-Khinchin theorem

Sj (ω) = I 2
0

4τj

4 + τ 2
j ω2

. (B2)

In our model, the mean sojourn times {τj } are identical
independent distributed random variables with probability
density function

P (τ ) = N τ−β, τmin < τ < τmax (B3)

with normalization constant N = (1 − β)[τ 1−β
max − τ

1−β
min ]−1,

where 0 < β < 1.
The conditional microscopic measurement includes only

realizations that exhibit more than K transitions in the time
interval [0,t]. The probability of a given realization with mean
waiting time τ to be measured is found using the Poisson
distribution

Pmov
K (t |τ ) = 1 −

K∑
k=0

e−t/τ [t/τ ]k

k!
, (B4)

where in the case K = 0 we find Pmov
0 (t |τ ) = 1 − exp[−t/τ ]

as is given in Eq. (9). Then the normalization of the distribution
of the active particles’ relaxation times reads

N−1
t =

∫ τmax

τmin

(
1 −

K∑
k=0

e−t/τ (t/τ )k

k!

)
(1 − β)

τ
1−β
max − τ

1−β
min

τ−βdτ = 1 −
K∑

k=0

(1 − β)tk

k!
(
τ

1−β
max − τ

1−β
min

) ∫ τmax

τmin

e−t/τ τ−β−kdτ

= 1 −
K∑

k=0

(1 − β)t1−β

k!
(
τ

1−β
max − τ

1−β
min

)[−�

(
β + k − 1,

t

τmin

)
+ �

(
β + k − 1,

t

τmax

)]
. (B5)

In the limit of τmin � t � τmax we find

N−1
t ≈ 1 −

K∑
k=0

(1 − β)t1−β

k!τ 1−β
max

[
�(β + k − 1) + tβ+k−1

(1 − β − k)τβ+k−1
max

]

= 1 − (1 − β)

(
t

τmax

)1−β K∑
k=0

�(β + k − 1)

k!
−

K∑
k=0

(t/τmax)k(1 − β)

k!(1 − β − k)

= 1 + �(K + β)

K!

(
t

τmax

)1−β

− 1 + O

(
t

τmax

)
, (B6)

where we use the relation
∑K

k=0 xk/k! = ex�(K + 1,x)/K!, and �(a,z) = ∫∞
z

ta−1e−t dt is the incomplete Gamma function.
Therefore, in the limit t � τmax we obtain

N−1
t ≈ �(K + β)

K!

(
t

τmax

)1−β

. (B7)

When K = 0 we recover N−1
t ≈ �(β)(t/τmax)1−β . Following Eq. (18), the conditional microscopic spectrum is thus

〈St (ω)〉sp ≈ I 2
0

∫ τmax

τmin

4τ

4 + ω2τ 2

(
1 − �

(
1 + K, t

τ

)
K!

)
(1 − β)τ−β

N−1
t

(
τ

1−β
max − τ

1−β
min

)dτ. (B8)
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Substitute Nt into that and expand the integration interval to [0,∞), where the limit τmin � t � τmax is considered,

〈St (ω)〉sp ≈ I 2
0

∫ ∞

0

4τ

4 + ω2τ 2

(
1 − �

(
1 + K, t

τ

)
K!

)
(1 − β)K!

�(K + β)t1−β
τ−βdτ. (B9)

Integrating using MATHEMATICA gives

〈St (ω)〉sp ≈ I 2
0

(1 − β)t

�(K + β)

⎧⎨
⎩

�(β + K − 1) 2F3

[
1,1 − β

2 ; 2 − β

2 ,− β

2 − K
2 + 1,− β

2 − K
2 + 3

2 ; − 1
16 (ωt)2

]
2 − β

− π2−β−K (ωt)β+K−1 csc
[

1
2π (β + K − 1)

]
1F2

[
K
2 + 1

2 ; 1
2 ,K

2 + 3
2 ; − 1

16 (ωt)2
]

K + 1

+ π2−β−K−1(ωt)β+K sec
[

1
2π (β + K − 1)

]
1F2

[
K
2 + 1; 3

2 ,K
2 + 2; − 1

16 (ωt)2
]

K + 2

}
, (B10)

and expanding for ωt 	 1 yields

〈St (ω)〉sp ≈ I 2
0 21−β (1 − β)π csc

(
πβ

2

)
K!

�(K + β)
tβ−1ωβ−2.

(B11)

This result is given in Eq. (13) for K = 0 with Aβ = 21−β (1 −
β)π csc (πβ/2)/�(β). More generally for K > 0 we find
Aβ = 21−β (1 − β)π csc (πβ/2)�(K + 1)/�(K + β). We use
these results in Fig. 2 (K = 0) and Fig. 3 (K > 0).

Mathematically taking the opposite limit ωt � 1 of
Eq. (B10) gives, when K � 1,

〈S(ωt)〉sp ≈ I 2
0

t(1 − β)

(2 − β)(K + β − 1)
, (B12)

which is frequency-independent, hence the spectrum bends
from the 1/f α behavior; see Fig. 3. The crossover frequency ωc

is the frequency for which expression (B11) is equal to (B12)
and is given by

ωc ∼ 1

t

(
�(K + 1)π csc (βπ/2)21−β (2 − β)

�(K + β − 1)

) 1
2−β

−→
K	1

2K

t
[�(β/2)�(2 − β/2)]

1
2−β . (B13)

We conclude that the conditional spectrum reveals a flattening
of the 1/f α behavior at frequencies lower than ωc; see the
discussion and Fig. 3.

The macroscopic spectrum does not depend on the mea-
surement condition and is given by

S(ω)mac ≈ N (I0)221−β (1 − β)π csc

(
πβ

2

)
(τmax)β−1ωβ−2.

(B14)

The relation between the macroscopic spectrum to the condi-
tional spectrum, S(ω)max = Nt 〈St (ω)〉sp, holds for frequencies
higher than the crossover frequency ωc.

APPENDIX C: DATA ANALYSIS IN THE
ORNSTEIN-UHLENBECK PROCESS

In Sec. IV and in the simulation results presented in
Fig. 4, we use the following question to separate between
two populations: is the relaxation time shorter than the
measurement time or not? This method has the advantage
that the number of particles in the measured set is easily
calculated. Then the microscopic spectra can be quantified,
and a comparison between simulation results and Eq. (23) is
presented in Fig. 4. However, in an experimental situation those
relaxation times {τj } are a priori unknown. In the following,
we suggest two other methods that are more practical to use in
an experimental scenario.

One criterion to distinguish between the populations is
based on whether the variance of I (t) on the time scale of the
measurement t is roughly given by the equipartition theorem.
One may argue that particles that do not obey this rule have not
reached equilibrium until the measurement time t . This thermal
criterion, which may serve as a benchmark for conditioning
the spectrum, is not unique.

A second procedure is based on the spectrum itself and
hence is more detailed. Each individual realization’s spectrum
Sj (ω) is fitted to a Lorentzian shape gL(ω) and to a spectrum of
a Brownian particle (this is reasonable since the particles with
large τ are freely diffusing) gB(ω) with a fitting parameter τ̂j ,

gL(ω) = 2τ̂ L
j

1 + ω2
(
τ̂ L
j

)2 , gB(ω) = (
τ̂ B
j

)−1
ω−2. (C1)

Confidence Interval: The first method for classification
relies on the confidence interval. For each fitting model, gL and
gB , we get the fitting parameter τ̂ L

j corresponding to model gL

and τ̂ B
j corresponding to gB , and with 95% confidence in an

interval (aL,bL) and (aB,bB), respectively,

General model : gL(ω) gB(ω)

Coefficients (with 95% confidence bounds) : τ̂ L
j (aL,bL) τ̂ B

j (aB,bB )
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FIG. 8. The simulation results for the Ornstein-Uhlenbeck pro-
cess. In panel (a) we present the macroscopic measured spectra at
three measurement times: t = 103 (cyan squares), t = 3162 (green
crosses), and t = 104 (blue dots). The black line represents the
analytic prediction Eq. (23). In panels (b) and (c) we present the
microscopic measured spectra, where we use the spectrum-based
method for classification. The main result, the aging effect, is clearly
visible in both classification methods.

We characterize the goodness of the Lorentzian fit by the
width of the confidence interval ciL = |bL − aL|/τ̂L

j , and sim-
ilarly for the Brownian spectrum with ciB = |bB − aB |/τ̂B

j .
We classify a realization as Lorentzian when ciL < ciB and as
Brownian otherwise.

We note that such a classification method needs to be used
with care since the regression hypothesis is not linear, and a
nonconvex cost function may appear. In that case, the fitted
parameter τ̂ may be affected by the initial searching point.
Here, a deeper analysis is needed, and we leave it for a future
publication.

Coefficient of Determination: A second method to
determine the goodness of the fitting model is related to the
coefficient of determination,

R2 = 1 −
∑n

i=1[Sj (ωi) − g(ωi)]2∑n
i=1[Sj (ωi) − Sj ]2

, (C2)

where Sj = ∑n
i=1 Sj (ωi)/n, and n is the number of observed

frequencies. R2 ∈ [0,1], where R2 is close to 1, means a
reasonably good fitting. For a realization j we accept the
Lorentzian assumption where R2

L > R2
B and we reject this

assumption otherwise.
In Fig. 8 we present the simulation results for the macro-

scopic and microscopic spectra with the two classification
methods suggested above. The macroscopic spectra, of course,
do not depend on the measurement criteria and are left

unchanged (upper panel). For the single-particle spectrum,
both criteria reveal an aged spectrum (middle and lower
panels), which is clearly visible in Fig. 8. The conclusion is
that while the conditional spectrum is a rather general concept
that depends on the choice of the experimentalists, the main
conclusions in the text are still robust.

APPENDIX D: BLINKING QUANTUM DOT MODEL

We consider a two-state process, i.e., an “on” and “off”
sequence, where the waiting times at each state are fat-tailed
distributed with PDF P (τ ) ∼ τ−1−β . The process switches to
the other state after a sojourn time. Unlike the two-state model
with exponential waiting times, here all units are statistically
identical. However, none of them is stationary since 0 < β < 1
implies the divergence of the mean sojourn time.

The macroscopic spectrum measured in a time interval
[tw,tw + t] for this two-state signal is [37]

S(ω)mac ≈ NI 2
0

cos(πβ/2)

2�(1 + β)
�β

(
tw

t

)
tβ−1ωβ−2, (D1)

where the aging factor is �β(x) = (1 + x)β − xβ . Therefore,
in the limit tw 	 t we recover Eq. (26) in the text,

S(ω)mac ≈ NI 2
0
β cos(πβ/2)

2�(1 + β)
tβ−1
w ωβ−2. (D2)

The probability of at least one transition in the measurement-
time interval [tw,tw + t] is [26]

P mov
0 (t |tw) = sin(πβ)

π (1 − β)

(
t

tw

)1−β

2F1

[
1,1−β; 2−β;− t

tw

]

−→
t�tw

sin(πβ)

π (1 − β)

(
t

tw

)1−β

, (D3)

and Eq. (24) in the main text is recovered.

APPENDIX E: PARALLEL MEASUREMENTS

We measured the spectrum for each realization, Sj (ω).
These spectra are recorded simultaneously in parallel. Then
the macroscopic spectrum is

S(ω)mac =
N∑

j=1

Sj (t,ω). (E1)

However, in some experimental cases, the macroscopic spec-
trum is measured via the macroscopic signal,

S̃(ω)mac = 1

t

∣∣∣∣
∫ t

0
I (t ′)eıωt ′dt ′

∣∣∣∣
2

= 2

t

∫ t

0

∫ t−t1

0
I (t1 + τ )I (t1) cos(ωτ )dτ dt1, (E2)

where the macroscopic signal is I (t) = ∑
j Ij (t). Therefore,

S̃(ω)mac = 2

t

∫ t

0

∫ t−t1

0

⎛
⎝∑

j

Ij (t1 + τ )

⎞
⎠
⎛
⎝∑

j ′
Ij ′ (t1)

⎞
⎠ cos(ωτ )dτ dt1

= 2

t

∫ t

0

∫ t−t1

0

∑
j

Ij (t1 + τ )Ij (t1) cos(ωτ )dτ dt1

032132-11



N. LEIBOVICH AND E. BARKAI PHYSICAL REVIEW E 96, 032132 (2017)

10
−3

10
−2

10
−1

10
0

10
0

10
5

ω

S(
ω
) m

a
c

10
−3

10
−2

10
−1

10
0

10
0

10
5

ω

S(
ω
) m

a
c

(a)

(b)

10
−3

10
−2

10
−1

10
0

10
0

10
5

ω

S(
ω
) m

a
c

10
−3

10
−2

10
−1

10
0

10
0

10
5

ω

S(
ω
) m

a
c

(c)

(d)

FIG. 9. (a),(c) Parallel measured power spectrum (green line) vs the total spectrum corresponds to the macroscopic signal (blue line) in
two processes; the two-state random telegraph noise with β = 1/2, τmin = 1, τmax = 105, N = 104, and t = 104 [panels (a) and (b)] and the
Ornstein-Uhlenbeck process with the same parameters [panels (c) and (d)]. (b),(d) The smoothed total spectrum (red stars) vs the paralleled
measured spectrum (green line) shows that the parallel measurements provide a reasonable approximated measuring method.

+ 2

t

∫ t

0

∫ t−t1

0

∑
j

∑
j ′ �=j

Ij (t1 + τ )Ij ′ (t1) cos(ωτ )dτ dt1 =

=
N∑

j=1

Sj (t,ω) + 2

t

∫ t

0

∫ t−t1

0

N∑
j=1

∑
j ′ �=j

Ij (t1 + τ )Ij ′ (t1) cos(ωτ )dτ dt1. (E3)

Now, we claim that the second term on average is small, since
the realizations are mutually independent with zero mean,〈

2

t

∫ t

0

∫ t−t1

0

∑
j

∑
j ′ �=j

Ij (t1 + τ )Ij ′(t1) cos(ωτ )dτ dt1

〉
= 0.

(E4)

In Fig. 9 we present the parallel measured spectrum versus
the spectrum corresponding to the macroscopic signal in the
random-telegraph-noise model and in the Ornstein-Uhlenbeck
process. For the simulation we use N = 104 particles, P (τ ) ∝
τ−1/2, where τ ∈ [1,105] and the measurement time is t = 104.
The spectrum corresponding to the total macroscopic signal
I (t) is somewhat noisy (represented by a blue line), hence
we smooth it with the moving average with logarithmic-width
windows (red stars). The summation of the parallel measured
spectra is represented by a green line. We conclude that the
parallel measuring of the spectrum presents an agreement with
the spectrum related to the total signal generated by the system.

APPENDIX F: SPECTRUM’S CONTRIBUTION
FROM NEGLECTED PARTICLES

1. Two-state model

A particle is considered trapped when its physical quantity
I (t) is a constant during the measurement period. In such a
case, the corresponding sample spectrum is

St (ω) = I 2
0

t

∣∣∣∣
∫ t

0
exp(−ıωt ′)dt ′

∣∣∣∣
2

= I 2
0

4 sin2(ωt/2)

ω2t
. (F1)

St (ω) vanishes at the natural frequencies, ωn = 2πn/t , for
integer n.

2. Ornstein-Uhlenbeck process

In the two-state model, we consider a particle as trapped
when I (t) = const over the measurement interval. For the
Ornstein-Uhlenbeck process, one needs to determine whether
a given particle is trapped or not. Generally, a trapped particle
is consider when the friction force is very strong. In that
case, when τ is very small, the process is stationary and the
spectrum is shown to be Lorentzian. In the other limit, for very
weak friction force, i.e., long relaxation time, the particle is
nearly diffusive, since it is not affected by the friction. The
corresponding power spectrum is that of the Brownian noise,
i.e., Sj (ω) ∼ ω−2, with a prefactor that is proportional to the
diffusion constant D = kBT /mω2

0τj .

3. Blinking quantum dot with additional white noise

As was mentioned, a constant signal in the time interval
(tw,tw + t) has no contribution to the measured spectrum in
natural frequencies since∣∣∣∣

∫ tw+t

tw

eıωt ′dt ′
∣∣∣∣
2

=
[

1 − cos(ωt)

ω2/2

]
ω=2πn/t

= 0. (F2)

In that case, the trapped particles’ spectrum is zero, and thus
it cannot be detected. The addition of white (thermal) noise in
the process, 〈S(ω)〉th = σ 2, is reflected in the spectrum as

Stw (ω)new
mac = Stw (ω)mac + N〈S(ω)〉th, (F3)
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FIG. 10. The corresponding spectra of five blinking quantum
dots. The two particles’ spectra types are clearly observed; trapped
particles exhibit white noise (green, blue, cyan) vs the nontrapped par-
ticles with 1/f β noise (red, pink). Notice that differentiation between
the two populations is manifest in sufficiently low frequencies, where
in higher frequencies all the spectra are observed in a similar order of
magnitude. For that reason, detecting the nonfrozen particles requires
a long measurement time (corresponding to low frequencies).

where N is the number of molecules. The trapped particles
generate white noise only, while the nontrapped particles
exhibit 1/f α noise. Hence, one can distinguish between the
two sets by their frequency-dependent spectra: constant spectra
for the trapped particles versus power-law decay for the
nontrapped ones. We illustrate this idea by presenting raw
simulated data of five realizations of the blinking quantum
dot model with additive white Gaussian noise with zero mean
and variance σ 2 = 0.05, with α = 0.5, tw = 105, and t = 104

(see Fig. 10). The spectrum was calculated with the standard
MATLAB fast Fourier transform function. In that case, we
sort the particles into two types—trapped and nontrapped—
without knowing whether the particle crossed the threshold or
not. In fact, this concept of using the spectrum’s frequency
dependence may apply to a blinking quantum dot with strong
white noise (i.e., large σ 2).

4. Deterministic intermittent map

Any measurement device has a minimum detection power,
hence particles with lower power are undetectable. In the
deterministic map model, we find that a particle whose signal
It does not cross the threshold I ∗ = 0.5 exhibits very low
power. A justification of this statement is illustrated in Fig. 11,
where clearly the trapped particles exhibit very low power

ω

S
t w

(ω
)

ω

S
t w

(ω
)

FIG. 11. The spectrum for the deterministic intermittent map
with α = 0.5, waiting time tw = 106, and measurement time t = 105.
In panel (a) we present the single-particle measurements (red line)
and its 1/f β noise prediction Eq. (24) (black curve). The blue line
represents the averaged spectrum of the trapped particles (i.e., the
particles that do not cross the threshold). In panel (b) five realizations
of the spectrum are presented. The trapped particles (four bottom
realizations) exhibit significantly low power related to the nontrapped
particle (upper blue curve).

(related to the nontrapped particles). We present (bottom panel
in Fig. 11) five realizations of the spectrum. In that case, where
the minimal detection power is around 10−5, realizations with
lower power are undetectable.

5. Classification

Following Appendix C and the current appendix, we
claim that distinguishing between two particles’ populations—
trapped and nontrapped—may not be trivial and is based on
two main aspects. The first is the magnitude comparison of
the spectra, where a trapped particle exhibits small amplitude
in comparison to the nontrapped particles. In that case, the
sensitivity threshold of the measurement device effectively
determines which particle is detectable, i.e., if its correspond-
ing power is smaller than a certain value, it cannot be detected.
The second aspect of the differentiation between the particles’
sets is the spectrum’s frequency dependence. For example,
we assume that each particle also has (thermal) white noise.
In that case, a localized particle may produce power at the
same order of magnitude as the nontrapped power. However,
the trapped particle exhibits only the white noise, while a
nontrapped particle provides 1/f α noise. The latter gives more
power at lower frequencies while the white noise spectrum
is simply a constant. Therefore, we find that two criteria
used to distinguish between the two sets—the magnitude and
the frequency dependence of the spectrum—both eventually
present two sides of the same coin.

[1] A. Van Der Ziel, Physica 16, 359 (1950).
[2] P. Dutta and P. Horn, Rev. Mod. Phys. 53, 497 (1981).

[3] M. S. Keshner, Proc. IEEE 70, 212 (1982).
[4] M. Weissman, Rev. Mod. Phys. 60, 537 (1988).

032132-13

https://doi.org/10.1016/0031-8914(50)90078-4
https://doi.org/10.1016/0031-8914(50)90078-4
https://doi.org/10.1016/0031-8914(50)90078-4
https://doi.org/10.1016/0031-8914(50)90078-4
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1109/PROC.1982.12282
https://doi.org/10.1109/PROC.1982.12282
https://doi.org/10.1109/PROC.1982.12282
https://doi.org/10.1109/PROC.1982.12282
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/RevModPhys.60.537


N. LEIBOVICH AND E. BARKAI PHYSICAL REVIEW E 96, 032132 (2017)

[5] F. Hooge, T. Kleinpenning, and L. Vandamme, Rep. Prog. Phys.
44, 479 (1981).

[6] L. Silvestri, L. Fronzoni, P. Grigolini, and P. Allegrini, Phys.
Rev. Lett. 102, 014502 (2009).

[7] J. Herault, F. Pétrélis, and S. Fauve, Europhys. Lett. 111, 44002
(2015).

[8] S. Sadegh, E. Barkai, and D. Krapf, New J. Phys. 16, 113054
(2014).

[9] M. Caloyannides, J. Appl. Phys. 45, 307 (1974).
[10] B. B. Mandelbrot and J. R. Wallis, Water Res. 5, 321 (1969).
[11] V. Solo, SIAM J. Appl. Math. 52, 270 (1992).
[12] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:

Nonequilibrium Statistical Mechanics (Springer, Berlin, 2012).
[13] B. B. Mandelbrot, IEEE Trans. Inf. Theor. 13, 289 (1967).
[14] M. Niemann, H. Kantz, and E. Barkai, Phys. Rev. Lett. 110,

140603 (2013).
[15] N. W. Watkins, in Advances in Time Series Analysis and

Forecasting: Selected Contributions from ITISE 2016, edited by
I. Rojas, H. Pomares, and O. Valenzuela (Springer International
Publishing, Cham, 2017).

[16] N. Leibovich, A. Dechant, E. Lutz, and E. Barkai, Phys. Rev. E
94, 052130 (2016).

[17] J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mezard, in
Spin-glasses and Random Fields, edited by A. P. Young (World
Scientific, Singapore, 1997).

[18] A. Crisanti and F. Ritort, J. Phys.: Math. Gen. 36, R181 (2003).
[19] D. Krapf, Phys. Chem. Chem. Phys. 15, 459 (2013).
[20] K. A. Takeuchi, J. Phys. A 50, 264006 (2017).
[21] N. Leibovich and E. Barkai, Phys. Rev. Lett. 115, 080602 (2015).
[22] A. Dechant and E. Lutz, Phys. Rev. Lett. 115, 080603 (2015).
[23] M. A. Rodríguez, Phys. Rev. E 92, 012112 (2015).
[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in Fortran 77: The Art of Scientific
Computing (Cambridge University Press, Cambridge, 1992).

[25] D. S. Dean, A. Iorio, E. Marinari, and G. Oshanin, Phys. Rev. E
94, 032131 (2016).

[26] C. Godreche and J. Luck, J. Stat. Phys. 104, 489 (2001).
[27] A.-M. Boiron, P. Tamarat, B. Lounis, R. Brown, and M. Orrit,

Chem. Phys. 247, 119 (1999).
[28] E. Geva and J. Skinner, J. Phys. Chem. B 101, 8920 (1997).
[29] A. L. McWhorter, Sem. Surf. Phys., 207 (1957).
[30] J. Bernamont, Proc. Phys. Soc. 49, 138 (1937).
[31] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
[32] G. Margolin and E. Barkai, J. Stat. Phys. 122, 137 (2006).
[33] S. Ferraro, M. Manzini, A. Masoero, and E. Scalas, Physica A

388, 3991 (2009).
[34] E. Bertin and J. Bouchaud, J. Phys. A 35, 3039 (2002).
[35] J.-P. Bouchaud, J. Phys. I 2, 1705 (1992).
[36] V. Zaburdaev, S. Denisov, and J. Klafter, Rev. Mod. Phys. 87,

483 (2015).
[37] M. Niemann, E. Barkai, and H. Kantz, Math. Model. Nat.

Phenom. 11, 191 (2016).
[38] J. H. P. Schulz, E. Barkai, and R. Metzler, Phys. Rev. X 4,

011028 (2014).
[39] P. Manneville, J. Phys. 41, 1235 (1980).
[40] Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189

(1980).
[41] T. Geisel and S. Thomae, Phys. Rev. Lett. 52, 1936 (1984).
[42] G. Zumofen and J. Klafter, Phys. Rev. E 47, 851 (1993).
[43] S. A. Diaz and M. Di Ventra, J. Comp. Elec. 14, 203 (2015).
[44] F. D. Stefani, J. P. Hoogenboom, and E. Barkai, Phys. Today

62(2), 34 (2009).
[45] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.

Chem. Chem. Phys. 16, 24128 (2014).
[46] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai,

and Y. Garini, Phys. Rev. Lett. 103, 018102 (2009).
[47] A. G. Cherstvy and R. Metzler, Phys. Chem. Chem. Phys. 15,

20220 (2013).

032132-14

https://doi.org/10.1088/0034-4885/44/5/001
https://doi.org/10.1088/0034-4885/44/5/001
https://doi.org/10.1088/0034-4885/44/5/001
https://doi.org/10.1088/0034-4885/44/5/001
https://doi.org/10.1103/PhysRevLett.102.014502
https://doi.org/10.1103/PhysRevLett.102.014502
https://doi.org/10.1103/PhysRevLett.102.014502
https://doi.org/10.1103/PhysRevLett.102.014502
https://doi.org/10.1209/0295-5075/111/44002
https://doi.org/10.1209/0295-5075/111/44002
https://doi.org/10.1209/0295-5075/111/44002
https://doi.org/10.1209/0295-5075/111/44002
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1063/1.1662977
https://doi.org/10.1063/1.1662977
https://doi.org/10.1063/1.1662977
https://doi.org/10.1063/1.1662977
https://doi.org/10.1029/WR005i002p00321
https://doi.org/10.1029/WR005i002p00321
https://doi.org/10.1029/WR005i002p00321
https://doi.org/10.1029/WR005i002p00321
https://doi.org/10.1137/0152014
https://doi.org/10.1137/0152014
https://doi.org/10.1137/0152014
https://doi.org/10.1137/0152014
https://doi.org/10.1109/TIT.1967.1053992
https://doi.org/10.1109/TIT.1967.1053992
https://doi.org/10.1109/TIT.1967.1053992
https://doi.org/10.1109/TIT.1967.1053992
https://doi.org/10.1103/PhysRevLett.110.140603
https://doi.org/10.1103/PhysRevLett.110.140603
https://doi.org/10.1103/PhysRevLett.110.140603
https://doi.org/10.1103/PhysRevLett.110.140603
https://doi.org/10.1103/PhysRevE.94.052130
https://doi.org/10.1103/PhysRevE.94.052130
https://doi.org/10.1103/PhysRevE.94.052130
https://doi.org/10.1103/PhysRevE.94.052130
https://doi.org/10.1088/0305-4470/36/21/201
https://doi.org/10.1088/0305-4470/36/21/201
https://doi.org/10.1088/0305-4470/36/21/201
https://doi.org/10.1088/0305-4470/36/21/201
https://doi.org/10.1039/C2CP42838E
https://doi.org/10.1039/C2CP42838E
https://doi.org/10.1039/C2CP42838E
https://doi.org/10.1039/C2CP42838E
https://doi.org/10.1088/1751-8121/aa7106
https://doi.org/10.1088/1751-8121/aa7106
https://doi.org/10.1088/1751-8121/aa7106
https://doi.org/10.1088/1751-8121/aa7106
https://doi.org/10.1103/PhysRevLett.115.080602
https://doi.org/10.1103/PhysRevLett.115.080602
https://doi.org/10.1103/PhysRevLett.115.080602
https://doi.org/10.1103/PhysRevLett.115.080602
https://doi.org/10.1103/PhysRevLett.115.080603
https://doi.org/10.1103/PhysRevLett.115.080603
https://doi.org/10.1103/PhysRevLett.115.080603
https://doi.org/10.1103/PhysRevLett.115.080603
https://doi.org/10.1103/PhysRevE.92.012112
https://doi.org/10.1103/PhysRevE.92.012112
https://doi.org/10.1103/PhysRevE.92.012112
https://doi.org/10.1103/PhysRevE.92.012112
https://doi.org/10.1103/PhysRevE.94.032131
https://doi.org/10.1103/PhysRevE.94.032131
https://doi.org/10.1103/PhysRevE.94.032131
https://doi.org/10.1103/PhysRevE.94.032131
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1016/S0301-0104(99)00140-8
https://doi.org/10.1016/S0301-0104(99)00140-8
https://doi.org/10.1016/S0301-0104(99)00140-8
https://doi.org/10.1016/S0301-0104(99)00140-8
https://doi.org/10.1021/jp971722o
https://doi.org/10.1021/jp971722o
https://doi.org/10.1021/jp971722o
https://doi.org/10.1021/jp971722o
https://doi.org/10.1088/0959-5309/49/4S/316
https://doi.org/10.1088/0959-5309/49/4S/316
https://doi.org/10.1088/0959-5309/49/4S/316
https://doi.org/10.1088/0959-5309/49/4S/316
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1007/s10955-005-8076-9
https://doi.org/10.1007/s10955-005-8076-9
https://doi.org/10.1007/s10955-005-8076-9
https://doi.org/10.1007/s10955-005-8076-9
https://doi.org/10.1016/j.physa.2009.06.036
https://doi.org/10.1016/j.physa.2009.06.036
https://doi.org/10.1016/j.physa.2009.06.036
https://doi.org/10.1016/j.physa.2009.06.036
https://doi.org/10.1088/0305-4470/35/13/302
https://doi.org/10.1088/0305-4470/35/13/302
https://doi.org/10.1088/0305-4470/35/13/302
https://doi.org/10.1088/0305-4470/35/13/302
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1051/mmnp/201611312
https://doi.org/10.1051/mmnp/201611312
https://doi.org/10.1051/mmnp/201611312
https://doi.org/10.1051/mmnp/201611312
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1051/jphys:0198000410110123500
https://doi.org/10.1051/jphys:0198000410110123500
https://doi.org/10.1051/jphys:0198000410110123500
https://doi.org/10.1051/jphys:0198000410110123500
https://doi.org/10.1007/BF01197757
https://doi.org/10.1007/BF01197757
https://doi.org/10.1007/BF01197757
https://doi.org/10.1007/BF01197757
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevE.47.851
https://doi.org/10.1103/PhysRevE.47.851
https://doi.org/10.1103/PhysRevE.47.851
https://doi.org/10.1103/PhysRevE.47.851
https://doi.org/10.1007/s10825-014-0641-5
https://doi.org/10.1007/s10825-014-0641-5
https://doi.org/10.1007/s10825-014-0641-5
https://doi.org/10.1007/s10825-014-0641-5
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f



