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The second law of thermodynamics governs the direction of heat transport, which provides the foundational
definition of thermodynamic Clausius entropy. The definitions of entropy are further generalized for the
phenomenological heat transport models in the frameworks of classical irreversible thermodynamics and
extended irreversible thermodynamics (EIT). In this work, entropic functions from mathematics are combined
with phenomenological heat conduction models and connected to several information-geometrical conceptions.
The long-time behaviors of these mathematical entropies exhibit a wide diversity and physical pictures in
phenomenological heat conductions, including the tendency to thermal equilibrium, and exponential decay of
nonequilibrium and asymptotics, which build a bridge between the macroscopic and microscopic modelings. In
contrast with the EIT entropies, the mathematical entropies expressed in terms of the internal energy function
can avoid singularity paired with nonpositive local absolute temperature caused by non-Fourier heat conduction
models.
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I. INTRODUCTION

As a fundamental concept in thermodynamics, entropy is
widely discussed and used in macroscopic irreversible phe-
nomena. Strictly speaking, classical thermodynamic entropy
is based on equilibrium states and large physical systems.
Boltzmann-Gibbs statistical mechanics provides a bridge
between the macroscopic quantities and microscopic states,
which connects thermodynamic entropy to microscopic distri-
butions. The Boltzmann entropy [1] has a similar structure to
the Shannon entropy [2], which is introduced to quantify the
information content of data in information theory. Landauer’s
principle [3–10], which entails the minimum energy loss
needed for the erasure operation of one bit of information
at a given temperature, further deepens the conceptual relation
between thermodynamics and information-theoretic entropies.
The principle of entropy increase in thermodynamics provides
the tendency for irreversible phenomena, but it is not enough
to describe the details of the whole processes. For instance,
the Clausius statement [11,12] of the second law governs the
direction of heat transfer between two different temperatures,
but the transport rate is still unknown. Therefore, supplemental
macroscopic phenomenological modelings are needed for
complete descriptions and predictions.

Fourier’s law is the most classical phenomenological model
for heat conduction, which is proved by numerous experiments
and widely applied to engineering. As a macroscopic model,
Fourier’s law models a relation satisfied by local physical
quantities,

q + λ∇T = 0, (1)

where q is the heat flux, λ is the thermal conductivity,
and T is the temperature. In statistical mechanics, Fourier’s
law is derived approximately through some given theoretic
assumptions, which also predict possible limitations about this
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phenomenological model, especially for unsteady problems.
From the viewpoint of macroscopic transport theory, Onsager
[13] pointed out that Fourier’s law neglects the time needed
for acceleration of the heat flow, which has been verified
by further theoretical analyses and experiments [14–18]. The
non-Fourier effects in macroscopic heat conduction are usually
called “second sound” or “heat wave,” and to handle the
wavelike transport, several macroscopic phenomenological
models were developed. The Cattaneo-Vernotte (CV) model
[19,20] is the most typical one, whose hyperbolic governing
equation predicts a finite wave velocity of heat propagation.
The CV model is often generalized for non-Fourier math-
ematical modeling, i.e., the Jeffrey model [21,22], a linear
superposition of the CV and Fourier heat conductions. The
single-phase-lagging (SPL) model [23] is another “natural
extension” [24,25] of the CV model, which will reduce to the
CV model by making a first-order Taylor series approximation.
With the further extension of the SPL model, the dual-phase-
lagging (DPL) model [26] introduces the lagging influence of
the temperature gradient. Besides the lagging types, the CV
model was recently generalized to fractional heat conduction
[27–29], which is usually applied to thermoelasticity [30] with
original memory behaviors. Besides extending the CV model,
there are other different methods for non-Fourier mathematical
modeling. The Guyer-Krumhansl (GK) model [31–34] is
a well-known model derived from the linearized phonon
Boltzmann equation. The two-temperature (TT) model [35]
considers the coupling processes of different mechanisms in
heat conduction. To analyze the local details predicted by these
nonequilibrium heat conductions, classical thermodynamic
entropy is directly extended as local-equilibrium entropy in
the framework of classical irreversible thermodynamics (CIT)
[36]. For Fourier’s law, the positive thermal conductivity
guarantees the validity of the Clausius statement in local
areas, guaranteeing a non-negative form of the CIT entropy
production rate q · ∇( 1

T
). However, it is found that the local

Clausius statement could be violated by non-Fourier models,
i.e., the CV model [37,38], resulting in negative local CIT
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entropy generation. Extended irreversible thermodynamics
(EIT) [36] is then developed to overcome this defect by
introducing nonequilibrium intrinsic variables to the classical
definition of entropy. For a given heat conduction model, if
the intrinsic variables and their constitutive relations with
corresponding entropies are assumed appropriately, the EIT
entropy production rate will have a non-negative form. The
physical meanings of these EIT entropies are not specific
and mathematically, non-Fourier models typically have the
potential to predict nonpositive local absolute temperature
[39,40], which will generate singularity in the EIT entropies
because of their mathematical expressions containing ln T .

Besides the extensions of thermodynamic entropy, there
are also “mathematical entropies” for partial differential equa-
tions. These entropic functions usually have similar structures
to Boltzmann’s H function, and like the H function, they are
nonincreasing in isolated systems which is analogous to the
increase of thermodynamic entropy. In this work, we introduce
these mathematical entropic functions to phenomenological
heat conductions. The entropic functions are connected to
several information-geometrical conceptions with specific
long-time behaviors relying on the governing equations. These
long-time behaviors exhibit a wide diversity and physical
pictures in phenomenological heat conductions, including the
tendency to thermal equilibrium, and exponential decay of
nonequilibrium and asymptotics, which build a bridge between
the macroscopic and microscopic modelings. In contrast with
the EIT entropies, the mathematical entropies expressed in
terms of the energy functions can avoid singularity paired with
nonpositive local absolute temperature caused by non-Fourier
heat conduction models. Some aspects of this problem could
also be avoided by limiting the upper bound of the admissible
heat flux, which is determined by the finite propagation speed
of heat pulses and internal energy density [41–43].

II. FOURIER’S HEAT CONDUCTION

We start from the case of constant properties, in which λ,
the mass density ρ, and the specific heat cV are constants. The
governing equation of this case is the linear parabolic equation,
whose commonly used mathematical entropy defined in Rn is
[44,45]

H∞(t) =
∫
Rn

T (x,t) ln
T (x,t)

T∞(x)
dV, (2)

where T∞(x) = limt→+∞ T (x,t), t ∈ [0, + ∞), x = (x1,x2,

. . . ,xn) ∈ Rn, and dV = dx1dx2 · · · dxn. In a finite n-
dimensional torus D, a convex and non-negative entropic
functional [45] is written as (non-negativity is guaranteed by
convexity)

HF (t) = 1

meas(D)

∫
D

T

T0
ln

T

T0
dV, (3)

where meas(D) is the measure on D and T0 is the usual average
of T , T0 = 1

meas(D)

∫
D

T dV . Consider the distribution fT = T
T0

,

which satisfies the normalization condition 1
meas(D)

∫
D

fT dV =
1, and we will have that HF (t) = HF [fT (.,t)] = HF (fT )
has a similar structure to Boltzmann’s H function. For each
distribution fT with temperature average T0, fE = T0

T0
= 1 is

the corresponding equilibrium distribution with a homoge-

neous distribution of thermal energy (note that the equilibrium
distribution is determined by the value of thermal energy rather
than the asymptotic state predicted by a given determinate
problem). Then, HF (t) can be considered as the relative
entropy or Kullback-Leibler (KL) divergence [46] between
the two distributions,

HF (t) = 1

meas(D)

∫
D

fT ln
fT

fE

dV = DKL(fT ‖fE). (4)

The KL divergence is an important information-geometrical
concept measuring the difference between two distributions.
Thus HF (t) reflects the deviation between a heat conduction
process and its corresponding equilibrium state with the
same total internal energy, or the nonequilibrium degree
of heat conduction. Under periodic or adiabatic boundary
conditions [45], we have dHF (t)

dt
� 0, showing the tendency

to equilibrium in Fourier heat conduction. In a convex D,
d
dt

| dHF (t)
dt

| = − d2HF (t)
dt2 � 0 also holds, and hence the rate of

tending to equilibrium is dissipative. Besides the distance
between two distributions, the KL divergence also has a
meaning of “information gain,” which is often applied to
feature selection. For heat conduction with a fixed thermal
energy, the equilibrium state without temperature difference
is the state of minimum “quality,” and the deviation from
the equilibrium state can be considered as a “gain” because
the quality of thermal energy is improved by temperature
difference. Thus HF (t) is the information gain of a heat
conduction process with respect to its equilibrium state
with the same thermal energy. Different from other distance
functions, i.e., Euclidean distance, the KL divergence is only
a premetric quantity because of its asymmetry DKL(fT ‖fE) �=
DKL(fE‖fT ). A natural symmetrization for this information
gain of heat conduction is DS(fT ‖fE) = 1

2DKL(fT ‖fE) +
1
2DKL(fE‖fT ). The Jensen-Shannon (JS) divergence [47]
is another commonly used symmetrization, DJS(fT ‖fE) =
1
2DKL(fT ‖ fE+fT

2 ) + 1
2DKL(fE‖ fE+fT

2 ). The two symmetriza-
tions are semimetrics because the triangle inequality needed
by metrics is not satisfied.

As a comparison, in the framework of classical irreversible
thermodynamics [36], the definition of entropy in heat con-
duction is

SCIT =
∫

D

ρcV ln
T

TC

dV, (5)

where TC is the reference temperature. By setting TC = T0,
another convex and non-negative entropic function can be
given from the CIT entropy,

HCIT(t) = − 1

meas(D)

SCIT

ρcV

= − 1

meas(D)

∫
D

ln
T

T0
dV. (6)

This dimensionless entropic functional is also dissipative,
dHCIT(t)

dt
� 0, for isolated Fourier heat conduction, but its

second-order derivative d
dt

| dHCIT(t)
dt

| can be positive in high-
dimensional problems (n � 2) [48]. It also means that the
CIT entropy production rate is not necessarily dissipative.
Therefore, both the CIT entropy increase and dissipation
of HF (t) can reflect the tendency to equilibrium, but the
dissipative rate of tending to equilibrium exists only for HF (t).
Accordingly, in Fourier heat conduction, HF (t) provides more
physical pictures about the dissipative behaviors tending to
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equilibrium than the CIT entropy. HF (t) also has other long-
time behaviors, i.e., exponential decay [45],

HF (t) � HF (0) exp

(
− t

τF

)
, (7)

where τF is a positive constant. Taking into account the mean-
ing of the KL divergence, this behavior shows the exponential
decay of the deviation from equilibrium. In transport theory,
the relaxation time approximation [49–51], which is a widely
used linearization method for the Boltzmann equation, will
also lead to an exponential decay about the deviation between
the distribution function f and its equilibrium state f0,

(f − f0) = (f − f0)|t=0 exp

(
− t

τB

)
, (8)

where τB is the relaxation time. The exponential decay in
Eq. (8) is established under the condition of ∇f = 0 in every
local element, since the exponential decay of DKL(fT ‖fE)
holds when the system is adiabatic, which is a global condition.
Equation (7) is a global estimation of the exponential decay
expressed by macroscopic temperature or thermal energy.
For this reason, a “macroscopic global thermal relaxation
time” for the macroscopic phenomenological description of
heat conduction can be defined as τGF = inf τF . In contrast,
the exponential decay in Eq. (8) is a local approximation
of microscopic distribution functions. Similarly, we can also
define a “microscopic global thermal relaxation time” τGB =
inf τG, where τG > 0 satisfies the exponential decay for the
global integral of the nonequilibrium degree,

∫
Dn

DKL(f ‖f0)dV

� exp

(
− t

τG

) ∫
Dn

[DKL(f ‖f0)|t=0]dV. (9)

If the local distribution function is close enough to its
equilibrium state ( f −f0

f0
) = o(1), we have

∫
f ln

f

f0

∼=
∫

(f − f0)2

2f0
. (10)

From Eq. (10), it is found that τGB can be understood as
a global average of 2τB . Two global thermal relaxation times
are so far proposed: τGF is a macroscopic estimation according
to the phenomenological model, and τGB is for microscopic
distribution function on the basis of the Boltzmann equation
with the relaxation time approximation. The theoretical basics
of the two relaxation times are radically different, but if their
corresponding mathematical modelings of heat conduction are
coincident enough, a global averaged estimation expressed by
macroscopic temperature can be provided for the relaxation
time of microscopic distribution function τGF

∼= τGB
∼= 2τB .

Another frequently used behavior of HF (t) is the long-time
asymptotics [45]. For instance, consider the relative entropies
between the distributions (fT1 ,fT2 , . . . ,fTn

) = ( T1
T0

, T2
T0

, . . . , Tn

T0
)

with the same boundary temperature and thermal energy,

HR

(
fTi

∥∥fTj

) = 1

meas(D)

∫
D

Ti

T0
ln

Ti

Tj

dV . (11)

HR(fTi
‖fTj

), which reflects the discrimination between two
temperature distributions, is decreasing,

dHR

(
fTi

∥∥fTj

)
dt

= 1

meas(D)

∫
D

− λT 2
j

ρcV T0Ti

∣∣∣∣∇
(

Ti

Tj

)∣∣∣∣
2

dV �0.

(12)

For an arbitrary boundary, because of the nonzero boundary
heat flux, the systems may not tend to equilibrium but the dis-
criminations between the systems are still dissipative. There-
fore, all systems will tend asymptotically to an asymptotical
distribution, which means the effects caused by different initial
conditions are being eliminated. One well-known consequence
of the long-time asymptotics is that for a time-independent
boundary, the temperature distributions with different initial
values will finally tend to an identical steady solution. From
the viewpoint of information theory, the long-time asymptotics
shows that the initial information gain caused by initial
nonequilibrium is lost in the “thermal information” transmis-
sion. For this special case with time-independent boundary,
the long-time asymptotics does not require the same total
internal energy because the time-independent boundary has
already given an asymptotic value of the total internal energy.
As another nonincreasing mathematical entropy, HCIT(t) is
not suitable to be a measure of the discrimination between
temperature distributions. That is because the discrimination
HCIT(fTi

‖fTj
) = − 1

meas(D)T0

∫
D

ln Ti

Tj
dV is not non-negative

and consequently, its derivative cannot determine whether this
discrimination is dissipative in time. Although |HCIT(fTi

‖fTj
)|

can be applied, the continuity will be broken which makes

the calculation of
d|HCIT(fTi

‖fTj
)|

dt
insignificant (even impossible)

for general problems. In summary, HF (t) can provide richer
mathematical behaviors and physical pictures than the CIT
entropy. Actually, the CIT entropy is a direct extension of
thermodynamic entropy relying on local equilibrium, which is
independent of the heat conduction law, since HF (t) is directly
for the governing equation of heat conduction.

Furthermore, nonextensive types of entropy families [45]
or entropic indices [52] can also be introduced as follows:

H (k)(t) = 1

meas(D)k(k − 1)

∫
D

[(
T

T0

)k

− 1

]
dV, (13)

R(α)(t) = 1

α − 1
ln

[
1

meas(D)

∫
D

(
T

T0

)α

dV

]
, (14)

Where k �= 0,1 and α > 1. The two above-mentioned en-
tropies are the zero-order [HCIT(t) = limk→0 H (k)(t)] and first-
order [HF (t) = limk→1 H (k)(t)] limits of H (k)(t). k = 2 is also
a special case, in which H (k)(t) = H (2)(t) is usually called
the “energy integral” with the “energy function” EF = 1

2 ( T
T0

)2

(or 1
2T 2). In mathematics, H (2)(t) is used for discussing the

well-posedness of second-order parabolic equations. R(α)(t)
has a similar form to Renyi entropy [52] with the distribution
fT , and it can be considered as the Renyi divergence between
fT and its equilibrium state with the same thermal energy,

D
(α)
R (fT ‖fE) = 1

α − 1
ln

[
1

meas(D)

∫
D

f α
T

f α−1
E

dV

]

= R
(α)
F (t). (15)
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Based on the entropic functions, we can provide a nonequi-
librium entropy family by introducing the effects of the devi-
ation from equilibrium SHT = SHT [Seq,D(fT ‖fE)], in which
Seq is equilibrium entropy and D(fT ‖fE) is DKL(fT ‖fE) or
D

(α)
R (fT ‖fE). A linearization of SHT is

SHT = (1 − w)Seq − wkBD(fT ‖fE), (16)

where kB is the Boltzmann’s constant and w is the weight
coefficient of nonequilibrium. In contrast with CIT entropy,
the nonequilibrium degree D(fT ‖fE) is considered as an
intrinsic variable of SHT . To make this entropic functional
of phenomenological macroscopic heat conduction agree with
the microscopic expression, we can select proper weight coef-
ficients to approximate the Boltzmann-Gibbs entropy, which
is independent of the postulate of local equilibrium. As the
nonextensive types of entropy families are introduced, not only
Boltzmann-Gibbs statistical mechanics but also nonextensive
statistical mechanics [53–56] could be approximated.

The above entropic functions can also be applied to
nonlinear cases, where the thermal conductivity is expressed as
λ(T ) = λ0T

m (λ0 is a positive constant and m > −1). H (k)(t)
(including k → 0,1) are still non-negative and convex. Under
periodic or adiabatic boundary conditions, the dissipation rates
of H (k)(t) are as follows:

dH
(k)
F (t)

dt

=
⎧⎨
⎩

− 4λ0

meas(D)ρcV (k+m)2

∫
D

∣∣∇(
T
T0

) k+m
2

∣∣2
dV, k + m �= 0

− λ0
meas(D)ρcV

∫
D

∣∣∇(
ln T

T0

)∣∣2
dV, k + m = 0

.

(17)

It should be emphasized that m > −1 is necessary, not only
for the convexity but also for the existence of non-negative
solutions. When m � −1, the governing equation becomes
the “singular diffusion equation” or “fast diffusion equation”
[57–59], which is usually paired with the ill-posedness of non-
negative solutions (the existence of solutions even depends on
dimensions). However, in the famous linear phenomenological
heat transfer law [60,61],

q = Lq∇
(

1

T

)
= −Lq

T 2
∇T , (18)

where Lq is the phenomenological coefficient, corresponding
to m = −2. This constitutive assumption aims at the equality
between the CIT entropy production rate and L−1

q q · q, but in
mathematics, astonishingly, entropylike functions are used to
prove the nonexistence of non-negative solutions submitting
this type [57]. For more complicated cases λ = λ(T ) > 0
[limT →0+ |λ(T )| < +∞], the entropic function is written
as [62]

HNL(t)= 1

meas(D)

∫
D

[∫ T

0

dξ

λ(ξ )T0

∫ ξ

T0

λ(ς )

ς
dς

]
dV, (19)

with a dissipation rate in periodic or adiabatic boundary
conditions as follows:

dHNL(t)

dt
= − 1

meas(D)

∫
D

T

g(T )T0

∣∣∣∣g(T )∇T

T

∣∣∣∣
2

dV. (20)

Phonon heat conduction in the low-temperature limit (T →
0) is taken as an example [63–66], in which gT →0(T ) =
AT 3 and ρcV = BT 3 (A and B are positive constants).
The governing equation is written as BT 3 ∂T

∂t
= ∇(AT 3∇T ),

which can be transformed into a linear equation ∂v
∂t

= ∇( A
B
∇v)

by setting v = T 4. H (k)(t) can subsequently be applied by
replacing T with v. For other more elaborate physical property
modeling, if ∀T > 0 the internal energy function u(T ) satisfies
du(T )
dT

> 0; the governing equation can be transformed into
∂u
∂t

= ∇{g[T (u)] dT (u)
du

∇u} and HNL(t) can then be applied.
Additionally, the condition limu→0+ |g[T (u)] dT (u)

du
| < +∞

should be satisfied to avoid the singularity and nonexistence
of solutions.

III. NON-FOURIER HEAT CONDUCTION

The CV model is the most typical model predicting
wavelike heat transport, but it has the potential to violate the
Clausius statement in local areas because the local CIT entropy
production rate q · ∇( 1

T
) might be negative. To guarantee a

non-negative form of the local entropy generation [36], heat
flux is introduced as an intrinsic variable in the EIT entropy
with a constitutive relation assumed as SCV = Seq − τ

2λT 2 q · q.
Formally speaking, SCV has a non-negative local entropy
production rate ṠCV = 1

λT 2 q · q. However, it is also revealed
that the CV model can predict nonpositive local absolute
temperature [39,40], which will obviously generate singularity
in SCV and ṠCV. Thus, strictly speaking, this EIT entropy
with a non-negative form of the local entropy generation
could still be infeasible. The negative values of absolute
temperature can be avoided by imposing initial conditions
which can limit the upper bound of the propagation speed in
heat conduction [41–43], which is a natural requirement but
we here use a different method. To avoid the singularity caused
by nonpositive local absolute temperature, we introduces an
energy function for the CV model,

ECV = w

[
λτ

ρcV

|∇T |2 + τ 2

(
∂T

∂t

)2]
. (21)

Compared with DKL(fT ‖fE), which reflects the global
deviation from equilibrium, ECV represents the local nonequi-
librium degree in wavelike heat transport. Similar to Fourier’s
law, the global nonequilibrium degree of the CV model is also
dissipative in adiabatic problems,

∫
D

∂ECV

∂t
dV = −

∫
D

2τ

(
∂T

∂t

)2

dV � 0. (22)

A non-negative and nonincreasing entropic functional is
then given by

RCV(t) = ln

[
1

meas(D)

∫
D

(
1 + ECV

T 2
0

∣∣
t=0

)
dV

]
. (23)
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If a heat conduction problem can guarantee a unique
positive equilibrium temperature TEQ > 0 (this requirement
is obvious in physics, but might not be satisfied by the CV
model), T0|t=0 can also be replaced by TEQ. Although the
local Clausius statement is not satisfied by the CV model, the
dissipation of the global nonequilibrium degree still shows the
tendency to equilibrium. Nevertheless, Eq. (22) indicates that
the dissipation of the global nonequilibrium degree will stop
when ∂T

∂t
= 0. It means that

∫
D

|∇T |2dV is conserved in steady
adiabatic problems, and hence the temperature difference can
exist steadily, which is impossible in Fourier heat conduction.
For more sophisticated hyperbolic phenomenological models,
including the Jeffrey model, GK model, TT model, and
first-order Taylor series expansion of the DPL model, the
governing equations take the following form:

C1
∂T

∂t
+ C2

∂2T

∂t2
= ∇2T + C3

∂

∂t
(∇2T ), (24)

where Ci (i = 1,2,3) are positive coefficients. The energy
function reflecting the local nonequilibrium degree is given
by the following form:

EW = w

[
C2

C2
1

|∇T |2 +
(

C2

C1

)2(
∂T

∂t

)2]
. (25)

The corresponding dissipative rate and entropic function
are

∫
D

∂EW

∂t
dV = −2C2

C2
1

∫
D

[
C1

(
∂T

∂t

)2

+ C3

(
∂∇T

∂t

)2]
dV,

(26)

RW (t) = ln

[
1

meas(D)

∫
D

(
1 + EW

T 2
0

∣∣
t=0

)
dV

]
. (27)

By defining EW

T 2
EQ

ln EW

T 2
EQ

|EW =0 = limEW →0+ ( EW

T 2
EQ

ln EW

T 2
EQ

) = 0,

fW = IEW

T 2
EQ

, and fWE = T 2
EQ

T 2
EQ

= 1, the KL divergence showing

the nonequilibrium degree of heat wave can be proposed,

DKL(fW‖fWE) = 1

meas(D)

∫
D

IEW

T 2
EQ

ln
IEW

T 2
EQ

dV, (28)

where I is the normalized coefficient satisfying
1

meas(D)

∫
D

IEW

T 2
EQ

dV = 1. More generally, the energy functions

of wavelike transport with the wave velocity Vh can
be written as E = E(ϕ), whose intrinsic variable is
ϕ = |∇T |2 + 1

V 2
h

( ∂T
∂t

)2 = ( ∂T
∂|x| )

2 + 1
V 2

h

( ∂T
∂t

)2. This selection

method of the intrinsic variable is to guarantee the positions
of |x| and Vht are equal in the energy functions because
of their equal positions in the traveling wave solutions
T (x,t) = T (|x| ± Vht). For the dissipation and convexity of
the corresponding nonequilibrium degrees, E(ϕ) should also
satisfy E(0) = 0, dE(ϕ)

dϕ
> 0, and d2E(ϕ)

dϕ2 � 0.
Phase lagging is another type of phenomenological non-

Fourier heat conduction. The DPL model [26] is a typical
example,

q(x,t + τq) + λ∇T (x,t + τT ) = 0, (29)

where τq is the relaxation time of the heat flux and τT is
the relaxation time of temperature gradient. The Taylor series
expansions of the DPL model are often connected to the
lattice Boltzmann method [34] and used to give hyperbolic
heat conductions. Like heat wave models, phase-lagging
models can also violate the Clausius statement in local
areas. The violation will be shown by one-dimensional (1D)
problems in [0,l] × [0, +∞), which obeys the DPL model
and satisfies λπ(τq−τT )

ρcV l2 = 1
2 . If the initial condition is taken

T |t=0 = T0(1 + α sin πx1
l

) and the boundary conditions are
taken T |x1=0,l = T0 (T0 and α are positive constants), one
solution of this problem is given by

T1(x1,t) = T0

[
1 + α cos

πt

2(τq − τT )
sin

πx1

l

]
. (30)

The local CIT entropy production rate of this solution is

q · ∇
(

1

T

)
= −λα2π2T 2

0

2l2T 2
1

cos2 πx1

l
sin

πt

τq − τT

, (31)

which is not non-negative. Similar to heat wave models, an
EIT entropy can be provided for the DPL model,

SD(x1,t) =
∫ t

0

ρcV

T (x1,ε + τT )

∂T (x1,ε + τq)

∂ε
dε, (32)

with a non-negative local entropy production rate
λ|∇T (x1,t+τT )|2

T 2(x1,t+τT ) . Compared with the local-equilibrium entropy,

whose local entropy flux is JE(x,t) = q(x,t)
T (x,t) , this EIT entropy

reflects the effects of phase-lagging heat conduction in its
local entropy flux, which is modified as JD(x,t) = q(x,t+τq )

T (x,t+τT ) .
If we adopt the equilibrium initial condition T |t=0 = T0 and
adiabatic boundary conditions q|x1=0,l = 0, there is a series of
periodic solutions with an arbitrary constant C1,

T2(x1,t) = C1 cos
nπx1

l
sin

πt

2(τq − τT )
+ T0. (33)

The periodic solutions demonstrate that the phase-lagging
heat conduction in an adiabatic system might neither reach nor
tend to thermal equilibrium, and initial thermal equilibrium can
even be broken by heat transport. However, the second law of
thermodynamics requires the spontaneous tendency to thermal
equilibrium. Thus, although we can provide appropriate EIT
entropies with non-negative generations for phase-lagging
models, violations of the second law still exist. It is concluded
that besides non-negative local entropy production rates, the
generalized entropic functions should also provide physical
pictures of the tendency to equilibrium.

The above energy functions have a simple form for common
non-Fourier models, but for nonlinear non-Fourier conductions
[67–69], this method will also become more sophisticated.
Generally speaking, most phenomenological heat conduction
models could reduce to Fourier’s law or the CV model
by neglecting certain behaviors, which predict dissipative
physical behaviors. Mathematically, their governing equations
[70] (mainly including damped wave equations and semilinear
parabolic equations) can define forward regularizing flows in
certain adequate phase spaces containing absorbing sets. The
equations with these physical and mathematical characteristics
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can be summarized as “dissipative evolution equations.” “ε
entropy” [71], proposed by Kolmogorov, is another important
entropy to study the long-time behaviors of the dissipative
evolution equations. For a compact or precompact set S in a
metric space N, its ε entropy [70–73] is written as Hε(S,N) =
log2Bε(S,N), where Bε(S,N) is the minimal number of ε

balls covering S. The corresponding fractal dimension is then
defined as

dimF (S,N) = lim
ε→0

[
sup

Hε(S,N)

log2
1
ε

]
. (34)

The fractal dimension is a widely used concept for
studying the attractors and solution operators of the dissipative
evolution equations, which can provide long-time behaviors
including the asymptotics and exponential decay of attractors
[70,72–74]. A semilinear parabolic system with a nonlinear
source term R(U ) is taken as a simple example,

∂U

∂t
+ L(U ) = R(U ) (35)

where U is a scalar or vector and L(U ) is a positive, self-adjoint
and linear operator, i.e., L(U ) = ∇2U . In this case, ε entropy
can be used to provide an exponential decay for the solution
operator S and the exponential fractal attractor M [73,74],

distH (SU,M) = distH (SU,M)|t=0 exp

(
− t

τA

)
, (36)

where distH is the standard asymmetric Hausdorff pseudodis-
tance and τA is a positive constant. The relaxation behavior of
phenomenological heat conductions is subsequently provided.

IV. CONCLUSIONS

In the present work, mathematical entropic functions are
proposed for phenomenological heat conduction models,
which are understood through information-geometrical con-
ceptions and thermal equilibrium. It should be mentioned

that information-theoretical concepts based on microscopic
statistical mechanics have been applied to the framework
of extended irreversible thermodynamics [75–78], while the
information-theoretical concepts in this work are expressed
by macroscopic and phenomenological quantities. The long-
time behaviors of these entropies can exhibit more abundant
physical pictures than the CIT and EIT entropies, including
the tendency to thermal equilibrium, and exponential decay
of nonequilibrium and asymptotics. The mathematical behav-
iors and physical pictures also make a connection between
macroscopic and microscopic mathematical modelings. A
global averaged estimation expressed by local macroscopic
temperature is provided for the relaxation time of microscopic
distribution function τGF

∼= τGB
∼= 2τB . In addition, the en-

tropic indices connect phenomenological heat conduction to
nonextensive thermodynamics, which provides a perspective
beyond Boltzmann-Gibbs statistical mechanics.

Although the EIT entropies can guarantee non-negative
forms for the local entropy production rates, they have the
potential to cause singularity because of the nonpositive local
absolute temperature caused by non-Fourier heat conductions.
By introducing non-negative energy functions, generalized
entropies can overcome this defect, meanwhile guaranteeing
the tendency to thermal equilibrium. Incidentally, ε entropy
which is used to study the long-time behaviors of dissipative
evolution equations (including damped wave equations and
semilinear parabolic equations) demonstrates its possibility
for studying more sophisticated nonlinear models which can
reduce to the CV model or Fourier’s law.
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