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Fractality in nonequilibrium steady states of quasiperiodic systems
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We investigate the nonequilibrium response of quasiperiodic systems to boundary driving. In particular, we
focus on the Aubry-André-Harper model at its metal-insulator transition and the diagonal Fibonacci model. We
find that opening the system at the boundaries provides a viable experimental technique to probe its underlying
fractality, which is reflected in the fractal spatial dependence of simple observables (such as magnetization) in
the nonequilibrium steady state. We also find that the dynamics in the nonequilibrium steady state depends on
the length of the chain chosen: generic length chains harbour qualitatively slower transport (different scaling
exponent) than Fibonacci length chains, which is in turn slower than in the closed system. We conjecture that such
fractal nonequilibrium steady states should arise in generic driven critical systems that have fractal properties.
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I. INTRODUCTION

Mathematical and aesthetic beauty of fractals captures the
imagination of scientists and nonscientists alike. They can
be abundantly observed in nature, be it in the shape of a
coastline or a broccoli flower. Indeed the human eye is better
evolved to recognize and process fractal patterns rather than
straight lines [1]. Fractals can be found even in wave functions
describing coherent quantum systems. Namely, it is well
established that quantum systems at phase transition points can
display fractal eigenfunctions. A paradigmatic example is the
Anderson localization transition [2]: Below the transition point
eigenfunctions are extended, above they are localized, while at
the transition point their dimensionality is in between, namely
displaying noninteger fractal dimension [3]. Despite that ex-
perimentally detecting fractality in quantum systems has been
successfully demonstrated only rather recently from its local
density of states [4]. The theoretical characterization of system
fractality in closed systems is usually done either directly in
terms of its wave-function (eigenfunction) properties—which,
however, are notoriously difficult to measure experimentally
—or through wave-packet spreading in unitary dynamics [5–8]
or return probability [9].

In this article, we show how such eigenfunction properties
of a closed (Hamiltonian) system can also be brought to light
in a rather transparent fashion if one couples the system at its
boundaries to an external bath, thereby inducing a nonequi-
librium steady state (NESS). We show that such a NESS
displays fractal spatial dependence of generic observables,
e.g., of particle density (Fig. 1), which is a quantity routinely
accessible by today’s experiments. The fractality that we
reveal is not just fractal dependence on a system’s parameter,
like, e.g., the dependence of transport coefficients in some
classical [11] or quantum systems [12], but truly a fractal
spatial property in a single-shot NESS. We demonstrate our
findings on models with quasiperiodic potentials. The study of
these systems have gathered significant traction vis-à-vis their
localization and transport properties in cold atom experiments
and photonic waveguide setups [13]. Experimentally realizing

them is also considerably easier compared to the legacy
disordered models introduced by Anderson [2]: a superpo-
sition of two incommensurate wavelengths readily creates
such a quasidisordered potential. They are also of theoretical
interest because they can display localization transition even
in one dimension, a property expected to appear for disordered
systems only in higher dimensions, which, however, are harder
to treat analytically or numerically.

While localization properties of such noninteracting models
have been theoretically investigated in Hamiltonian settings
[5,8,14–16], it is not known what their properties are upon
external coupling, which is what necessarily happens in any
experiment. We show that, besides the fractality of local NESS
expectations, the fractal dimension and, even more interest-
ingly, the scaling exponent of anomalous transport depends
on the system’s length: the number theoretic properties of
the irrational number g characterizing the incommensurability
causes the system to distinguish between two classes of
integers. Thus, our finding, yet again, illustrates the richness
of nonequilibrium quantum physics.

We also derive an exact connection between return prob-
ability of a simple non-Hermitian “Hamiltonian” and NESS
transport. While rigorously defining transport properties in a
Hamiltonian system can be quite tricky (e.g., exponentially
decaying eigenfunctions do not necessarily imply localization
[17]), in an open system it is straightforward—one simply
studies the scaling of the current—but one has to instead deal
with non-Hermitian operators.

II. MODEL AND METHOD

The Hamiltonian of a quasidisordered spin chain of size L

is

H =
L−1∑
i=1

σx
i σ x

i+1 + σ
y

i σ
y

i+1 +
L∑

i=1

hi σ
z
i , (1)

where σα
i are Pauli matrices, and hi is the quasidisorder

given by (i) h cos(2πgi + φ) for the Aubry-André-Harper
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FIG. 1. NESS magnetization profile in the Aubry-André-Harper
model at criticality for Fibonacci chain lengths L. Each profile was
obtained by averaging over 103 φ values. As one zooms in, finer and
finer details are revealed with peaks located at fractions of the inverse
golden ratio after rescaling along the x-axis [10]. Fractal dimension
is Df ≈ 1.11 [10]. The curves lie within the standard deviations of
each other.

(AAH) model, with g =
√

5+1
2 the golden ratio, and φ an

arbitrary global phase that is averaged over; (ii) ±h arranged
in a Fibonacci sequence (see Ref. [10] for details) for the
diagonal Fibonacci model. The above Hamiltonian may be
Jordan-Wigner transformed to a quadratic fermionic system
[10], so that an exact solution of the steady state is possible
(see below).

The AAH model is a paradigmatic model for studying
delocalization-localization transitions in one-dimensional sys-
tems, with the transition at h = hc = 2.0 [14]: (i) for h < hc

the spin transport is ballistic, (ii) for h > hc the system is
localized, and there is no transport; (iii) at critical point h = hc

eigenfunctions are neither extended nor localized but fractal
[18,19], and the transport is expected to be diffusive [20], or
very close to diffusive [5,8], due to the multifractality and
singular continuous nature of the spectrum.

In the related Fibonacci model the spectrum however is
always composed of critical states [15]; that is, there is no
localization-delocalization transition like in the AAH, and this
1D quasidisordered model fully escapes localization (except
when h → ∞). Moreover, the spin transport here for any finite
h is neither ballistic nor diffusive but shows a smooth variation
of the transport between ballistic and no transport as a function
of h [5].

We use the Lindblad master equation [21] describing
Markovian evolution of the system’s density matrix,

dρ

dt
= i[ρ,H ] +

4∑
k=1

([Lkρ,L
†
k] + [Lk,ρL

†
k]) := L(ρ), (2)

where Lindblad operators Lk drive magnetization through
the boundaries, and are L1 = √

�(1 + μ) σ+
1 ,L2 =√

�(1 − μ) σ−
1 at the left end, and L3 = √

�(1 − μ) σ+
L ,L4 =√

�(1 + μ) σ−
L at the right end, with σ±

k = (σx
k ± i σy

k )/2,
and � is the coupling strength to the bath; L is the Liouvillean

characterizing the above master equation. As long as there is
a driving bias, i.e., μ �= 0, a nonzero current is induced in the
NESS ρ∞ uniquely given by ρ∞ = limt→∞ exp(Lt)ρ(t = 0).
Because L is quadratic [22] all 2-point expectations in the
NESS may be obtained by solving a Lyapunov equation
AC + CA† = P , where the unknown elements of the
complex Hermitian L × L correlation matrix C specify the
NESS [23], whereas the A and P matrices are specified
by the Hamiltonian and the couplings to the reservoirs,
Ai,k = i[H0]i,k + �δi,k(δi,1 + δi,L), see [10] for technical
details. Without loss of generality we set μ = � = 1. Using
efficient numerical techniques we can study very large
systems up to L = 32768, which is crucial to correctly reveal
both fractality and the asymptotic transport type.

III. NONEQUILIBRIUM STEADY STATE

We focus on expectation values, in the NESS, of the
magnetization profile given by M ≡ Ci,i = −〈σ z

i 〉 and the spin
current given by j ≡ 〈2(σx

i σ
y

i+1 − σ
y

i σ x
i+1)〉 = 4Im{Ci,i+1} at

lattice site i (by current conservation the latter is independent
of i).

A. Magnetization and fractality

In the steady state the magnetization profile is a particularly
simple observable to measure, for instance, by scanning
tunneling electron microscope [4] in solid state or spectroscopy
[24] in cold atom setups. In addition the shape of the profile
is an indicator of the rate of transport in the NESS [25]:
continuously ranging from a flat profile indicating ballistic, to a
single-step function [26] indicating localization, with convex
or concave profiles indicating subdiffusive or superdiffusive
transport, respectively.

Let us focus on the critical AAH model, and let us first
observe the magnetization profile for a Fibonacci length chain
L = 6765 = F20 displayed in Fig. 1 (where Fn is the nth
element of the Fibonacci sequence). First, we find that while
the gross shape of the NESS magnetization profile conforms to
that of subdiffusive behavior rather than diffusive (for which
the profile would have simply been a linear line), there are
fine features atop this: there are valleys and peaks that do not
disappear upon phase averaging and whose number increase
at smaller length scales as the system size is increased. Indeed,
as we keep zooming in finer features start appearing. In
addition to this the structured features are prominently present
at powers of the inverse golden ratio within the appropriately
chosen window. Both these points already suggest the presence
of fractality, which is further vindicated by the fractal box
counting dimension Df calculated in Ref. [10]. We find that
this dimension is not an integer but rather Df ≈ 1.11. However,
away from criticality, say in the ballistic phase, we find that the
box-counting dimension becomes 1 for Fibonacci L [10]. This
clearly shows that NESS can be a good probe of fractality
present in critical systems. A similar result holds for the
Fibonacci model as well [10], which is always critical.

Furthermore, if we study generic non-Fibonacci length
chains, the underlying fractality is reflected in the profile
both at and away from criticality. This is in line with fractal
properties expected for quasiperiodic systems [27]. In Fig. 2
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FIG. 2. Magnetization profile in the AAH model at criticality for
generic non-Fibonacci chain length L = 8192. Fractal dimension is
Df ≈ 1.60 [10], larger than in the case with Fibonacci lengths shown
in Fig. 1. Note that strong oscillations are not noise; in the inset,
where we show individual points, the error bars (after averaging over
1000 random phases) are of the same size as points.

we show the profile for a chain of length L = 8192. Clearly
there are stronger oscillations and fluctuations compared to
the Fibonacci length chain shown in Fig. 1 reflected in
larger box-counting dimension Df ≈ 1.6. Moreover, there
is a universality among the various system sizes even for
non-Fibonacci lengths: L and L̃ = L/gn have overlapping
magnetization patterns, despite the strong oscillations, and
hence the same fractal dimension (for sufficiently large L)
[10]. This further vindicates our point that these oscillations
are not noise.

Therefore, comparing the results of the systems of two
classes of lengths (Fibonacci and non-Fibonacci lengths), we
find that for L = Fn, real space resonances set in that causes
destructive interference of these stronger oscillations, thereby
lowering the Df (and increasing transport rate as we will see
shortly). This is found to be true even if we start moving closer
toward a Fibonacci number. The source of these resonances
will ultimately be connected to the spectrum of A because the
latter can be directly related to the NESS [10]. The onset of
fractality in the magnetization profiles, and in fact in any other
observable [10], and its sensitive dependence on the chain
length is the first main finding of our work.

B. Current scaling and dynamics

One of the cleanest manifestations of nonequilibrium
dynamics is transport. The rate of transport is measured by
power-law scaling of current j with system size. Assuming
a phenomenological transport law j = −D∇σ z, where D

is the diffusion constant, depending on the current scaling
j ∼ 1/Lγ , we have (i) γ = 1 for diffusion, (ii) γ < 1 for
superdiffusion, (iii) γ > 1 for subdiffusion, (iv) γ → ∞ in
the localized phase, and (v) γ = 0 for ballistic transport.

In Fig. 3 we show the current j as a function of L,
in the critical AAH model in the top panel and in the
diagonal Fibonacci model with h = 0.5 in the bottom panel.

FIG. 3. NESS current at criticality. Average current is shown,
except in the single-shot cases (open symbols). Top panel: The
AAH model where the scaling is subdiffusive, and depending on the
length, Fibonacci vs. generic vs. single shot symmetric quasidisorder,
the scaling exponent γ is different. The insets show resonances in
the NESS current at the Fibonacci length (red circles); few of the
many “satellite” resonances at Fn ± Fm are also highlighted (this is
equivalent to subdividing the intervals as in Fig. 1), which are not
noise but each of which have a sequence and scaling associated with
them [10]. The system with the symmetric quasiperiodic potential
is almost diffusive, as in the closed system dynamics. Although we
present results for � = 1.0, we have checked that a weaker coupling
� = 0.1 shows similar qualitative behavior. Bottom panel: The
Fibonacci model with h = 0.5 showing similar qualitative depen-
dence on system length and quasidisorder realization, is superdiffu-
sive in all three cases. In both panels L = 4096 deviates from the
generic scaling because it is quite close to a secondary resonance;
i.e., 4096 ≈ F19 − F11 = 4181 − 89.

We see that three distinct types of scalings j ∼ 1/Lγ exist
in both critical systems—γFibo.,γgen.,γsing.—corresponding to
Fibonacci length chains, generic length chains, and single spe-
cial realizations of the quasidisorder, respectively. Fibonacci
length systems harbour slightly faster dynamics than generic
length systems, and the single-shot quasidisorder realizations
in turn faster than both (in AAH model this special single-shot
realization is chosen such that the quasiperiodic potential
is symmetric with respect to the central site of the chain,
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VARMA, DE MULATIER, AND ŽNIDARIČ PHYSICAL REVIEW E 96, 032130 (2017)

whereas for the Fibonacci model this sample is chosen as
the one starting from the beginning of the Fibonacci sequence
described in Ref. [10]).

We therefore find quite odd behavior, unobserved previ-
ously, that the nature of transport in a NESS depends on the
number theoretic properties of system’s length. This is the
second main finding of our work. Note that the transition
point between ballistic (h < 2) and localized phase (h > 2)
still occurs at h = 2, the same as in the closed system:
marginally slightly away from hc the scaling considerably
changes [10]. The differing transport rate in the non-Fibonacci
L arise quite likely due to the stronger “oscillations” seen in
its magnetization profile (Fig. 2), which in turn give rise to
more oscillations in the local resistivities. Note that in order
to clearly distinguish the different regimes one needs systems
of several thousand sites (Fig. 3); for instance, in the AAH
model the resonances (see the insets) have a width of ≈10,
and therefore they begin to overlap with neighboring satellites
for L � 102.

C. Spectral properties

As outlined in Ref. [10], one can directly express the NESS
current in terms of a non-Hermitian L × L matrix A. Defining
a nonunitary propagator U (t) ≡ e−At , we can write

j = 8

(
1 − 2

∫ ∞

0
p1(t)dt

)
, (3)

where p1 ≡ |U1,1(t)|2 is transition probability from site 1 to
site 1 (i.e., return probability). While p1(t) will in general
have a power-law asymptotic decay due to singular density
of eigenvalues of A [10], we have not been able to find
a simple connection between γ and the spectral properties
of A characterized by the exponent κ [10,28]; elucidating a
scaling relation, if any, among the two exponents remains an
interesting open problem, especially since γ depends on the
number theoretic properties of the chain length. The absence
of such a relation, however, without invoking an additional
independent critical exponent will highlight the nontrivial
effects of fractality [10].

IV. CLOSED SYSTEM DYNAMICS

Having investigated the response of these systems to
Lindblad boundary drives, let us study the dynamics of wave-
packet evolution under Hamiltonian dynamics, focussing on
the AAH model at criticality. In contrast to the open system
there is no system size dependence here because the wave-
packet spreading does not feel the system length until the
boundary is hit. We initialize the system with a delta function
at the central site and compute the mean-squared displacement
�x2(t) = ∑

x [x − (L + 1)/2]2|〈x|ψ(t)〉|2, where |ψ(t)〉 =
exp(−itH )|ψ(0)〉 is the unitarily evolved initial state with the
AAH Hamiltonian. A scaling fit �x2 ∼ t2β is employed to
discern the rate of transport: β = 1 for ballistic, β = 0 for no
transport.

Our findings are twofold: first, we show that if we choose
a symmetrized version of the quasiperiodic potential such
that it is symmetric with respect to the central site (φ = 0);
then, we recover subdiffusive behavior, consistent with earlier

10-1

101

103

10-1 101 103 105

Δ⎯√
x2

t

Symmetric
t0.476

Averaged
t0.50

FIG. 4. Root mean-squared displacement in wave-packet spread-
ing with Hamiltonian dynamics in critical AAH Hamiltonian with free
boundaries, L = 8001. For symmetric realization of the quasidisorder
(blue full line), a nice fit (dashed black line, indistinguishable from
data) to subdiffusive spreading is observed, whereas upon phase
averaging (red dots, ≈500 samples) normal diffusion is restored.

studies [5,8]; note that there is no averaging over the global
phase φ, which destroys this symmetry as soon as φ �= 0.
This result is shown as the thin line in Fig. 4 with the fit
plotted as dashed line: the two are virtually indistinguishable.
Although subdiffusive, it is quite close to being diffusive with
β = 0.476; the value is remarkably close to the effective
dynamical exponent βeff. = 1/(1 + γ ) [25] obtained for the
open system dynamics with the symmetric potential; i.e.,
βeff. = 1/(1 + γsing) = 1/(1 + 1.10) ≈ 0.476. However, upon
phase averaging this symmetry of the potential is broken and
we restore normal diffusion, β = 1/2, as indicated in the Fig. 4
by the upper curve and data points. We note that in this case
closed system β does not agree with the NESS one via the
relation 1/(1 + γ ). This failure, as that between κ and γ , is
quite likely symptomatic of multifractality in the system where
the assumption of a single-exponent breaks down. As opposed
to the open system, in Hamiltonian formulation transport gets
faster once the potential symmetry is broken, whereas in the
NESS the symmetric case was the fastest. This is the third
main finding of our work.

V. CONCLUSIONS

In one-dimensional noninteracting systems in the presence
of correlations in the potential, criticality, and multifractality
can be induced in the spectrum; the simplicity of these
systems offers the scope of experimentally probing for such
nontrivial physics through cold-atom or solid-state wire setups,
explaining recent high interest in quasiperiodic systems.

Focusing on the critical Aubry-André-Harper model and
the diagonal Fibonacci model, we demonstrate that in a
nonequilibrium setting induced by boundary driving the
underlying fractality of the system is made apparent in
the nonequilibrium steady-state expectation values of simple
observables. In particular we show that the nonequilibrium
steady-state magnetization profile is fractal, and that the
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transport rate of spins depends sensitively on the length of the
chain, in particular, on whether the length is an integer related
to the incommensurability of the quasiperiodic potential or
not. The spin transport rates in the open setting seem in
general different (slower) than in the critical closed system
Hamiltonian dynamics.

We posit that these new rich emergent features in nonequi-
librium physics are a consequence of underlying fractality,
providing us a new and perhaps simpler probe for these
phenomena in an open setting. We also rigorously relate
transport to spectral properties of a simple non-Hermitian
deformation of an almost Mathieu operator, whose Hermitian
version displays very rich mathematical structure [29].

Note added. After completion of our work, Ref. [30]
appeared, which studies nonequilibrium transport in the
critical AAH model at generic lengths, without reference to
the fractal features in the system or the current resonances that
show up at nongeneric lengths.
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APPENDIX

1. NESS solution

a. Steady-state equations

Using Jordan-Wigner transformation [33] our models can
be equivalently written in terms of fermionic operators cj ,c

†
j .

To be precise, we may employ the transformation [33] σx
j =

−(σ z
1 . . . σ z

j−1)(cj + c
†
j ), σ

y

j = −i(σ z
1 . . . σ z

j−1)(cj − c
†
j ), and

σ z
j = cj c

†
j − c

†
j cj , to convert the spin-Hamiltonian to a

quadratic fermion model.
With this the fermionic Hamiltonian reads [23]

Hf =
∑

j

2(c†j cj+1 + c
†
j+1cj ) +

∑
j

hj (1 − 2nj ), (A1)

where nj = c
†
j cj is the counting operator. This Hamiltonian,

as well as the complete Liouvillean L (because the Lindblad
operators Lj are linear in cj ), is quadratic in cj . In analogy with
quadratic Hamiltonians one can therefore fully diagonalize L
by finding noninteracting decay modes, and in particular, write
down a closed set of equations for the steady-state expectation
values of all two-point fermionic observables [22].

Let us expatiate on the technicalities. The procedure
we outline in fact works even for the model with, e.g.,
dephasing dissipation, which renders L nonquadratic, though
still enabling one to write a closed set of equations for all
two-point NESS expectations. We shall follow the notation in
Ref. [23], where such more general case of a disordered XX
model with dephasing has been studied. Writing the NESS as

ρ∞ = 1

2L
[1 + μ(H + B)] + O(μ2), (A2)

where H = ∑L
r=1

∑L+1−r
j=1 h

(r)
j H

(r)
j and B = ∑L

r=2

∑L+1−r
j=1

b
(r)
j B

(r)
j , with H

(r+1)
j (B(r+1)

j ) ≡ σx
j Z

[r−1]
j+1 σ

x(y)
j+r ± σ

y

j Z
[r−1]
j+1

σ
y(x)
j+r , for r � 1, and Z

[r]
j ≡ ∏j+r−1

k=j σ z
k , while H

(1)
j = −σ z

j .
Note that the above solution is valid for any value of μ

because the higher-order terms are all orthogonal to operators
in H and B, see Ref. [23] for more details, where also the
fermionic version is written out explicitly. Therefore, we
need only solve for the unknown coefficients h

(r)
j ,b

(r)
j , and

thence the corresponding observable’s expectation value in
the NESS is known. Because these expectations values are
trivially proportional to μ we set μ = � = 1.

The h
(r)
j ,b

(r)
j variables, which are equal to the NESS

expectation values of the corresponding operators H
(r)
j and

B
(r)
j , and thence the NESS solution, are obtained from solving

a Lyapunov equation,

AC + CA† = P, (A3)

where the elements of the correlation matrix C are specified
as Cj,k ≡ h

(k−j+1)
j + i b(k−j+1)

j for k > j , Cj,j = h
(1)
j , with

Cj,k = C∗
k,j for j > k. In particular, the NESS magnetization

profile at lattice site j is given by 〈σ z
j 〉 = −Cj,j and the

spin current by 〈2(σx
j σ

y

j+1 − σ
y

j σ x
j+1)〉 = 4 ImCj,j+1, which

is of course in the NESS independent of site j . The A

and P matrices are determined by the Hamiltonian and the
driving: A ≡ i(E − J ) + �R, with Ej,j = hj determined by
the quasidisorder, Jj,j+1 = Jj+1,j = 1 represents the hopping,
R1,1 = RL,L = 1, and P1,1 = −PL,L = −2�. All unspecified
matrix elements are zero.

b. Spectral connection

One can solve the Lyapunov Eq. (A3) by any standard linear
algebra package, or, alternatively, one can express the solution
in terms of spectral properties of the non-Hermitian matrix A,
which we shall outline here. Note that the matrix A (setting
� = 1),

−iA = H0 − i

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

. . .
...

· · · 0 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎠, (A4)

is a sum of a Hermitian part H0 ≡ E − J , coming from
a Hamiltonian of a single-particle disordered tight binding
model, and an imaginary deformation given by driving R. It
therefore represents the simplest non-Hermitian deformation
of a random Schrödinger operator (of an almost Mathieu type)
much studied in mathematics; see, e.g., Ref. [18,31]. Spectral
properties of such a matrix should be an interesting future
problem in itself.

Formally, the solution of the Lyapunov Eq. (A3) can be
written [32] as C = ∫ ∞

0 e−tAP e−tA†
dt . Denoting a nonunitary

“propagator,”

U (t) ≡ e−tA, (A5)

we can write Cp,k = −4
∫ ∞

0 [U (t)]p,1[U †(t)]1,kdt for p >

k (where due to symmetry it is enough to take
only one of nonzero elements of P ), and Ck,k =
2
∫ ∞

0 ([U (t)]k,L[U †(t)]L,k − [U (t)]k,1[U †(t)]1,k)dt . In our
case, A seems always diagonalizable, so using the spectral
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FIG. 5. Distribution of the real parts x of complex eigenvalues λj

of A. For Fibonacci lengths (data not shown) the power is also ≈1.40.

decomposition A = ∑
i λi |ψ (Ri)〉〈ψ (Li)|, where it turns out

that the left eigenvectors are just the complex conjugated right
ones, ψ

(Li)
k = (ψ (Ri)

k )∗, one for instance obtains for the NESS
current,

j = −16 Im

[∑
i,k

1

λi + λ∗
k

(
ψ

(Ri)
1

)2(
ψ

(Rk)
1 ψ

(Rk)
2

)∗
]
, (A6)

where everything is written in terms of the kth compo-
nents of the ith right eigenvector ψ

(Ri)
k , which are, due to

〈ψ (Lk)|ψ (Ri)〉 = δik , normalized such that
∑

p ψ (Ri)
p ψ (Rk)

p =
δik . Provided one needs only the current, diagonalization of
A and using Eq. (A6) is the fastest way to compute it. The
expression for magnetization is, on the other hand,

〈
σ z

p

〉 = −1 + 4

[∑
i,k

1

λi + λ∗
k

(
ψ

(Ri)
1 ψ (Ri)

p

)(
ψ

(Rk)
1 ψ (Rk)

p

)∗
]
.

(A7)

While Eq. (A6) is useful for numerical computation, it is
not very transparent. One can in fact get a physically more
revealing expression by observing that in the steady state the
continuity equation at the chain edge [23] is j = 4(1 + C1,1).
This leads to the NESS current,

j = 4

(
1 − 2

∫ ∞

0
(p1 − pL)dt

)
= 8

(
1 − 2

∫ ∞

0
p1dt

)
,

(A8)

where p1 ≡ |U1,1(t)|2 is transition probability from site 1 to
site 1 (i.e., return probability) and pL ≡ |U1,L(t)|2 is transition
probability from site L to site 1, both under nonunitary evo-
lution with A. In the last equality we used

∫ ∞
0 (p1 + pL)dt =

1
2 . Recall that Uk,i(t) = ∑

p e−λptψ
(Rp)
k ψ

(Rp)
i . If there were

only dissipation and no dynamics, p1,L would decay ex-
ponentially in time, so that their integral would cancel
1 in Eq. (A8), giving j = 0. Therefore, their deviation
from an exponential decay eventually determines the NESS
current.

Let us show that although the eigenvalues of A are pivotal
in determining the scaling of j with L, they are not sufficient.
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FIG. 6. Two-point correlations in the NESS for the critical Aubry-
André-Harper model with L = 610 (Fibonacci length). We averaged
over 1000 random phases φ. Minima in the correlations (vertical and
horizontal “blue” lines occur for Fibonacci numbers j , and a self
similarity is visually present here too as with the magnetization.

Return probability in the Aubry-André-Harper model has been
studied in Ref. [28]. Phenomenologically opening the system
by adding an imaginary matrix element to the Hamiltonian,
like in our rigorously derived matrix A Eq. (A4), the authors
find that the return probability decays as a power law with
the power being in turn determined by the spectral properties
of A. Writing the complex eigenvalues λj ≡ xj + iyj , one
can use perturbation theory and argue that for small R the
real parts xj (“resonance widths”) will be proportional to the
overlaps, xj ∼ |ψ [j ]

1 |2, where ψ [j ] is the j th eigenvector of H0.
Using a spectral expression for p1(t), averaging over fast oscil-
lations, one gets p1(t)  ∑

j x2
j e−2xj t ≈ L

∫
ρ(x)x2e−2xtdx,

where ρ(x) is a normalized distribution of the real parts
of λj . This distribution has a power-law divergence for
small x, which would then in turn, via Eq. (A8), determine
the scaling of current with L. We find, however, that the
current scaling j ∼ 1/Lγ is more complex and can not be
explained solely by the properties of ρ(x). For instance,
in Fig. 5 we show the distribution ρ(x), which for small

 0
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FIG. 7. Fractal dependence of standard deviation of magnetiza-
tion 〈σ z

i 〉 in the AAH model on the rescaled spatial index. Fibonacci
length L = 4181 was chosen.
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h=2.01
h=1.99
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(m)
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FIG. 8. Nonprimary resonances and off-criticality. Left panel: Scaling of phase-averaged NESS current for m = 2 Fibonacci length sequence
[Eq. (A9)] in the critical Aubry-André-Harper model. A nice power-law subdiffusive scaling with exponent 1.29 (very close, if not equal within
statistical errors, to m = 1 shown in main text) is obtained. This vindicates the point that the “satellite” resonances displayed in Fig. 3 of the
main text are real in that they follow a scaling depending on the particular length sequence chosen and that they are not noise. Right panel:
Scaling of NESS current slightly away from criticality. Immediately to the left of the closed system critical point hc = 2.0, we find a saturation
of the current setting in as the system size is increased, signaling ballistic transport of spin in the metallic phase. Whereas immediately to the
right of hc we find an exponential decay of the current, characteristic of localization and absence of any transport. All plots correspond to
� = 0.1.

x indeed diverges as Lρ(x) ∼ 1/xκ , with κ ≈ 1.40 though
being the same for Fibonacci number L and non-Fibonacci
length systems, whereas the scaling exponent γ , on the other
hand, does depend on L. That the values of γ cannot be
inferred only in terms of eigenvalues of A is expected in
light of a sensitive dependence of γ on the location of the
driving. Such information can namely be only encoded in the
eigenvectors of A and so correlations between eigenvalues
and eigenvector components in, e.g., Eqs. (A8) or (A6) do
matter.
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32
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FIG. 9. Stability of secondary resonances. Scaled NESS currents
as a function of deviation from the secondary Fibonacci sequence. The
collapse at L − F (2)

n = 0 is another representation of the power-law
scaling observed in left panel of Fig. 8, with the constant width
of the central peak for various scalings F (2)

n = 322, 521, 843, 1364
indicative of its stability with respect to fluctuations around these
lengths. At m = 1 Fibonacci lengths, further peaks are observed
indicated by dashed lines.

2. Correlation matrix

In the main text as well as in the next subsections we
present results showing fractality of the magnetization profiles.
However, as we claimed in the abstract this fractality is a
generic feature in these systems and must be visible in other
observables as well. We may convince ourselves that this is
the case by visualizing the solution of the complex correlation
matrix C, whose two particular entries are the magnetization
(diagonal) and the current (super/sub diagonal).

In Fig. 6 we show a density plot of the correlation matrix
for the L = 610 Fibonacci length Aubry-André-Harper model
at h = hc = 2. In particular, if we segment this matrix into

FIG. 10. Magnetization profile in the Fibonacci model at h = 0.5
for Fibonacci chain lengths. Like in the Aubry-André-Harper model’s
result in Fig. 1 of the main text, finer and finer details are revealed
with peaks located at fractions of the inverse golden ratio. Fractal
dimension is Df ≈ 1.09; 600–1000 disorder samples were used.
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FIG. 11. Magnetization profile in the Fibonacci model at h = 0.5
and Fibonacci chain lengths L = 1597. Left panel: Profiles m for two
different realizations of the disorder (no averaging). Right panel:
Profile M = m obtained upon averaging over 1100 disorder samples.
The error bars on the estimation of M are smaller than the thickness
of the line. The light-blue background is defined by the standard
deviation of m from its average value M , in which profiles are more
likely to lie from one realization of the disorder to another.

smaller (Fibonacci) lengths, we will see the larger structure
grossly replicated at the smaller lengths too. This picture also
suggests that, if one drives the system at sites with Fibonacci
number index, where excitations are small, the fluctuations
and fractal dimensions will indeed be smaller as demonstrated
for magnetization profiles. Other observables too must display
the feature of fractality.

In Fig. 7 we show fractal dependence of profile fluctuations
in the Aubry-André-Harper model (taking an ensemble with
random phases).

3. Nonprimary resonances and off-criticality

In Fig. 3 of main text we presented scaling results of
the NESS current at criticality. We observed that a whole
series of “satellite” resonances appeared that lay between
the Fibonacci length and the generic length systems. We
demonstrate here that these all fall within a well-defined
sequence.

Replacing the Fibonacci number sequence generating rule
Fn = Fn−1 + Fn−2 by F (m)

n = Fn−1 + Fn−m−1 we obtain an m-
Fibonacci sequence, which are also related, as in the Fibonacci
rule, by

F (m)
n = F

(m)
n−1 + F

(m)
n−2, (A9)

with the ratio between two large successive integers ap-
proaching the golden ratio. For m = 2, these secondary
resonances were labeled in the inset of Fig. 3 of main
text: L = 322, 521, 843, 1364. Although these resonances, at
first glance, look like noise as displayed in the inset we
demonstrate that these too display a clean scaling behavior:
there’s method in its madness. This is shown in the left panel
of Fig. 8 where a nice scaling to subdiffusive behavior fits
the data. The exponent γ is very close to that obtained for
the Fibonacci lengths m = 1, which was plotted in the main
text.

The stability of these resonances can also be visualized
more conspicuously by plotting the dependence of the scaled
NESS data for various fixed L as a function of its deviation
from the secondary Fibonacci sequence. In Fig. 9 the collapse

FIG. 12. Magnetization profile in the Fibonacci model at h = 0.5
for non-Fibonacci chain lengths. Here the rescaling of the x axis was
done by Fp , which is the smallest Fibonacci number larger than Lp .
We find that there is a universality among the magnetization profiles
for lengths related by L̃ = L/gn, for integer n. 1000 (L = 2000)–
2000 (L = 1236) disorder samples were used.

is indicated: the central peak has a common height for
the four scalings, as well as a constant width. The first
point is indicative of the power-law scaling observed in left
panel of Fig. 8, with the power being slighter larger here
due to smaller system sizes. The second point reflects the
stability of the scaling as a function of fluctuations around
these secondary Fibonacci lengths. Certain smaller peaks
are observed also at the usual Fibonacci numbers, indicated
by vertical dashed lines, suggesting a whole heirarchy of
resonances.

10-1

101

103

10-1 101 103 105

√⎯<
Δx

2 >

t

t0.79

FIG. 13. Root mean-squared displacement in wave-packet
spreading with Hamiltonian dynamics in Fibonacci Hamiltonian with
free boundaries, L = 8001. A superdiffusive scaling is observed
[results have been sample-averaged as explained in the text, but
results are the same even for single realization, i.e., the sequence
given by Eq. (A10)]. The exponent is consistent with that observed in
Ref. [5] but not with that obtained while employing scaling relation
β = 1/(1 + γ ) [25] (see Fig. 3 of the main text for γ results), as also
observed in the Aubry-André-Harper model.
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FIG. 14. Box counting dimension Df of NESS magnetization profiles in Aubry-André-Harper model obtained as linear fit to logarithm of
number Nb of boxes required to cover the data to the logarithm of the box size δ. Left panel: ballistic phase with h = 1.5; for L = Fm (red
closed symbols) there is no fractality, which emerges when L �= Fm (blue open symbols). Inset shows the magnetization profiles for Fibonacci
(red lines) and non-Fibonacci (blue lines) lengths used to compute the Df in the main panel. Right panel: critical point with h = 2.0; there is
fractality both for L = Fn and for L �= Fm, with the latter having a larger fractal dimension.

Next we show that these power-law scalings disappear even
if marginally away from h = hc = 2, where hc is the critical
point for the closed system. Therefore hc remains to be the
critical point even for the Lindblad driven system. In the right
panel of Fig. 8 we show, for Fibonacci lengths, the scaling of
the NESS current just left of and just right of the transition
point. In the former case, the NESS current saturates implying
ballistic transport in the metallic phase; whereas in the latter
case the current decays exponentially, indicative of single-
particle localization.

4. Fibonacci model

The Fibonacci sequence required for the Fibonacci model
may be constructed from two symbols F,S by the sub-
stitution rule (FS ) → (1 1

1 0)(
F

S ). The transformation matrix
has the eigenvalues g, 1/g where g is the golden ratio.
Repeated application of the above rule (with summations
+ arising during matrix multiplication taken to mean con-
catenation, i.e., F + S → FS) gives the series of Fibonacci
sequences:

{F,FS,FSF,FSFFS,FSFFSFSF, . . .}. (A10)

Note that the length of each sequence is a Fibonacci number:
1,2,3,5,8 . . ., and that, by construction, any sequence always
starts with the sequence of any smaller one. A given cut
of length L of any (sufficiently long) Fibonacci sequence
determines one sample of the quasiperiodic chain of length
L, where the quasidisorder potential hk on site k takes the
value ±h depending on whether the symbol on that site is S or
F , respectively; note that the full long sequence is of Fibonacci
length but that need not be true for L, the system size under
study. We choose h = 0.5 in the work.

The NESS is computed for this L segment, and the
procedure is repeated over a different segment of this sequence
and the results are then averaged over (see Figs. 10 and 11).

In the main text we presented results for current scaling
in the superdiffusive regime of the Fibonacci model, and
found that Fibonacci lengths and generic lengths harbour
different rates of transport, as evidenced by the scaling of
NESS current with system size. Here we present evidence that,
like the critical Aubry-André-Harper model, the magnetization
profile shows features of fractality. In Fig. 10 we show the
disorder averaged magnetization profiles for two Fibonacci
length systems. It is seen that upon zooming in, there are
regular finer peaks and structures located at certain powers of
1/g as shown by the thin vertical lines. A similar structure is
observed for non-Fibonacci chain lengths in Fig. 12, where
the universality among different non-Fibonacci length chains
is made apparent. Note that the x = 1/gk , for integer k,
positions, highlighted after rescaling, correspond, before the
rescaling, to the Fibonacci number lattice indices and to their
possible combinations: i = Fn (main), i = Fn ± Fm (inset),
etc. Observe how the overall shape of the profile has a curvature
of opposite sign compared to that of Fig. 1 of the main text.
This just reflects the difference in dynamics between the two
cases: here we are in the superdiffusive regime (because we
chose a small h = 0.5), while the critical Aubry-André-Harper
is subdiffusive. Apart from these fine fractal features we have
found that the gross shape is captured by the Beta function
(not shown); see, e.g., Ref. [25] for formulas.

In addition to nonequilibrium dynamics, we also performed
wave-packet spreading computations on the Fibonacci lattice
with h = 0.5, akin to the computations of Ref. [5] (how-
ever, there the authors considered a symmetrized version of
the Fibonacci potential). We show in Fig. 13 wave-packet
spreading dynamics and find a superdiffusive spreading with
an exponent β = 0.79. This is consistent with that seen in
Ref. [5]; however, as observed in the main text for the
Aubry-André-Harper Hamiltonian, it is not consistent with
the relation β = 1/(1 + γ ), which is otherwise deemed to be
valid [25]; the γ values for nonequilibrium transport have
been shown in Fig. 3 of the main text. The results are
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unchanged whether we take the sequence Eq. (A10) or the
sequences are position-averaged (which procedure we ex-
plained earlier).

5. Box counting dimension

Box counting is a simple procedure to assess fractality of
a given spatial pattern. Summarily put, it counts the power
with which the number of boxes Nb required to cover the
data points increases as the size of the box δ decreases,
i.e.,Nb = δ−Df , with 0 < δ < 1 due to appropriate rescaling of
data. Numerically the fractal dimension Df may be computed
by finding the linear slope of log Nb versus log δ, i.e.,
Df = − log Nb

log δ
. A simple one-dimensional pattern formed from

simple lines and wiggles that has no fine structure will have a
fractal dimension Df = 1; similarly a two-dimensional pattern
will have Df = 2. Fractality of magnetization profiles will be
characterized by 1 < Df < 2.

In Fig. 14 we show the evaluation of the box-counting
dimension in the Aubry-André-Harper model in the ballistic
phase and at the critical point h = 2.0. In each case, we
compute Df when the chain length is a Fibonacci number

or not. The plot of log Nb versus log 1/δ in each case yields
a clear linear regime, whose slope gives us the box-counting
fractal dimension Df.

In the ballistic phase (h = 1.5) we see that for a Fibonacci
length chain a good fit with Df = 1.00 is obtained; this is
also clear from the inset where the red full line (L = 4181,
Fibonacci length) shows a smooth ballistic magnetization
profile, making it immediately evident from a simple visual
inspection that there is no fractal structure. However, the
blue dashed line (L = 4096, non-Fibonacci length) in the
inset shows oscillations around the red full line; its fractal
dimension is therefore substantially larger (almost reaching 2)
as seen from the fit in the main panel. 900 phase averages were
performed for both cases.

At criticality (right panel of Fig. 14), the qualitative picture
remains the same; i.e., away from Fibonacci lengths the
fractal dimension increases. However, here both Fibonacci
and non-Fibonacci length lattices bear magnetization profiles
that are fractal, with Df ≈ 1.11 for the former case, not too
different from (but still unequal to) the lattice dimensionality.
A similar Df ≈ 1.09 is found for the Fibonacci model (results
not shown).
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