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Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments
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Lyapunov exponents characterize the chaotic nature of dynamical systems by quantifying the growth rate of
uncertainty associated with the imperfect measurement of initial conditions. Finite-time estimates of the exponent,
however, experience fluctuations due to both the initial condition and the stochastic nature of the dynamical path.
The scale of these fluctuations is governed by the Lyapunov susceptibility, the finiteness of which typically
provides a sufficient condition for the law of large numbers to apply. Here, we obtain a formally exact expression
for this susceptibility in terms of the Ruelle dynamical ζ function for one-dimensional systems. We further show
that, for systems governed by sequences of random matrices, the cycle expansion of the ζ function enables
systematic computations of the Lyapunov susceptibility and of its higher-moment generalizations. The method is
here applied to a class of dynamical models that maps to static disordered spin chains with interactions stretching
over a varying distance and is tested against Monte Carlo simulations.
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I. INTRODUCTION

The Lyapunov exponent was initially devised to quantify
the rate at which information dissipates in a chaotic dynamical
system [1,2]. More concretely, it measures how the distance
between two nearby trajectories scales exponentially with time
when their initial conditions are infinitesimally close. The
quantity has since found a number of other applications. For
instance, it gives the free-energy density of one-dimensional
spin chains [3] and the entropy rate of stationary hidden
Markov models in information theory [4–7]. Interest in
Lyapunov exponents continues to spread, as illustrated by the
recent study of black-hole scrambling [8,9], which results in
the formulation of an upper bound on the Lyapunov exponent
for quantum systems [10] (see also Ref. [11]).

When the dynamics of a system can be modeled by a
sequence of randomly drawn matrices [12], the Lyapunov
exponent is also intimately connected to the rich properties of
disordered systems [13]. For the sake of concreteness, consider
a sequence of matrices, {Ti}i∈N, be they transfer matrices in
disordered spin chains or transition-observation matrices in
hidden Markov chains [5]. The Lyapunov exponent is then the
typical growth rate of the maximum-modulus eigenvalue of
the product of these matrices. More formally, we define the
finite-sample quantity

λ
(α)
N ≡ 1

N
ln

(∥∥∥∥∥
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i=1

T
(α)
i

∥∥∥∥∥
)

, (1)

where N is the sample size and α denotes the sequence
of random matrices drawn independently from some fixed
underlying probability distribution. The Lyapunov exponent
is then given by the infinite system size limit

λ ≡ lim
N→∞

E[λN ] ≡ lim
N→∞

lim
ND→∞

1

ND

ND∑
α=1

λ
(α)
N , (2)
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where the disorder-average E[· · · ] can be obtained by drawing
ND disorder realizations. Note that the limit does not depend
on the choice of matrix norm, ‖ · · · ‖.

Given the ubiquitous appearance of the Lyapunov exponent
in products of random matrices [12,14], many methods have
been developed for its estimation, including Monte Carlo
algorithms [15–17], a perturbative weak-disorder expansion
[18,19], a microcanonical method [20], a cycle expansion [21],
a Dyson-Schmidt equation [22,23], a scaling method [24,25],
an evolution-operator method [26], and an infinite transfer
matrix method [27]. Central to all these approaches is the
assumption that sample-to-sample fluctuations of λN are not
so large as to invalidate the law of large numbers. Interestingly,
in assessing the applicability of this law, an essential role is
played by the second moment of the generalized Lyapunov
exponent [28], i.e., the Lyapunov susceptibility,

χL ≡ lim
N→∞

N
(
E

[
λ2

N

] − E[λN ]2
)
.

It has indeed been proven under certain conditions on the
underlying matrix distribution that the central limit theorem
holds if and only if χL is finite [29], thus providing a sufficient
(though not necessary) condition for the law of large numbers
to hold. The susceptibility also appears in rigorous treatments
of mean-field spin glasses [30,31] and is related to bond
chaos [32–34]. For turbulent flows, a nontrivial susceptibility
further signals the existence of intermittency [35,36]. Given
the physical and mathematical importance of this quantity
[37], it is surprising that it has thus far rarely been explicitly
considered.

Here, we develop methods for evaluating the Lyapunov
susceptibility and use the results to understand better its
behavior. More specifically, we extend the cycle-expansion
method [21,38,39], which is based on the Ruelle dynamical
ζ function and provides a formally exact expression linking
the underlying cycles to the susceptibility. We further find
that, when applicable, the cycle-expansion method offers
a natural and efficient approach for assessing tails of the
Lyapunov-exponent distribution pertaining to the physics of
large deviations.
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The rest of this paper is organized as follows. In Sec. II
concrete models that we use to illustrate our methodology are
stipulated. Results of Monte Carlo simulations are discussed
in Sec. III, and the cycle-expansion method for the Lyapunov
susceptibility and its higher-moment generalizations is devel-
oped in Sec. IV. In Sec. V results of cycle expansions are
compared against those of Monte Carlo simulations. A brief
conclusion follows in Sec. VI.

II. MODELS

This section introduces the class of models used in the rest
of this work. The models consist of a static one-dimensional
chain of N spins with an interaction of range Nn captured by
transfer matrices, Ta . They thus constitute a generic set of one-
dimensional disordered models with finite-range interactions.
They can equivalently be viewed as Nn-neighboring spins
that evolve dynamically with a transition matrix Ta hitting
at each time step, or as a single spin evolving with finite-time
memory. It is worth stressing, however, that these models are
chosen mainly for illustrative purposes, and that the methods
developed below have a much broader scope of application.

A. Nearest-neighbor (NN) model

The disordered NN Ising model is governed by the
Hamiltonian

H = −
N∑

i=1

JiSiSi+1, (3)

where spins Si = ±1 for i = 1, . . . ,N with periodic boundary
condition SN+1 = S1. The NN interactions {Ji}i=1,...,N are
randomly drawn to be ±J with equal probability 1/2 at each
site. The associated transfer matrices, T (α)

i ∈ {T+,T−}, are then

T± ≡
[
e±βJ e∓βJ

e∓βJ e±βJ

]
=

[
e±β̃ e∓β̃

e∓β̃ e±β̃

]
(4)

for the dimensionless inverse temperature β̃ ≡ βJ ≡ J
kBT

. The
free-energy density,

βf
(α)
N = − 1

N
ln

[
tr

(
N∏

i=1

T
(α)
i

)]
, (5)

is thus related to the associated Lyapunov exponent in the
thermodynamic limit N → ∞ through Gelfand’s formula
[40], i.e., limN→∞ λ

(α)
N = limN→∞ (−βf

(α)
N ). For this partic-

ular model, each disorder realization can be mapped onto a
pure Ising model without disorder by redefining the spins
(combined with the possible replacement of periodicity by
antiperiodicity at the boundary), and hence is fully solvable,
with

λ = −βf = ln[2 cosh(β̃)] (6)

and χL = 0.
B. Next-nearest-neighbor (NNN) model

Including NNN interactions is sufficient to make the
analysis nontrivial. The Hamiltonian is then

H = −
∑

i

(
J

[1]
i SiSi+1 + J

[2]
i SiSi+2

)
, (7)

where J
[l]
i = ± J√

2
are independent and identically distributed

random variables with amplitude chosen such that the NN
scaling of the Lyapunov exponent,

λ = ln(2) + β̃2

2
+ O(β̃4), (8)

is recovered at high temperatures. This model has four possible
transfer matrices [41,42],

T(J [1],J [2]) ≡

⎡
⎢⎢⎣

eβ(J [1]+J [2]) eβ(J [1]−J [2]) 0 0
0 0 eβ(−J [1]+J [2]) eβ(−J [1]−J [2])

eβ(−J [1]−J [2]) eβ(−J [1]+J [2]) 0 0
0 0 eβ(J [1]−J [2]) eβ(J [1]+J [2])

⎤
⎥⎥⎦, (9)

that occur with equal probability, 1/4. The Lyapunov exponent
is here again related to the free-energy density through
Gelfand’s formula. The model, however, cannot be mapped
to a solvable nondisordered model because of the frustra-
tion generically introduced by conflicting NN and NNN
couplings.

C. Generalized nearest-neighbor models

The generalization of these models to Nn nearest
neighbors,

H = −
∑

i

(
Nn∑
l=1

J
[l]
i SiSi+l

)
, (10)

with J
[l]
i = ± J√

Nn
, results in 2Nn equally probable 2Nn -by-2Nn

transfer matrices with elements[
T(J [1],...,J [Nn])

]
(σ1,...,σNn ),(σ ′

2,...,σ
′
Nn+1)

≡ δσ2,σ
′
2
· · · δσNn ,σ ′

Nn
exp

[
β

Nn∑
l=1

J [l]σ1σ
′
1+l

]
, (11)

where the dummy spin variables σk = ±1 and σ ′
k = ±1

span the 2Nn -dimensional vector space. Note that Nn = 1
recovers the NN model and Nn = 2 the NNN model, while
the limit Nn → ∞ corresponds to the Sherrington-Kirkpatrick
model with ±J/

√
N disorder (which, unlike the model

with the canonical Gaussian form [43], has not been solved
in the literature). This model therefore offers yet another
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FIG. 1. Temperature dependence of the Lyapunov observables obtained by Monte Carlo simulations for Nn = 2 (blue), 3 (red), 4 (cyan),
and 5 (magenta), along with the exact results for Nn = 1 (black). (a) Subtracting the high-temperature limit, ln(2), from λ shows it to scale as
β̃2 for β̃ 
 1 and as β̃ for β̃ � 1. (b) The normalized free-energy density f̃ ≡ f/J as a function of the normalized temperature T̃ ≡ T/J .
For Nn � 3, the normalized free-energy monotonically varies as the interaction range increases. It is expected to asymptote to the mean-field
Sherrington-Kirkpatrick limit with ±J/

√
N disorder distribution, but such a disordered model has not yet been solved. (c) The Lyapunov

susceptibility, χL, also shows two regimes. Its growth as β̃2 for β̃ � 1 reveals the finiteness of limN→∞ N (E[f 2
N ] − E[fN ]2), which governs

sample-to-sample fluctuations in the thermal free energy. (d) The correlation length, ξ , diverges exponentially toward T = 0 for Nn = 1, 2,
and 5, but is maximal at T̃ ∼ 0.5 for Nn = 3 and 4, thus demonstrating the nonuniversality of the appropriate order parameter across models
of disordered spin chains. Note that for all the temperatures considered, ξ < Nequil = 0.1N . Note also that the error on the various quantities is
of order

√
χL/(NDN ), and is thus much smaller than the width of the lines in this figure.

way of interpolating between finite- and infinite-dimensional
systems [44–48].

III. MONTE CARLO SIMULATIONS

The Lyapunov exponent [Eq. (1)] and its susceptibility
[Eq. (3)] for the above models can be directly evaluated by
computing the largest eigenvalue for the product of each
sequence of matrices. Because such computation for a large
number of matrices results in numerical inaccuracy, any
reasonable implementation cannot apply this scheme directly,
but instead keeps track of the growth rate of the vector
magnitude [15,16,49]. More specifically, we here randomly
pick an initial normalized 2Nn -dimensional vector, v(i =
1), evaluate the magnification factor m

(α)
i = ‖T (α)

i v(i)‖ after
each transfer matrix multiplication, and then define a new
normalized vector, v(i + 1) ≡ T

(α)
i v(i)/m

(α)
i . In order to lose

memory of the arbitrarily chosen initial vector, the first Nequi

equilibration steps are discarded; hence, the estimate for the
sample Lyapunov exponent is

λ
(α)
N = 1

N

N+Nequi∑
i=Nequi+1

ln
(
m

(α)
i

)
. (12)

Averaging over ND samples provides an estimate of the
Lyapunov exponent, while computing the sample variance
yields the Lyapunov susceptibility upon proper normalization
with N . This scheme can be further generalized to extract the
second-largest eigenvalue of the product of random matrices,
λsub, through Gram-Schmidt orthogonalization [16]. This sec-
ond eigenvalue encodes the correlation length (or correlation
time from a dynamical viewpoint), ξ ≡ 1/(λ − λsub). We here
obtain results with Nequi = 105, N = 106, and ND = 105. In
particular, the equilibration time Nequi is chosen to be much
longer than the correlation length/time at all temperatures
considered.

Results for λ and χL are given in Figs. 1(a) and 1(c), respec-
tively, for Nn = 1, . . . ,5. They all show the same qualitative
trend. At high temperatures, the Lyapunov exponent is well
described by Eq. (8), with λ(T → ∞) = ln(2), the entropy
density of noninteracting spins; at low temperatures, λ ∼ β̃,
which is consistent with the free energy approaching a constant
at T = 0 [Fig. 1(b)]. In that same limit, the susceptibility scales
as χL ∼ β̃2, which suggests that sample-to-sample fluctuations
in the free-energy density are O(N−1/2). Hence, with our
choice of N and ND, the estimates of the Lyapunov exponent
have an accuracy roughly of one part in 100 000, which is
much smaller than the thickness of the lines in Fig. 1.

The correlation length, ξ , is reported in Fig. 1(d). For
Nn = 2 and Nn = 5, the length grows exponentially toward
T = 0, just as in the pure Ising model with Nn = 1. For Nn = 3
and 4, by contrast, ξ initially grows upon cooling but then
decays, reaching a maximum around T/J ∼ 0.5. This result
may seem surprising at first, but in fact reflects the subtlety of
defining order parameters. The relevant quantity depends on
the details of the microscopic interactions and is thus nonuni-
versal across models [50–53]. As an illustration, consider the
Sherrington-Kirkpatrick Nn → ∞ limit, for which ordering
is of a completely different (amorphous) nature. In order to
capture amorphous ordering at low temperatures, correlation
functions have to be appropriately modified. It should therefore
not be surprising that ξ = 1/(λ − λsub) associated with a
particular Nn-spin correlation function does not exhibit a low-
temperature divergence for some of the models intermediate
between Nn = 1 and Nn = ∞.

IV. REPLICA TRICK

In this section, we first review the use of the replica trick to
average over disorder, and then develop the cycle-expansion
method. We show below how the latter is closely related to the
former, but surmounts some of its implementation difficulties.
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A. Replica trick

For systems with quenched disorder, the Lyapunov expo-
nent in Eq. (1) involves averaging over a logarithm, which is
often analytically intractable. The replica trick sidesteps this
problem by looking instead at [13,54,55]

L(n) ≡ lim
N→∞

LN (n) ≡ lim
N→∞

1

N
ln{E[enNλN ]}

= lim
N→∞

1

N
ln

{
E

[∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
n]}

, (13)

which, for integer n, can be regarded as the logarithm of
the average over n replicated samples [56–58]. This quantity
is both analytically and computationally more tractable. The
Lyapunov exponent can then be obtained as

dL(n)

dn

∣∣∣∣
n=0

= lim
n→0

lim
N→∞

dLN (n)

dn

= lim
n→0

lim
N→∞

E[enNλN λN ]

E[enNλN ]

= lim
N→∞

E[λN ] = λ, (14)

assuming that the order of the limits over N and n can
be swapped, which is not (yet) a mathematically rigorous
step [59]. It is possible, however, to rigorously establish that
both limits exist and that L′(0) � λ (see Appendix A). A
similar computation and set of assumptions yield the Lyapunov
susceptibility [60]

χL = d2L(n)

dn2

∣∣∣∣
n=0

. (15)

We next assume that the generalized Lyapunov exponent
L(n) is an analytic function for n ∈ [0,∞). Although once
again not rigorous, this hypothesis is physically reason-
able. No transition—including a replica-symmetry-breaking
transition—can indeed occur at finite temperature in one-
dimensional systems with short-range interactions [61].

Based on these results and assumptions, one might expect
the Lyapunov exponent and susceptibility to be obtained by
extrapolating the slope and curvature, respectively, of L(n)
computed at positive integer n to n = 0 [57]. Specifically, the
assumed analyticity permits a Taylor expansion,

L(n) = L(0) + L′(0)n + 1
2L′′(0)n2 + 1

6L′′′(0)n3 + · · · ,

(16)

with L(0) = 0 (by definition), L′(0) = λ, and L′′(0) = χL.
Figure 2, however, makes clear the technical difficulty of such
an extrapolation. As discussed in Sec. III, models with Nn � 2
in the low-temperature regime, β̃ � 1, have χL ∝ β̃2, while
λ ∝ β̃. As a result, L(n)

n
dips quickly as n approaches the origin.

This rapid curbing prevents the reliable extrapolation of the
intercept from function evaluations at positive integer n, even
if these evaluations are obtained with machine precision and
elaborate extrapolation schemes, such as Padé approximants,
are used. In practice, at low temperatures such a scheme simply
fails.

In passing, we note that the replica trick can also be used to
recover an exact integral equation for the Lyapunov exponent

FIG. 2. Generalized Lyapunov exponents evaluated at integer
values of n for the NNN model at β̃ = 1 (orange) and β̃ = 10 (navy
blue). The diamonds at n = 0 denote the values for limn→0

L(n)
n

= λ

obtained by Monte Carlo simulations. The values of the generalized
Lyapunov exponent are obtained through the tensorial replication
technique described in Refs. [12,57] for n = 1, . . . ,7. A sextic
polynomial fit (dashed lines) gets more or less the correct result
for β̃ = 1, but fails dramatically for β̃ = 10.

[22,23]. In order to attain the accuracy of order ε through such
a scheme, however, the computational cost scales as (1/ε)m−1

for m-by-m transfer matrices due to the need for discretizing
the interval of length m into steps of size ε. Thus, for m > 3
(i.e., for Nn > 1) this approach quickly becomes outperformed
by the Monte Carlo algorithm, which has a computational cost
that scales as (1/ε)2.

B. Cycle expansion

In order to avoid the numerical challenge of a direct replica
extrapolation, we instead consider the cycle-expansion method
[21,38,39]. This computational scheme begins by constructing
the Ruelle dynamical ζ function [62,63],

ζ−1(z,n) ≡ exp

{
−

∞∑
N=1

1

N
[zeLN (n)]N

}
, (17)

which can be evaluated systematically by cycle expansion.
Recall that LN (0) = 0; hence, for n = 0 the series that appears
in the argument of the exponential can be explicitly summed to
yield ζ−1(z,0) = 1 − z, which has a zero at z = 1. In general,
given the thermodynamic limit limN→∞ LN (n) = L(n),

ζ−1(e−L(n),n) = 0 . (18)

Differentiating the above relation with respect to n then
yields [64]

λ = L′(0) = −∂nζ
−1(1,0) and

χL = L′′(0) = λ2 − ∂2
nζ−1(1,0) + 2λ∂z∂nζ

−1(1,0).

Given the formal expression for the ζ function from the cycle
expansion [as detailed in Appendix B, P � denotes the set of
pseudocycles G, with the sign M(G), the probability p(G), the
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length 
(G), and the spectral radius ρ(G), i.e., (the product of)
the largest eigenvalue(s)],

ζ−1(z,n) =
∑
G∈P �

M(G)p(G)z
(G)en ln ρ(G), (19)

we first recover the expression for the Lyapunov exponent
[14,21],

λ = −
∑
G∈P �

M(G)p(G) ln ρ(G), (20)

and then obtain the Lyapunov susceptibility,

χL = λ2 +
∑
G∈P �

M(G)p(G) ln ρ(G)[2λ
(G) − ln ρ(G)].

(21)

Higher moments of the distribution for λN can also be obtained
by further differentiating with respect to n. For example, the
third derivative is proportional to the skewness,

L′′′(0) = lim
N→∞

N2{E[(λN − E[λN ])3]}

= −λ3 + 3χLλ − ∂3
nζ−1(1,0) + 3λ∂z∂

2
nζ−1(1,0)

− 3λ2∂2
z ∂nζ

−1(1,0) + 3(χL − λ2)∂z∂nζ
−1(1,0),

(22)

and the fourth derivative is proportional to the kurtosis,

L′′′′(0) = lim
N→∞

N3{E[(λN − E[λN ])4]

− 3E[(λN − E[λN ])2]2}. (23)

Because each differentiation brings down an overall factor of
N , higher-order derivatives are associated with ever-refined
information about the distribution.

We can further generalize the cycle expansion to glean
information about the whole Lyapunov characteristic exponent
spectrum and, in particular, about the second-largest eigen-
value that controls the correlation length. The derivation of
the cycle-expansion expression for the ζ function indeed only
depends on the positivity and cyclic nature of the weight.

Hence, the above formulas also provide the magnitude of the
subleading eigenvalues via a straightforward replacement of
the spectral radius, ρ(G), by the magnitude of the correspond-
ing rank eigenvalues.

V. COMPARISON

In this section we contrast the strengths and weaknesses of
the Monte Carlo treatment and of the cycle expansion, starting
with their computational efficiencies. Generically, given NTM

transfer-transition matrices to draw from, the number of terms
to be evaluated asymptotically grows as Nk

TM at the kth order
of the cycle expansion. Hence, while the cycle-expansion
method provides a computationally efficient method when
NTM is of order one, the attainable numerical accuracy
quickly deteriorates with increasing NTM, as previously noted
(see, e.g., Ref. [17]). Although a careful comparison of
computational costs depends on implementation details, we
empirically find that the cycle-expansion method converges
much faster than the Monte Carlo algorithm for NTM = 2,
while its efficiency already lags for NTM = 4, at least as far
as the Lyapunov exponent is concerned. For the models at
hand, the computational cost of the cycle expansion can be
curtailed by setting J [1] > 0 through spin redefinitions, which
reduces NTM = 2Nn by a factor of two. With this trick, we have
carried out the cycle expansion to order k = 11 for the NNN
(Nn = 2) and Nn = 3 models, which suffices to recover Monte
Carlo results within their accuracy (see Fig. 3). Comparable
accuracy is, however, harder to achieve for Nn � 4. As far as
the attainable numerical accuracy of the Lyapunov exponent
is concerned, the Monte Carlo algorithm thus almost always
outperforms the cycle-expansion method.

A different balance is, however, reached for the Lya-
punov susceptibility and higher moments. With a naive
implementation of the Monte Carlo algorithm, it becomes
increasingly challenging to assess quantities related to the
large-deviation scaling, such as skewness and kurtosis (see,
however, Ref. [17] for an efficient resampling method). By
contrast, cycle expansions do not encounter such difficulty and

FIG. 3. Lyapunov observables obtained through the cycle-expansion method for Nn = 2 (blue) and 3 (red) at order k = 3 (dashed),
7 (dotted), and 11 (dash-dotted), along with the Monte Carlo simulations results (solid). (a) The normalized free-energy f̃ as a function of
the normalized temperature T̃ . (b) The Lyapunov susceptibility, χL, as a function of T̃ . (c) The correlation length, ξ , as a function of T̃ .
Convergence of the cycle expansion for the subleading eigenvalue is slower than for the leading eigenvalue, but nonetheless suffices to recover
qualitative features including the nonmonotonic temperature evolution of ξ (T ) for Nn = 3.
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FIG. 4. (a) The skewness for the NNN model obtained by the
cycle expansion at order k = 3 (dashed), 7 (dotted), 11 (dash-dotted),
and 15 (solid) quickly converges with increasing k. (b) The skewness
at β̃ = 1 evaluated directly through Monte Carlo simulations as a
function of the number of spins N with a fixed number of disorder
realization ND = 101 (dashed line with triangles), 103 (dotted line
with squares), and 105 (dash-dotted line with circles) fluctuates
around the cycle-expansion result for k = 15 (solid line). The
skewness and higher moments are associated with fine features of
the distribution that otherwise approaches a sharply peaked Gaussian
distribution for large N , making their reliable estimates by simple
Monte Carlo numerically challenging.

quickly converge (see Fig. 4). The cycle-expansion method
thus offers a reliable computational tool for assessing higher
moments pertaining to the large-order behavior, at least when
the number of possible transfer matrices is small or when
the symmetry of the problem reduces the computational cost
associated with evaluating the spectral radius of cycles.

VI. CONCLUSION

We have developed the cycle-expansion method to compute
observables pertaining to the distribution of Lyapunov expo-
nents in systems with disorder. The cycle expansion, when
its computation can be feasibly carried out to tenth order
or so, reproduces the Lyapunov exponent and susceptibility
results from Monte Carlo simulations, and yields far more
accurate estimates of higher-order moments, such as the skew-
ness. The derivation of these cycle-expansion expressions,
however, crucially relies on the analyticity of the generalized
Lyapunov exponent. While such analyticity appears physically
reasonable in the absence of replica symmetry breaking, a
formal proof is still lacking. It would also be interesting to
develop a method that could capture the large-order behavior
of higher-dimensional systems and systems with continuous
distributions of quenched randomness, for which intricate
dynamical effects, such as glassiness, are expected.

Data associated with this work are available from the Duke
Digital Repository [65].
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APPENDIX A: PROPERTIES OF THE GENERALIZED
LYAPUNOV EXPONENT

Though the results contained in this appendix are likely
known to experts in the field, we here provide their succinct
derivations.

In order to prove the existence of the limit defining the
generalized Lyapunov exponent, we observe that

(N+M)LN+M (n) = lnE

[∥∥∥∥∥
N+M∏
i=1

Ti

∥∥∥∥∥
n]

� lnE

[(∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
n∥∥∥∥∥

N+M∏
i=N+1

Ti

∥∥∥∥∥
n)]

� lnE

[∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
n]

+ lnE

[∥∥∥∥∥
N+M∏
i=N+1

Ti

∥∥∥∥∥
n]

= NLN (n) + MLM (n).

The last two steps hold because Ti is an independent and
identically distributed sequence, although the argument can
also be extended to handle random matrices generated by a
finite-memory Markov process. The result shows that NLN (n)
is subadditive in N and implies that

L(n) ≡ lim
N→∞

1

N
LN (n) = inf

N�1

1

N
LN (n)

exists for n ∈ [0,∞). Similarly, the derivative

L′
N (n) =

E
[∥∥∥∏N

i=1 Ti

∥∥∥n

ln
∥∥∥∏N

i=1 Ti

∥∥∥]
E

[∥∥∥∏N
i=1 Ti

∥∥∥n]
exists for all n ∈ [0,∞) and L′

N (0) = E[ln ‖∏N
i=1 Ti‖].

The convexity of LN (n) can be shown as

LN [αn0 + (1 − α)n1] = 1

N
lnE

⎡
⎣

∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
αn0+(1−α)n1

⎤
⎦

� 1

N
ln

⎡
⎣

(
E

∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
n0)α(

E

∥∥∥∥∥
N∏

i=1

Ti

∥∥∥∥∥
n1)1−α

⎤
⎦

= αLN (n0) + (1 − α)LN (n1),

where Hölder’s inequality is used in the second step. Because
LN (n) is convex and differentiable, it follows that L(n) is
convex and L′

N (n) → L′(n) at all points where L′(n) exists
[66]. This further implies that

L′(0+) � lim
N→∞

L′
N (0) = λ.

APPENDIX B: NOTATIONS FOR CYCLE-EXPANSION
EXPRESSIONS

A product of 
 transfer matrices, G = Ta1Ta2 · · · Ta

, speci-

fies a cycle of length 
(G). The probability of G appearing
among all the cycles of the same length 
 is denoted as
p(G), which in our models uniformly equals ( 1

2Nn )

(G)

. A cycle
G is prime if there is no cycle G′ of length 
(G′) < 
(G)
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with G = (G′)
(G)/
(G′) [21]. For example, T1T2T2T1 is prime,
but T1T2T1T2 is not. Prime cycles are further grouped into
equivalence classes, in which two products are identified if
they are related by a cyclic permutation, such as T1T2T4T5 and
T4T5T1T2. The set of all such equivalent classes is denoted P .
A size-h subset, G = {G1,G2, . . . ,Gh}, is known as a pseu-
docycle, where Gμ ∈ P for μ = 1, . . . ,h and Gμ �= Gν for
μ �= ν [14]. In particular, note that G = {T1T2T3,T2T3,T1T2}
is a pseudocycle, while {T1T2T3,T1T2,T1T2} is not because
the element T1T2 is repeated. The set of all pseudocycles,
which is the set of all subsets of equivalent classes of prime
cycles, is denoted P �. Finally, various quantities are naturally
defined as (i) the length 
(G) = ∑h

μ=1 
(Gμ), (ii) the proba-

bility function p(G) = ∏h
μ=1 p(Gμ), (iii) the Möbius function

M(G) = (−1)h, and (iv) the weight ρ(G) = ∏h
μ=1 ρ(Gμ),

where ρ(Gμ) is the spectral radius of the matrix Gμ.
Cycle expansions are truncated at kth order by summing

over all the pseudocycles of length 
(G) � k, where the same
maximum length k should be used in the cycle-expansion
expressions of ∂s1

z ∂s2
n ζ−1(1,0) for all s1 and s2. With this

truncation scheme, dilatation symmetry is preserved. That
is, uniformly multiplying transfer matrices by c, Ta →
cTa , makes the Lyapunov exponent λ → λ + ln(c), while
the susceptibility χL and higher-moments remain invariant.
To confirm this symmetry, it is useful to use the iden-
tity

∑
G∈P �;
(G)=
0

M(G)p(G) = δ
0,0 − δ
0,1 that follows from
Eq. (19) evaluated at n = 0, where, in particular, ζ−1(z,0) =
1 − z.
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