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The Clausius inequality form of the second law of thermodynamics relates information changes (entropy) to
changes in the first moment of the energy (heat and indirectly also work). Are there similar relations between
other moments of the energy distribution, and other information measures, or is the Clausius inequality a one
of a kind instance of the energy-information paradigm? If there are additional relations, can they be used to
make predictions on measurable quantities? Changes in the energy distribution beyond the first moment (average
heat or work) are especially important in small systems which are often very far from thermal equilibrium. The
additional energy-information relations (AEIR’s), here derived, provide positive answers to the two questions
above and add another layer to the fundamental connection between energy and information. To illustrate the
utility of the new AEIR’s, we find scenarios where the AEIR’s yield tighter constraints on performance (e.g.,
in thermal machines) compared to the second law. To obtain the AEIR’s we use the Bregman divergence—a
mathematical tool found to be highly suitable for energy-information studies. The quantum version of the AEIR’s
provides a thermodynamic meaning to various quantum coherence measures. It is intriguing to fully map the
regime of validity of the AEIR’s and extend the present results to more general scenarios including continuous
systems and particles exchange with the baths.
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I. INTRODUCTION

Thermodynamics is a remarkable theory. It was originally
conceived to describe practical limitations of steam engines,
and now it is one of the pillars of theoretical physics with
applications in countless systems and scenarios. As Einstein
said, “It is the only physical theory of universal content, which I
am convinced, that within the framework of applicability of its
basic concepts will never be overthrown.” It is now established
that basic thermodynamic laws such as the Clausius inequality
(second law) hold even when the system is composed of a
single particle with only few energy levels and the evolution
is nonclassical [1–4]. Consequently, the Carnot efficiency
limit holds for arbitrary small and/or quantum heat machines.
Nevertheless, this does not exclude the appearance of quantum
effects in microscopic heat machines [5–7]. Even without
quantum interference or entanglement the thermodynamics of
small systems is fascinating. Small systems like biological
machines typically operate far from equilibrium and may
be subjected to strong thermal fluctuations. For example,
thermodynamics has been applied to the study of biological
replication of DNA [8,9]. More generally, nonequilibrium
statistical mechanics and stochastic thermodynamics have
been the subject of intensively study in recent years (see
[10–12] and references therein). A single ion heat engine [13]
and a multiple ion refrigerator [14] have recently been exper-
imentally demonstrated, and there are various suggestions for
heat machine realization in superconducting circuits [15,16],
optomechanics [17,18], and cavity QED [19].

Thermodynamics has been traditionally applied to macro-
scopic objects where deviations from averaged quantities (even
outside equilibrium) are too small to be measured or to
be of any practical interest. With the growing experimental
capabilities in the microscopic realm, there is a growing
motivation to consider fluctuations from a thermodynamic

point of view and go beyond the first moment of the energy
distribution. Are there second laws for other quantities? If
there are such laws, we ask if they can be expressed in
energy-information form and maintain the structure of the
standard second law.

The relation between energy and information has led to a
deep understanding of the foundations of thermodynamics.
A few examples include Maxwell demon, Szilard engine,
and Landauer erasure principle. The Clausius inequality (CI)
presents the energy-information relationship in a clear and
concise way,

�S −
∫

δQ/T (t) � 0; (1)

Q is the heat exchanged with a bath at temperature T (t),
and S is the entropy of the system. The heat and entropy
relation is used daily in the study of thermal interactions. For
example, in a first order phase transition the latent heat is
associated with the disorder difference of the two phases. The
Clausius inequality (1) is one of the most versatile forms of
the second law. It applies to nonperiodic processes, to multiple
heat baths (as needed for heat machines), and also for states
that are initially and/or finally far from thermal equilibrium
[20]. Moreover, as mentioned above, the CI holds even in the
quantum microscopic realm.

In contrast to a macroscopic fluid at equilibrium, at the
microscopic scale the system typically does not have a classical
equation of state with just a few thermodynamic variables.
The entropy that appears in the CI in such a case is the von
Neumann entropy [3] of the system, and it is defined regardless
of equilibrium or an equation of state. Up to Sec. IV, we deal
only with statistical mixtures of energy eigenstates, so the von
Neumann entropy reduces to the Shannon entropy in the energy
basis of the system S = ∑

j −pj ln pj , as in the framework of
stochastic thermodynamics [10].
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TABLE I. Comparison between additional frameworks that pre-
dict constraints on thermodynamic processes. The standard second
law is not just a mathematical constraint, it has an energy-entropy
structure. Among the known extensions of the second law only the
additional energy-information relation (AEIR) here derived provides
additional energy-information relations. Other features are compared
in the text.

In recent years, the second law has been explored and
extended in two very different frameworks. The first is
stochastic thermodynamics (and nonequilibrium statistical
mechanics). The Jarzynski fluctuation relations for work
[12,21] can be viewed as a generalization of the second law
(in certain scenarios) which is applicable to higher energy
moments. This approach has been successfully applied to heat
machines as well [16,22]. The results in [16,22] are important
and interesting, but they do not relate changes in information
to changes in energy. The other framework that can be viewed
as an extension of the second law is thermodynamic resource
theory [23–26]. In this framework properties of completely
positive maps are used to construct monotones that must
decrease under thermal interactions with a single bath. Despite
the appealing elegance of this framework it has a major
drawback: these monotones are so far not related to observable
quantities. Nonetheless, there are interesting insights arising
from this framework (e.g., [27]). More important for the
present work is the fact that resource theory is not formulated in
terms of information and energy. A more extensive discussion
on resource theory appears in Appendix D.

In this paper we present a third way of extending the
second law. Our approach is based on the energy-information
paradigm and has the same logic and underlying structure as
the standard second law (that said, some special features of
the CI do not hold for the more general energy-information
relation). Our results clearly show that such additional energy-
information relations exist. The results presented here should
be further extended and explored. Yet, we emphasize that even
this first study provides valuable predictions and significantly
extends our understanding of the interplay between energy,
information, and the mathematical framework that connects
them. A summary of the three approaches for extending the
second law is given in Table I.

Finally, we wish to give one more motivating argument for
the study of additional second laws. Consider the following
scenario: a system with a time-independent Hamiltonian H is
connected to a thermal bath and reaches a thermal state with
an average energy 〈H 〉f . The heat in this case is determined by
the change in the average energy with respect to the initial state
Q = 〈H 〉f − 〈H 〉0. When the initial state is not thermal but
satisfies 〈H 〉0 = 〈H 〉f something puzzling takes place from

the thermodynamic point of view. It is clear that the bath
has changed the energy probability distribution of the system
(despite the fact that the average has not changed). We ask the
following: (1) Since the system has changed, the bath must
have changed as well—is it possible to thermodynamically
quantify the change in the bath when Q = 0? (2) A change
in the energy probability distribution of the system implies
that some of the energy moments have changed as well. Is
it possible to formulate a thermodynamic framework for the
change in energy moments other than the first? Even though
there seems to be no immediate reason to assume there are
thermodynamic answers to these questions, this paper provides
a possible answer by formulating “Clausius-like” inequalities
for higher order energy moments.

Changes in the higher moments of the energy are not only
important for understanding the system dynamics far from
equilibrium. They are also important for understanding the
back action on heat reservoirs with finite heat capacity. By
studying the changes in higher moments of the bath, it is pos-
sible to quantify to what extent the bath has deviated from equi-
librium by interacting with the system (when the heat capacity
of the bath is not infinite as in the ideal case). For example, for
a thermal state in the bath, we expect a certain relation between
the first and second moment of the energy. This relation still
holds if the bath is heated to a different thermal state. However,
if energy entered the bath, but the bath does not relax to
equilibrium (e.g., because it is too small), then the thermal
relation between the moments will no longer hold. We return
to this point later on when discussing the impact on the bath.

II. MAIN FINDINGS

In this section we present the AEIR’s in their simplest form
and not in their more general form derived in Appendix A.
In the main text we deal with cases where only one bath is
connected to the system at a given time. However several baths
can be connected sequentially in time so that the temperature
of the bath is time dependent. That is, instead of the notation∑

βkQk in the CI we shall use the notation
∫

δQ

T (t) for sequential
connection to multiple baths at different temperatures. The
generalization to simultaneous connection to several baths is
discussed in Appendix A.

Let the system be composed of a finite set of states j =
1, . . . ,N whose energies are {Ej }Nj=1. The probability to be in
a state “j” is pj (to separate the stochastic part of the paper
from the quantum part, we use quantum notations only in
Sec. IV). The energy probability distribution of a thermal state
with inverse temperature β = 1/T is pβ,j = e−β(Ej −F ), F =
− 1

β
ln

∑
j e−βEj = − 1

β
ln Z is the standard free energy, and Z

is the partition function. As in the stochastic thermodynamics
framework [10] the energy levels can be varied in time, and
the system (or parts of it) can interact with thermal baths at
different temperatures.

Until Sec. III, our main object of interest is the F -shifted α

energy moment,

Hα = 〈[H (t) − F (t)]α〉 =
∑

j

pj [Ej (t) − F (t)]α, (2)

F (t) = T (t) ln
∑

j

exp[−Ej (t)/T (t)], (3)
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where α is a real and positive number (α is not necessarily an
integer). This quantity is an observable that can be evaluated
from energy measurements. It contains information on higher
moments of the energy distribution. The appearance of the
instantaneous free energy F (t) is interesting. First, it makes
H − F a positive operator so any α � 0 power of H − F

is well defined. Second, it makes (H − F )α invariant to
uniform shifts of all the levels by a constant (in contrast to a
regular moment 〈Hα〉). The variance, for example, is also shift
invariant but the subtraction of the average makes the variance
a nonlinear function of pj which significantly complicates
the analysis. Nonetheless, in a certain class of cases H2 will
be equal to the energy variance. The appearance of F (t) in
(2) follows from the derivation of the AEIR as explained
below. Note that using (3) for cold enough and hot enough
temperatures Hα takes a simple form,

Hα −→
T �E2−E1

∑
j

pj [Ej (t) − E1(t)]α, (4)

Hα −→
T �EN −E1

(−F )α + α(−F )α−1〈H 〉, (5)

where in (5) we expanded in the leading order in 1/T . Now
that we have an energy related quantity, it is possible to define
its flows in the same way it is done for the average energy
(e.g., [28])

Wα �
∫ tf

ti

dt
∑

j

pj

d

dt
[(Ej − F )α], (6)

Qα �
∫ tf

ti

dt
∑

j

dpj

dt
(Ej − F )α. (7)

In the present paper the subscript f stands for final and i

stands for initial (to prevent confusion, i will not be used as
a summation index). Just like in the α = 1 case, the logic
behind these definitions is that if the levels are fixed in time,
the changes in energy must be due to heat exchange with the
environment. If the populations are fixed the change in energy
must be work related. Note that in the high temperature limit,
the constant term (−F )α in (5) cancels out, and does not appear
in the high temperature expression for Qα . From (6) and (7)
we get

�Hα = Qα + Wα. (8)

We first consider two elementary thermodynamic primitives:
(1) Isochores: the system is coupled to a bath and the energy
levels Ej do not change in time. (2) Adiabats: the system is
not connected to a bath, and the energy levels change in time
(energy populations are fixed in time). Note that adiabats need
not be slow. The use of this term refers to an “adiabatic” process
in macroscopic classical thermodynamics, where the system is
isolated from the environment, and consequently the entropy
of the system does not change in time. Isochores involve
only heat, while adiabats involve only work. Other processes
such as isotherms can be constructed by concatenating these
two primitives [28]. We now proceed to the derivation of an
important family of the AEIR: the αEIR.

Let us first consider a basic isochore thermalization pro-
cess: the system is connected to a single bath with inverse

temperature β and the levels of the system do not change in
time. In Appendix A we show that for isochores

�Sα − Qα

T α
= DB

α ( �pi, �pβ) − DB
α ( �pf , �pβ). (9)

On the left hand side (LHS) we introduce the α information
function Sα which is defined as

Sα =
∑

j

∫ pj

c0

(− ln x)αdx =
⎡
⎣∑

j

�(α + 1,− ln pj )

⎤
⎦

−�(α + 1,0), (10)

where � is the indefinite � function. Sα was first introduced as
an information measure in [29]. The lower limit of the integral
adds a constant term to Sα . For convenience, c0 was chosen so
that Sα = 0 for deterministic states (one probability is equal
to 1 and the rest are equal to 0). S1 is the standard Shannon
entropy S = −∑

pj ln pj . In Appendix E we comment on the
physicality of Sα compared to the standard Shannon entropy.
In short, we argue that at least in our context Sα and S have
the same functionality: both are used to put restrictions on
energy changes created by a thermal bath. The relation of Sα

to information is discussed after stating the AEIR.
On the right hand side (RHS) of (9) we have the Bregman

divergence of the initial state of the system �pi and the final
state of the system �pf with respect to the thermal state �pβ . The
definition of the Bregman divergence DB

α ( �p2, �p1) is [30]

DB
α ( �p2, �p1)

.= Sα( �p1) − Sα( �p2) + ( �p2 − �p1) · ∇Sα(p1).

(11)

This divergence and its appealing geometric interpretation
are described in Appendix A. For now, it suffices to know
only several of its key features. First, mathematically, it is a
divergence so it satisfies DB

α ( �p2, �p1) � 0 and DB
α ( �p2, �p1) =

0 ⇔ �p2 = �p1. Second, DB
α ( �p2, �p1) is convex in the first

argument �p2 (see Appendix A). Third, for α = 1, DB
1 is the

Kullback-Leibler divergence (relative entropy) DKL( �p2, �p1) =∑
j p2,j ln(p2,j /p1,j ).
Equation (9) is an identity valid for isochores. To make

use of it we need to make some physical statements on
one of the sides of the identity. A thermal interaction is a
map Mβ( �pi) = �pf with the thermal state as a fixed point
Mβ( �pβ) = �pβ . The RHS of (9) is a measure of contractiveness
of the map. DB

α ( �p, �pβ) can be regarded as a proximity measure
(a divergence, not necessarily a distance) between the state �p
and �pβ . Thus, a positive value in the RHS of (9) implies Mβ

is contractive with respect to �p (under the DB
α measure), i.e.,

�pf is closer than �pi to the fixed point �pβ (in terms of DB
α ).

While the LHS is the content of the physical law, the
RHS sets its regime of validity. Consider the case of full
thermalization where �pf = �pβ . Since DB

α ( �pf = �pβ, �pβ) = 0
it follows from (9) that �Sα − Qα

T α � 0. In Sec. II E we show
that in addition to the contractiveness interpretation of the
RHS, it also has an appealing thermodynamic interpretation
related to reversible processes and maximal work extraction.

In Sec. II C we discuss cases where the RHS of (9) is
guaranteed to be positive, but for now let us assume it is
positive for isochores and see how various thermodynamic
results emerge. Consider a thermodynamic protocol composed
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of an infinitesimal concatenation of isochores and adiabats. It
is assumed that the isochores are short enough so that the
temperature of the bath in each isochore is fixed. Hence,
isochore l satisfies δS (l)

α − 1
T(l)

α δQ(l)
α � 0. The adiabats that

connect the isochores carry zero α heat, δQα = 0, and they do
not change the entropy δSα = 0. Summing the infinitesimal
contributions of both isochores and adiabats we get our first
main finding: the αEIR family of the AEIR’s,

�Sα −
∫ d

dt
Qα

T (t)α
dt � 0. (12)

See (A9) for a more general form with simultaneous con-
nection to multiple baths. In the study of heat machines the
periodic form of the second law − ∮

δQ(t)
T (t) � 0 is highly useful.

For a periodic protocol, as in heat engines and refrigerators, the
system reaches a cyclic operation �p(t + τcyc) = �p(t) where
τcyc is the cycle time. Since in this case �Sα = Sα[ �p(t +
τcyc)] − Sα[ �p(t)] = 0 we get the analog of the periodic CI,

−
∮

δQα(t)

T α(t)
� 0, (13)

where δQα is the α heat transferred during a short time dt .
The advantage of this form is that it is completely free of Sα .

In isotherms (IST), the system is always in the Gibbs state
pβ = pβ(t)[H (t)] = e−β(t)[H (t)−F (t)] (even though β and/or the
energy levels can vary in time). As shown at the end of
Appendix A, by considering an infinitesimal concatenation
of isochores and adiabats one can show that

�SIST
α −

∫
δQIST

α /T (t)α = 0. (14)

There is an alternative and simple way to obtain relation
(14) for isotherms. Consider a protocol where the system
Hamiltonian is changed in time H = H (t), but the system
is always in thermal equilibrium pβ(t)(H (t)) = e−β(t)[H (t)−F (t)]

[for this the change in H (t) should be much slower than
the thermalization time]. Using (7) and (10) for isotherms
p = pβ(t) we find∫

δQIST
α

T (t)α
=

∑
j

∫ pf in

pi

(H − F )αj
T (t)α

dp,j

=
∑

j

∫ pf in

pi

(− ln pβ,j )αdpβ,j

≡ Sα( �pβ,f in) − Sα( �pβ,i). (15)

Therefore we obtain the equality of the αEIR �SIST
α =∫

β(t)αδQIST
α .

Reversible processes consist of (noninfinitesimal) se-
quences of isotherms and adiabats (for adiabats �Sα = Qα =
0) so we can write

�Sα −
∫

δQR
α

T (t)α
= 0, (16)

where QR
α is the heat absorbed in a reversible process. We

now wish to clarify the difference between (14) and (16). Any
isotherm must start and end in thermal equilibrium. Thus, the
end points of adiabats between isotherms are fully determined.
However, an adiabat at the end of the protocol need not end at a

thermal state. Consequently, a reversible process may involve
a final state that is very different from a thermal state (a similar
argument can be applied for the initial state). Nonetheless, (16)
states that the equality in the AEIR is valid also for reversible
processes that start or end out of equilibrium.

Finally, we conclude that the AEIR’s are not just inequal-
ities; they are inequalities that are saturated for reversible
processes. In perfect analogy to the standard second law, if
a reversible process is given the CI implies that all possible
irreversible processes with the same end point will be less
optimal (e.g., produce less work and consume more heat).
This is discussed in detail in Sec. II B.

A. Information in the AEIR and extensivity

By virtue of the AEIR, Sα is the information conjugated
to Qα heat. The reasons for associating Sα with information
are the following: (1) Sα of a pure (deterministic) state is
zero. (2) Sα is symmetric. It is invariant to rearrangement
(permutation) of the probabilities. (3) It increases under doubly
stochastic transformations, and it obtains a maximal value for
the uniform distribution. The third property follows from the
fact that Sα is Schur concave. The Schur concavity is a built-in
feature of the Bregman formalism described in Appendix A.
The reason for expecting this property is that doubly stochastic
transformations are mixtures of permutations, and they smear
out the probability distribution and make it more random.

Note that we have not imposed further requirements on the
information measure such as extensivity. Qα is in general not
an extensive quantity so the information conjugated to it need
not be extensive either.

B. Single bath forms and reversible state preparation

In this section we study the case where a single bath with a
fixed temperature T is available to interact with the system [in
contrast to the more general T (t) used until now]. From (12)
and (16) we conclude that in the validity regime of the αEIR,
any process that includes adiabats, isotherms, and isochores
satisfies

Qα � QR
α , (17)

Wα � WR
α , (18)

where QR
α ,WR

α are the reversible α heat, and the reversible
α work gained by going from { �pi,Hi} to { �pf ,Hf } in a
reversible protocol. Qα,Wα are the heat and work gained in
an irreversible process between the same { �p,H } end points.
Equation (18) is obtained from (17) and (8).

In analogy to standard thermodynamics, the reversible α

work that can be extracted by going from { �pi,Hi} to { �pf ,Hf },
takes the form

WR = �Fα − T αDB
α ( �pi, �pβ,i) + T αDB

α ( �pf , �pβ,f ),

(19)

�pβ,i(f ) = exp[−β(Hi(f ) − Fi(f ))], (20)

where Fα = Hα( �pβ) − T αSα( �pβ) is the α order (equilibrium)
free energy. Equation (19) is proven in Appendix B. Note that
one can also define a quantity F̃α( �p) = Hα( �p) − T αSα( �p)
that is the αEIR analog of the so called “nonequilibrium free
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energy” [4,31] [for equilibrium states F̃α( �pβ) = Fα]. With this
definition the WR

α is given by WR
α = �F̃α .

We point out that Landauer erasure [32] is a special case of
thermal state preparation. Thus, the reversible limit (17)–(19)
bounds the changes in α moments in erasure scenarios as well.

From (17) and (18), we deduct the single bath cyclic
formulation of the second law

∮
dWα � 0: it is impossible

to extract α work in a periodic process with a single bath.
Similarly,

∮
dQα � 0 implies that an α heat cannot be

extracted from a single bath in a periodic process (the changes
in the bath are studied in Appendix C).

C. Regime of validity

From (9) the αEIR (12) validity condition for a single bath
isochore is

DB
α ( �pi, �pβ) − DB

α ( �pf , �pβ) � 0. (21)

Next, it is shown that this validity condition is guaranteed to
hold in the following cases:

(i) strong thermalization: �pf is equal or sufficiently close
to �pβ .

(ii) uniform thermalization map �pf = (1 − y) �pi + y �pβ

where 0 � y � 1.
(iii) two-level system
(iv) isotherms
(v) adiabats
The first regime follows from the fact that DB

α ( �pf →
�pβ, �pβ) → 0 so that the RHS of (9) is positive. This is a very
important regime as it can take place in different thermalization
mechanisms and also in the presence of initial correlation with
the bath. Usually for α = 1 CI it is assumed that the system
and bath [2,3] are initially uncorrelated. However, this is not
a necessary condition when the final state is thermal or very
close to it. Thus, the first validity regime is indifferent to initial
system-bath correlations for any α > 0.

The second regime follows from the fact that the Bregman
divergence (11) is convex in its first argument [33]. The third
regime holds since the thermalization of a two-level system is
always uniform so the two-level case is always contained in
the second regime. For isotherms each of the divergence terms
in (21) is zero so the αEIR holds as an equality. For adiabats
�pf = �pi , and once again we get zeros in (21).

Potentially, the regime of validity is much larger than
outlined above. Numerical studies showed that significant
deviations from the uniform thermalization map still satisfy
(21). This is a subject for further research. Nevertheless, the
examples given later demonstrate that the above regimes are
already sufficient for showing that the various αEIR bring
additional insights to thermodynamic scenarios of microscopic
systems.

For α = 1, the αEIR reduce to the CI and the DB in the
validity condition in (21) reduces to the relative entropy. When
the thermalization can be described by a completely positive
trace preserving map (CPTP) with a Gibbs state as a fixed
point, the relative entropy of a state with respect to a fixed
point of the map is always decreasing (including quantum
dynamics). This means that condition (21) for α = 1 is satis-
fied for such thermalization maps. CPTP maps arise naturally
when an initially uncorrelated system and a bath interact via a

unitary operation. The thermal operations in thermodynamic
resource theory are an example of such operations. From this
we conclude that for α = 1 our derivation has the same validity
regime as that obtained from other derivations based on CPTP
maps [1–4,34,35].

For α 
= 1 condition (21) may not be satisfied for CPTP.
For example, consider a three-level system where all levels are
initially populated. If only levels 2 and 3 are coupled to a bath
then in general (21) may not hold for α 
= 1 [even though the
ratio of p3/p2 gets closer to the Gibbs factor exp[−β(E3 −
E2)]].

A smaller regime of validity is not always a disadvantage.
The invalidity of one of the αEIR can give us information on
the thermalization process under progress. For example, if in
a periodic system (13) is not satisfied we can rule out any of
the thermalization scenarios described in the bullets above.
Moreover, a regime of invalidity might be useful for some
purposes since it is less constrained. Applying such ideas for
α 
= 1 in heat machines is outside the scope of this paper.

D. Allowed operations

Analogously to thermodynamic resource theory [23–25],
the regime of validity can be formulated in terms of allowed
operations. Instead of giving a validity condition it is possible
to restrict the set of allowed physical processes. Assuming
that the system starts in valid initial condition, any allowed
operation will keep the system in the validity regime. For
example, in a restricted set of operations that includes only
full thermalization, uniform thermalization, and adiabats, the
AEIR’s hold.

E. Functional definition of a bath and reversible
work availability

Equation (9) is the quintessence of the second law (CI more
accurately): both the standard CI and the additional relations
that are studied in this paper. Thermodynamics describes
interactions with baths. What is a bath, then? There are two
main answers and both are useful. One approach describes
the bath and its physical properties such as temperature,
correlation function, heat capacity, etc. As a second approach
we suggest the functional definition of a bath. The ideal
operation of a bath would be to take any initial state of a system
and change some of its properties (e.g., energy moments, or
other observables) into predefined values that are independent
of the initial state. For example, a thermal bath takes any initial
state to a Gibbs state �pβ with temperature 1/β. The Gibbs state
is the fixed point of the map the bath induces on the system.

In practice the bath is not connected to the system for an
infinite amount of time so the process may not be completed.
Moreover, if the bath is small compared to the system, it may
not have enough energy to complete the thermalization of the
system (even though the Gibbs state is a fixed point of this
interaction). Nonetheless, it is expected that the final state in
these scenarios will be “closer” to the thermal state compared
to the initial state. What is the measure of proximity we should
use in order to make sure we have valid thermodynamic
laws, e.g., (12)? This is exactly the Bregman divergence
difference (21).
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Equation (9) tells us that if the RHS is negative it simply
indicates that the device we used for a bath has failed to operate
as a bath since it did not decrease the proximity measure of
interest.

A “good bath” is one that satisfies (21) for any �pi , however
for specific applications such as heat machines it may be
sufficient that this condition holds only for the �pi and �pf

of interest (e.g., those that appear in cyclic operation).
Condition (21) has a very appealing thermodynamic in-

terpretation. From (18) and (19) we see that T αDB
α ( �pi, �pβ)

expresses the maximal α work that can be extracted by
going from �pi to �pβ when the initial Hamiltonian and final
Hamiltonian are equal (but may be changed in the middle)
so that �Fα = 0. Let us use the term “available α work”
Aα( �pi) � T αDB

α ( �pi, �pβ). The quantity Aα is analogous to the
ergotropy [36] in closed quantum systems. The only difference
is that ergotropy quantifies the work that can be extracted using
only unitaries, while here a bath can be connected as well.

In general, when thermalizing we expect that Aα will
decrease. This means that the thermal bath makes the system
less “thermally active.” In full thermalization the state becomes
�pβ which is “thermally passive” (Aα = 0).

F. Intermediate summary

The underlying principles of the AEIR’s as studied so far
in this paper can be summarized as follows:

(i) Changes in α order energy moments are associated with
changes in a corresponding information measure Sα . The two
are related by α order Clausius inequality (12) and (A9). The
AEIR’s establish additional energy-information relations.

(ii) The AEIR’s saturate and become equalities in reversible
thermodynamic processes.

(iii) Different energy moments are associated with different
divergences that constitute a validity criterion for the function-
ality of the bath. When the bath brings the system closer to
the thermal state according to the α divergence measure, the α

order AEIR hold.
(iv) Several important αEIR validity regimes have been

identified but it is important to explore and find additional
regimes.

III. ADDITIONAL ENERGY-INFORMATION RELATIONS
BASED ON RÉNYI ENTROPY AND α IMPURITY

In the αEIR we started with some energy moments of
interest (2) and found the corresponding information measure
that is related to it via the αEIR. In this section we go in the
other direction: we pick information quantities of interest and
find the moments that are related to them via the AEIR.

As shown in Appendix A, ∂pS(p) can be any monotonically
decreasing function in p ∈ [0,1], and lead to an AEIR.
Alternatively,S can be any concave and differentiable function
in the regime p ∈ [0,1]. Let us first choose S to be the
α̃ impurity [37–41] Sα̃( �p) = 1

α̃−1 (1 − ∑
pα̃

j ) (α̃ � 0 can be
a fraction). This quantity is often called “Tsallis entropy”
[40,41], but to prevent unnecessary technical confusions we
use here the term “α̃ impurity” [42]. For α̃ � 0, ∂pSα̃ is a
decreasing function and we can use our AEIR formalism and

get the analog of (9) for the α̃ impurity,

�SB
α̃ + α̃

α̃ − 1
�〈e−(α̃−1)β(H−F )〉

= DB
α̃ ( �pi, �pβ) − DB

α̃ ( �pf , �pβ). (22)

The AEIR (22) is written here for simplicity just for
isochores. From the time derivative of the observable
+ α̃

α̃−1 〈e−(α̃−1)β(H−F )〉 one can define α̃ heat and α̃ work and
get an α̃EIR valid for isochores, isotherms adiabats, and their
combination (as done in Sec. II),

�SB
α̃ −

∫
δQα̃ � 0, (23)

δQα̃ = α̃

α̃ − 1

∑
j

δpj e
−(α̃−1)β(Ej −F ). (24)

As in the previous αEIR, when setting α̃ = 1 in (22) it reduces
to the standard Clausius inequality. Another important case
is α̃ = 2 where SB

α̃ is equal to minus the purity of the state
(plus a constant), and the Bregman divergence is the standard
Euclidean distance squared, DB

α̃ ( �pi, �pβ) = ‖ �pi − �pβ‖2
2. While

in general the Bregman divergence is not a distance, for α̃ = 2
it is. The regime of validity is given by the positivity of the
RHS of (22). The regime of guaranteed validity is at least
as large as that given in Sec. II C. This time the information
we obtain is on 〈e−(α̃−1)β(H−F )〉 = ∑

pje
−(α̃−1)β(Ej −F ). The

information on higher order moments of the distribution is
wrapped in an exponential form. In fact, this exponential
form is the moment generating function of the distribution.
Using the Markov inequality it is possible to learn about the
tail of the distribution P (e−(α̃−1)β(Ej −F ) � ξ ) � 〈e−(α̃−1)β(H−F )〉

ξ
.

Another advantage of this form is that the free energy can
easily be pulled out and be replaced by a different constant
Eref :

〈e−(α̃−1)β(H−F )〉 = e−(α̃−1)β(Eref−F )〈e−(α̃−1)β(H−Eref )〉. (25)

For example, Eref can be the ground state energy or the average
energy. For Eref = 0 (25) shows that F is a factor that can be
pulled out from the expectation value (in contrast to Hα). This
is useful when considering the interaction with the bath (see
Appendix C).

Here as well, there is a periodic form of the α̃ second law,

1

α̃ − 1

∮
k

∑
j

dpje
−(α̃−1)βk (t)[Ek,j (t)−Fk (t)] � 0. (26)

The
∮
k

symbol stands for summation over connection to
different baths βk during a cycle.

The AEIR can be applied to the Rényi entropy Rᾱ( �p) =
1

1−ᾱ
ln

∑
pᾱ

j as well. This time ᾱ is limited to 0 � ᾱ � 1
where the Rényi entropy is concave. For ᾱ = 1 the Rényi
entropy reduces to the Shannon entropy. The ᾱEIR is given by
(22) with SB

α̃ → Rᾱ and δQα̃ → δQᾱ ,

δQᾱ = ᾱ

1 − ᾱ

∑
j δpj e

−β(ᾱ−1)(Ej −F )∑
j (pβ,j )ᾱ

. (27)

The validity regime is at least as large as described in Sec. II C.
In the ᾱEIR analog of (9) the divergence is given by the
Bregman divergence with Rᾱ instead of Sα . This divergence
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is not the Rényi divergence that is used in thermodynamic
resource theory [23–25].

High temperature limit

In this section we study the high temperature limit of the α̃

impurity AEIR (α̃EIR). First we consider periodic operation
(26) where S does not appear. For any β that is small enough,
the Taylor expansion of the exponent in (26) leads to the
standard periodic form of the second law, − ∮

dQ

T
� 0. It is

interesting that until now to obtain the CI from a AEIR we
took the limit α → 1,α̃ → 1, etc. However here we see that
the periodic form emerges for high temperatures even when
α̃ 
= 1. To be more precise the condition for being hot enough
emerges from the expression

〈e−β(α̃−1)(H−F )〉 = e−β(α̃−1)[(Emax+Emin)/2−F ]

×〈e−β(α̃−1)[H−(Emax+Emin)/2]〉. (28)

Now the Hamiltonian in the exponent is centered around zero.
In order to approximate the exponent in the angled brackets
with a linear term in H , the temperature must satisfy the
condition

T � |α̃ − 1|(Emax − Emin)/2. (29)

Note that without the centering of the spectrum in the exponent,
the condition for linear approximation may be too strict
compared to (29). When (29) holds, (26) reduces to the
periodic CI − ∮

δQ(t)
T (t) � 0. A more interesting result appears

in the nonperiodic form of the α̃EIR. Using (29) in (23) we get

�Sα̃ − α̃e+β(α̃−1)[(Emax+Emin)/2−F ]Q/T � 0. (30)

Equation (30) implies that on top of the Shannon entropy
there are different information measures that put additional
constraints on the standard heat exchange with the bath.
While (30) offers no advantage for reversible processes, for
irreversible processes it can provide a tighter bound on the
heat. An example for the superiority of (30) over (1) is given
in Sec. V.

This finding paves the way for studying information
measures that provide tighter bounds (compared to the second
law) on the heat in irreversible processes in various limits
(e.g., in cold temperatures). Although we have focused on the
α̃ impurity AEIR, the high temperature limit can be studied
for the Rényi entropy as well.

IV. QUANTUM AEIR AND THERMODYNAMIC
COHERENCE MEASURES

Let g(x) be an analytic and concave function of x. We
denote its integral by G(x) = ∫ x

x0
g(x ′)dx ′ where x0 will be

chosen later. The Bregman matrix divergence [43,44] is [45]

DB
g (ρ2,ρ1) = Sg(ρ1) − Sg(ρ2) + tr[(ρ2 − ρ1)g(ρ1)], (31)

Sg(ρ1) = tr[G(ρ)]. (32)

Repeating the stochastic derivation carried out in Sec. II
and in Appendix A, we obtain the quantum addition energy-

information relations (QAEIRs):

�Sg −
∫

δQα

T α
� 0, (33)

δQα = tr[δρ(H − F )α]. (34)

We wrote down the quantum form of the stochastic αEIR (12),
but it is equally possible to write the quantum analog of the
other forms [e.g., the Rényi form (27)]. To obtain the α form
we have set g(x) = (− ln x)α . This time, Sg (32) is defined for
density matrices with coherence. Sg has several properties we
expect from information measures: (1) it is unitarily invariant
(extension of the symmetry property in the stochastic case);
(2) it increases under doubly stochastic maps; (3) min(Sg) = 0
is obtained for pure states |ψ〉〈ψ | (x0 can always be chosen so
that the minimum of Sg is equal to zero); (4) Sg is maximal
for a fully mixed state; (5) Sg increases under any dephasing
operation.

The validity regime for the stochastic laws described in
Sec. II C holds also for the QAEIR. Unlike the AEIR studied
earlier, the adiabats (pure work stage) in the QAEIR can
include any unitary and not only ones in which the energy
levels are modified and the probabilities remain the same.
Another important difference with respect to the stochastic
AEIR arises from the following property of the Bregman
matrix divergence. Let � be a diagonal matrix, and ρ� be
the diagonal part of density matrix ρ. The Bregman matrix
divergence satisfies

DB
g (ρ,�) = DB

g (ρ�,�) + Cg(ρ), (35)

where DB
f (ρ�,�) is the vector Bregman divergence (11) of

the populations in the � basis, and the Bregman coherence
measure is

Cg(ρ) = Sg(ρ�) − Sg(ρ) ≡ DB
g (ρ,ρ�). (36)

This coherence measure has the expected basic properties of
a coherence measure: (1) It is zero for diagonal states. (2) It
is maximal for the maximal coherence state 1√

N

∑N
l=1 |l〉. (3)

It decreases under any dephasing operation. These features
follow from the Schur concavity of Sg(ρ).

Before discussing a certain thermodynamic meaning of Cg

we point out that the contractivity condition for isochores now
reads

DB
g (ρi,ρ0) − DB

g (ρf ,ρ0) = DB
g ( �pi, �p0) − DB

g ( �pf , �p0)

+ Cg(ρi) − Cg(ρf ). (37)

The implication is that even in cases where the stochastic
law may not hold (i.e., the first two terms in (37) amount
to a negative number), a significant enough coherence era-
sure Cg(ρi) − Cg(ρf ) � 0 can be sufficient for making (37)
positive. Thus the quantum AEIR’s can be valid where the
stochastic AEIR’s are not.

Thermodynamic operational meaning
of various coherence measures

In the seminal work [46] coherence measures were studied
from a theoretical point of view without a direct operational
meaning. One of these measures is the quantum relative en-
tropy D(ρ,ρ�) [obtained from (31) by choosing g = − ln(x)].
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In [47] it was shown that D(ρ,ρ�) has a clear quantum
thermodynamic meaning: T D(ρ,ρ�) is the maximal amount
of work that can be extracted from a bath at temperature T

using coherence in the energy basis. ρ is the initial state
of the system, and ρ� is the final state of the system. In
addition, the initial and final Hamiltonian are the same. Since
the energy of the system does not change from end to end,
the work transferred to the work repository comes from the
bath, −Wmax = Qmax = T D(ρ,ρ�). Yet, to accommodate the
second law, this heat-to-work conversion must come from
erasing the coherence. The amount of coherence to be erased
is given by the coherence measure D(ρ,ρ�).

In [47] an explicit reversible protocol was described to
achieve this maximal work extraction limit. The protocol in
[47] is identical to that described in Appendix B with an
additional step where transient pulse (work stroke, a unitary)
is applied to bring ρ to a diagonal form in the energy basis.
Since the only system-bath interaction in the protocol is an
isotherm the result Qmax = T D(ρ,ρ�) follows directly from
the reversible limit of the second law. Repeating the same
protocol but with the αEIR we get:

Qmax
α = T αDB

α (ρ,ρ�). (38)

Any irreversible protocol that generates ρ → ρ� will involve
less Qα flow to the system. A concrete irreversible protocol is
given in Appendix F.

In cases where Qα can be related to the standard heat Q1

[e.g., in two-level systems or when condition (29) holds] the
Bregman coherence measure DB

α (ρ,ρ�) can produce tighter
bounds on the extractable heat and work. For a two-level
system and the irreversible protocol described in Appendix F
we have numerically verified that a tighter bound on heat
extraction using coherence is obtained compared to the
standard second law [47].

In Appendix F, we give an example where coherences are
used to extract Q2 heat from a thermal bath while exchanging
zero standard (α = 1) heat. This example illustrates the
following point: In reversible protocols for any α, the Qα are
completely determined by the initial state and the temperatures
of the bath. In irreversible protocols it is possible to extract
different portions of the maximal Qα determined by the
AEIR. Thus irreversible protocols offer more flexibility in
manipulating energy distribution via thermal interaction.

In future studies it is interesting to look for additional
quantum features to associate with higher moments of the
energy.

V. EXAMPLES AND IMPLICATIONS

Next, we wish to demonstrate by explicit examples that the
AEIR’s provide useful information and additional constraints
on top of that provided by the standard CI. Finding the highest
impact examples is a matter of long term research. Instead,
our goal is to show that even in simple scenarios the AEIR’s
provide important input.

A. High temperature limit

To illustrate the advantage of (30) over the standard CI
we consider an isochore that eventually fully thermalizes the

FIG. 1. Blue curve: high temperature limit of the α̃ impurity-
based AEIR, applied to a three-level thermalization process (iso-
chore). For values of α̃ that correspond to the shaded area, the AEIR
(30) imposes a tighter constraint on the standard Q1 heat (red curve)
compared to the standard second law α̃ = 1 (dashed-horizontal line).

system. The chosen energy levels are E = {− 1
2 ,0, 1

2 }, the initial
state is p0 = { 1

2 , 1
2 ,0}, and the temperature is T = 3. Figure 1

shows that there is a regime of α̃ where the α̃EIR’s provide
a tighter bound on the heat. Of course, (30) can be used
only when condition (29) holds. As discussed in Sec. III this
example motivates the study of new information measures for
bounding the heat transfer in irreversible processes. It also
illustrates the point that even though the AEIR’s typically
provide predictions on quantities such asQα , in some scenarios
we can use the AEIR’s to learn about standard quantities such
as the standard heat. The AEIR’s predictions on the heat can
be better than the prediction of the standard CI.

B. Zero standard heat thermodynamics

1. Irreversible case

Let us recall the zero heat scenario described in the
Introduction, and see what insights the αEIR can provide. We
consider the irreversible case of a simple isochore. Our system
has three or more nondegenerate levels. When connected for a
long time to a bath with inverse temperature β (isochore) the
final energy of the system is 〈H 〉β = ∑

j pβ,jEj regardless
of the initial condition ( �pβ is the thermal Gibbs state).
Now we choose an initial condition �pi 
= �pβ that satisfies
〈H 〉i = ∑

j pi,jEj = 〈H 〉β , and we let the system reach �pβ

(or close enough to it for all practical purposes). As a result
〈H 〉i = 〈H 〉f = 〈H 〉β . Since it is an isochore, there is no work
in this scenario, and therefore Q = �〈H 〉 − W = �〈H 〉 = 0.
In this case the standard second law (CI) yields

�S � 0. (39)

This, however, is a trivial and mathematical statement that can
be obtained even without the CI. The thermal state has the
maximal amount of entropy for a fixed average energy. Since
the input and output state have the same energy, and the output
state is thermal, it follows that the entropy of the input state
must be lower, and we get �S � 0. Moreover, one of the key
ideas in thermodynamics is the connection between entropy
(information) and energy, and the second law provides no such
connection in this case.
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FIG. 2. In systems with three or more levels it is possible to
have very different distributions with the same Shannon entropy
S. Thus, it is possible to have transformations for which the
Shannon entropy does not change, S( �pf ) − S( �pi) = 0, while other
information measures, such as S2 shown in the figure, do change,
S2( �pf ) − S2( �pi) 
= 0.

Now, let us apply the αEIR. The second order heat is in
general nonzero. Even if it is zero in some specific case, there
is a higher order heat that is different from zero. For Q = 0
isochores

Q2 = �
〈
(H − F )2

〉 = �
〈
(H − 〈H 〉)2

〉
. (40)

Thus, in Q = 0 isochores, Q2 is the change in the variance
of the energy distribution. In contrast to the �S � 0 for α =
1 (CI), the α = 2 AEIR gives us information on the energy
variance change

�
〈
(H − 〈H 〉)2

〉
� T 2�S2. (41)

Full thermalization was used for clarity. Equation (41) is
equally valid in cases where the initial state undergoes partial
thermalization that satisfies Q = 0. From this example we
see that the standard thermodynamic quantities such as the
entropy and the average energy are not sufficient for the
thermodynamic description of zero heat processes, and other
quantities such as Hα and Sα are needed.

It is interesting if in second order phase transitions where
the latent heat is zero, there is a nonzero α latent heat which
is related to changes in Sα .

2. Reversible case

Consider the thermodynamic state preparation scenario
where the goal is to transform a state pi to some other state pf

(see Sec. II B and Appendix B). If the protocol is reversible
then according to the standard second law the heat cost is
Q = Q1 = T [S( �pf ) − S( �pi)] where S = S1 is the Shannon
entropy.

In systems with three levels or more, there are different
distributions that have the same entropy. In particular, it is
possible to have S( �pf ) = S( �pi) where �pf 
= �pi and �pf is not
a permutation of the initial �pi . Figure 2 shows the S and S2

curves of the distribution p = (1 − x/2 − x/4,x/2,x/4) as a
function of the parameter x. The lower horizontal line connects
two states that have the same S, even though they are not related
by permutation (physically, permutation is an adiabat).

As an example, we look at reversible state preparation
�pi → �pf where �pi and �pf are taken from Fig. 2 and they
satisfy S1( �pf ) = S1( �pi). Since it is not a simple permutation,
then a bath must be involved in order to change the values of
the probabilities. The upper curve clearly shows that S2( �pf ) 
=
S2( �pi). Although in the interaction with bath Q1 = 0, the
second order heat is nonzero, Q2 = T 2[S2( �pB) − S2( �pA)] 
=
0. From this example, it is now clear that the bath pays an
energetic price in order to modify the population distribution.
That alone is not a surprising statement, but the αEIR’s
quantify this energetic price and relate it to information
measures in the spirit of the standard second law. This example
illustrates the necessity of additional information measures
in thermodynamics, and that the new information measures
cannot be obtained from the Shannon entropy.

C. Otto engine example: Tighter than the second law

The last two examples have explicitly used the energy-
information form of the AEIR. Next, we want to show that the
AEIR can also lead to strong results when using the periodic
information-free form of the AEIR (13).

It is not always sensible to compare the predictions of
αEIR’s with different α since generally they contain infor-
mation on different observables of the system. However, there
are some interesting exceptions. One is the high temperature
limit studied in Sec. III. Another exception occurs in two-level
systems where all orders of heat are related to each other in
isochoric processes. Hence, any αEIR can be used to make a
prediction on the standard Q1 heat.

From the α order heat definition (7) it follows that for an
isochore in a two-level system with energies {E1,E2},

Q1 = Qα

E2 − E1

(E2 − F )α − (E1 − F )α
. (42)

Using it in the αEIR we get that

Q1 � T α�Sα

E2 − E1

(E2 − F )α − (E1 − F )α
. (43)

Now that for a two-level system the AEIR’s give predictions
on the standard heat just like the regular second law we can
compare them and see which one is tighter. As an example
we consider the elementary heat machine shown in Fig. 3(a).
It is a four-stroke Otto machine with two levels as a working
fluid. In the first stroke the system is cooled in an isochoric
process (levels are fixed in time). In the second stroke work is
invested. The third stroke is a hot isochore and the fourth is a
work extraction stroke.

The efficiency of this machine is not difficult to calculate.
However, our goal in this example is not to provide simpler
methods for evaluating the efficiency, but to show to what
extent thermodynamics puts a restriction on the efficiency of
such an elementary device. The simplicity of the device shows
that the impact of the AEIR is not limited to complicated
setups. Moreover in the low temperatures limit Tc � Ec,3 −
Ec,2,Th � Eh,3 − Eh,2 any multilevel Otto machine (without
level crossing in the adiabats) can be accurately modeled as
a two-level Otto engine since the third level population is
negligible.
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FIG. 3. For a two-level four-stroke irreversible engine (a), the
α < 1 AIER’s provide a tighter bound on the efficiency [blue curve
in (b)], compared to the α = 1 standard Carnot efficiency bound
(red line). The green line shows the exact efficiency of this engine.
Remarkably, when both temperatures are decreased by the same factor
(3 in this example), the new αEIR bound (magenta) converges to the
exact efficiency even though the machine is irreversible.

Using (13) and (42) we get the efficiency bound

η � ηαEIR = 1 − T α
c

T α
h

Ec,2−Ec,1

(Ec,2−Fc)α−(Ec,1−Fc)α

Eh,2−Eh,1

(Eh,2−Fh)α−(Eh,1−Fh)α

. (44)

The parameters are Ec,2 − Ec,1 = 1, Eh,2 − Eh,1 = 2, Tc =
0.03, Th = 0.12 and Fc(h) = −Tc(h) ln

∑
exp(−βc(h)E

c(h)
j ) are

the standard free energies. In Fig. 3(b) we see the actual
efficiency (green line) of the engine, the Carnot bound 1 −
Tc/Th from the standard second law (red line), and the AEIR
prediction for various α (blue curve). For α < 1 the αEIR
prediction is significantly tighter compared to the standard
Carnot bound. Since this machine is irreversible it is consistent
to have a bound that is tighter than the Carnot efficiency.

When operating the same machine with colder temperatures
{T ′

c ,T
′
h} = {Tc,Th}/3 the actual efficiency remains as it was

before with Tc and Th (Otto engine with uniform compression
[48]). The Carnot bound ηCarnot = 1 − T ′

c /T ′
h = 1 − Tc/Th

also remains the same. Yet, as shown by the dashed-magenta
line in Fig. 3(b), the αEIR efficiency bound converges to
the actual efficiency for α → 0. It is both surprising and
impressive that thermodynamic laws can predict the exact
efficiency of an irreversible device. In Appendix G we
show analytically that the αEIR (12) becomes tight in low
temperatures,

T ′
c � Ec,2 − Ec,1,T

′
h � Eh,2 − Eh,1, (45)

and α � 1 for Otto engines. This result is quite remarkable:
we get a thermodynamic equality even though the machine
is not in the reversible regime (where the crossover to the
refrigerator takes place, T ′

c /T ′
h = �Ec/�Eh [48]) or in the

linear response regime T ′
h − T ′

c � T ′
c .

FIG. 4. This “half zero” heat machine reduces the energy variance
of the cold bath (−Q2,c � 0) without changing the average energy
of the bath Q1,c = 0. The standard Clausius inequality (α = 1) only
predicts that the energy goes into the hot bath Q1,h � 0 but gives no
information on the changes in the cold bath (which concerns the main
functionality of the device). In contrast, the α = 2 AEIR (12) predicts
−Q2,c/Q2,h � (Tc/Th)2. In this example −Q2,c/Q2,h � 0.234 while
the AEIR prediction is (Tc/Th)2 = 0.25.

Next we wish to show how the αEIR can be used to study
a different type of heat machine in which the standard second
law does not provide any useful information.

D. Zero heat and half-zero heat machines

The flow of higher order heat in heat machines is a
fascinating subject that goes beyond the scope of the present
paper. However, to motivate this research direction, we
describe a basic Otto “refrigerator” that reduces the energy
variance of the cold bath without exchanging any (averaged)
energy with it, i.e., Q1,c = 0. We find that the performance
of such machines is not limited by the standard α = 1 second
law. In contrast, the α = 2 αEIR does put a concrete bound on
the performance.

The machine we use is a four-stroke Otto machine [see
Fig. 4(a)] that interacts with a cold bath in stroke I, and with
a hot bath in stroke III. Some external work is applied to
generate the adiabats in strokes II and IV. The temperatures
and the choice of energy levels needed to achieve Q1,c = 0 are
given in Appendix H.

The variance reduction in the cold bath is based on the fact
that during the cold stroke Q2,c > 0. Under the conditions
in Appendix C, this implies that the bath experiences an
energy variance reduction of −Q2,c. As pointed out earlier,
in isochores with Q1 = 0, Q2 is equal to the change in energy
variance.

While the energy flow (first order heat) to the cold bath is
zero, the flow to the hot bath is not zero. From the standard
α = 1 CI for periodic operation we get

−Qh/Th � 0, (46)

which means that heat enters the hot bath as expected. Since
the heat is zero for only one of the two baths, we call this
device a “half-zero heat machine.” The energy that flows to
the hot bath comes only from the work. This α = 1 result is
plausible, but it provides no information on the changes in the
cold bath, which concerns the main functionality of the device.
On the other hand, the α = 2 EIR (or other αEIR) for periodic
operation yields

−Q2,c

Q2,h

�
(

Tc

Th

)2

, (47)
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in cases whereQ2,h � 0. IfQ2,h > 0, the inequality sign has to
be reversed. For the numerical values described in Appendix H,
we get −Q2,c/Q2,h

∼= 0.234, while the α = 2 EIR sets a

bound of ( Tc

Th
)
2 = 0.25. By taking lower temperatures it is

easy to approach the equality in (47), but then Q2,c becomes
very small. We conclude that the α = 2 AEIR puts a realistic
restriction on the performance of this machine. It determines
the minimal amount of Q2 the hot bath must gain to remove
Q2,c from the cold bath. This example shows that there are
cases where the AEIR’s can provide information which is
more important than that of the standard second law.

By using reversible state preparation protocol (19), it is
possible to construct a “full-zero heat machine” where both
Q1,c and Q1,h are equal to zero (see Appendix H). In such
machines (47) becomes an equality.

The utility and practical value of such machines are outside
the scope of the present paper. Here, the goal is only to show
that with the αEIR, thermodynamics still imposes limitations
on performance in such scenarios.

VI. CONCLUDING REMARKS

This paper presents inequalities that establish additional
connections between information measures, energy moments,
and the temperatures of the baths. As demonstrated, these
inequalities lead to concrete predictions in various physical
setups. The energy-information structure of the AEIR’s sepa-
rates it from other extensions of the second law. In particular
the AEIR’s become equalities in reversible processes.

Since the AEIR’s deal with nonextensive variables (higher
moments of the energy) the information measures associated
with these observables are not extensive either. The scaling
of the AEIR with the system size in different setups is
a fascinating topic that warrants further study. There are
two possibilities: (1) All the AEIR’s become trivial (predict
0 � 0) in the macroscopic limit. This would imply that the
AEIR’s are unique to the microscopic domain. (2) In the
second scenario the AEIR’s would provide information on
tiny changes in macroscopic systems. Both alternatives will
extend our understanding of thermodynamics and its scope.

The AEIR’s have revealed some unexpected features both
in hot temperatures and in cold temperatures. The hot limit
provided better information measures for estimation of stan-
dard heat. In cold temperatures we have seen that the AEIR’s
can predict the exact efficiency of an engine even though the
engine is irreversible. These interesting AEIR features should
be further explored.

The regime of validity of these laws can be smaller than
that of the regular second law (which also has a regime of
validity, e.g., lack of initial system-bath correlation). It is a
reasonable tradeoff: the validity regime is potentially smaller
but more information and more thermodynamic restrictions are
available. In this work only part of the AEIR validity regime
has been mapped. The validity regime can be formulated
in terms of “allowed operations.” We believe it is highly
important to understand and map the full regime of validity.
Based on numerical checks we conjecture that the regime of
validity is significantly larger than the one we were able to
deduce analytically at this point. Moreover, it is possible that

some adaptations and refinements of the framework presented
here will lead to a larger regime of validity.

Within this known regime of validity we provided explicit
examples where the AEIR’s give tighter and more useful con-
straints on the dynamics compared to the standard second law.
A quantum extension was presented and used for providing a
thermodynamic interpretation to various coherence measures.
All the above-mentioned findings justify further work on this
topic. The main goals are to (1) find additional predictions;
(2) explore various limits (large α, macroscopic limit, cold
temperatures, etc.); (3) extend the mapped regime of validity.

Moreover, it is interesting to extend the AEIR formalism
to other physical scenarios. For example, include chemical
potentials in the AEIR, and apply it to thermoelectric devices
and molecular machines [49]. Another interesting option is
to extend our findings to continuous distributions, and study
dynamics of classical particles in a box (gas) from the point of
view of the AEIR’s. It is also interesting to study latent α heat
in various phase transitions.
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APPENDIX A: FROM BREGMAN DIVERGENCES TO
ADDITIONAL ENERGY-INFORMATION RELATIONS

The Bregman divergence for a single-variable concave and
differentiable function S(p) in the regime p ∈ [0,1] is given
by [30]

DB
S (p,pref) = S(pref) −S(p) + (p − pref)(∂pS)|p=pref , (A1)

DB
S (p,pref) � 0, (A2)

where pref is any point in [0,1]. The Bregman divergence,
as shown in Fig. 5(a), is the difference between a concave
function and its linear extrapolation from point pref . Writing
(A1) again with p → p′ and subtracting (A1) from it we get

S(p′) − S(p) − (p′ − p)∂pS(pref)

= DB
S (p,pref) − DB

S (p′,pref). (A3)

This equation also has a geometrical interpretation as shown
in Fig. 5(b). In particular, Fig. 5(b) shows that when the final
state is closer to the reference state from the same side, then
the RHS of (A3) is positive. To apply this for a probability
distribution {pj }Nj=1 of a N -level system we define

S( �p) =
N∑

j=1

S(pj ), (A4)

and obtain a vector generalization of (A3),

S( �p ′) − S( �p) − ( �p ′ − �p) · ∇S( �pref)

= DB
S ( �p, �pref) − DB

S ( �p ′, �pref). (A5)

To apply this to thermodynamics we set �p ′ to be the final
state of the system and �p to be its initial state. The term
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FIG. 5. (a) The (concave) Bregman divergence has a simple
geometric interpretation. It is the difference between the linear extrap-
olation of a concave function (blue) and the actual function (green).
(b) Three-state Bregman identity and its geometric interpretation.
The right hand side determines the regime of validity of the AEIR’s.
Geometrically, it is the length of the blue line (initial divergence with
respect to the reference) minus the length of the green line (final
divergence with respect to the reference). If the final state is closer
to the reference state (but does not overshoot to the other side) then
the divergence difference is guaranteed to be positive as needed for
the AEIR’s. (c) By using concatenation of isochores and adiabats it is
possible to construct various thermodynamic protocols that involve
both heat and work such as isotherms. See text for the analysis.

( �p ′ − �p) · ∇S( �pref) is a difference of two terms of the
form

∑
pj (∇S( �pref))j � 〈∇S( �pref)〉 so ( �p ′ − �p) · ∇S( �pref)

describes the change in the expectation value of the operator
∇S( �pref). Note that the operator does not depend on the initial
and final distributions but only on the reference distribution
�pref that we will choose shortly. With this notation

�S − �〈∇S( �pref)〉 = DB
S ( �p, �pref) − DB

S ( �p ′, �pref). (A6)

This is still an identity that has nothing to do with thermody-
namics. To get a Clausius-like inequality we want the RHS
of (A6) to be positive for thermodynamic processes such
as isochores, adiabats, and isotherms. As discussed in the
main text, isochores can be used as a starting point. If the
bath has a single fixed point so that the map it induces on
the system �pf = M( �pi) satisfies M( �pf.p.) = �pf.p., we choose
�pref = �pf.p.. Since the goal of the bath is to bring the system
closer to the fixed point, it is plausible that the RHS will be
positive. However, although the bath may bring the state closer

to the fixed point by some divergence measures, such as the
relative entropy, it is not guaranteed that it will bring it closer
when using the DB

S as a proximity measure. Thus, one has
to explore the regime of validity and check whether the given
thermalization mechanism is “contractive under DB

S ” [the RHS
of (A6) is positive]. This is done in Sec. II C.

For a single bath that is connected to all the levels of
the system the fixed point is the thermal state so we set the
reference state to be pref,j = pβ,j = e−β(Ej −F ). For the choice
∂pj

S( �p) = (− ln pj )α we get (9).
In addition, our formalism is also applicable to cases where

different baths are connected to different parts of the system.
These “parts,” that we call manifolds [5], can either be in tensor
product form when the system is composed of several particles,
or in a direct sum form when different levels of the same
particle are connected to baths with different temperatures.
Such a scenario is common in microscopic heat machines (see
[5,50,51]).

The k manifold of the system is associated with the part of
the Hamiltonian Hk = ∑

j∈{k} Ej |j 〉〈j | and it interacts with
a bath of temperature βk . The fixed point is pref,j = p �β,j =
e− ∑

k βk(Hk−Fk) where Fk are chosen so that each manifold has
the correct total probability. If the manifolds share just one
state then the fixed point is unique [5]. For the αEIR choice
∂pS = (− ln p)α we get

�Sα −
∑

k

βα
k Qk,α = DB

S ( �p, �p �β) − DB
S ( �p ′, �p �β), (A7)

Qk,α = �〈(H − Fk)α〉. (A8)

Equation (A7) refers to isochores. For more general processes
that include adiabats, isochores, and isotherms, the derivation
presented in the main text has to be repeated. In the regime of
validity discussed in Sec. II C, Eq. (A7) yields

�Sα −
∑

k

βα
k Qk,α � 0. (A9)

Finally, we want to show how the equality in the αEIR
�Sα = βαQα is obtained for isotherms by using a concatena-
tion of isochores and adiabats. This is an alternative derivation
to (15). See [28] for a similar analysis. Yet, here we carry out
the calculation for the AEIR and not only for the standard
CI. Figure 5(c) shows a concatenation that approximates
an isotherm pβ[H (t)] (black curve). In the limit where the
step size δ �p goes to zero the concatenation converges to the
isotherm. We start at equilibrium and then perform a small
change in the Hamiltonian δH (green line). �p remained fixed
in this process so this is an adiabat (in particular, the entropy
has not changed, and not heat was exchanged with the bath). So
for the adiabat we get δSα = 0,δQα = 0. Next we perform an
isochore (red line) all the way to the ideal isotherm line. From
(9) we get that for full thermalization ( �pf = �pβ) isochores

δSα − βαQ,α = DB
S ( �pβ − δ �p, �pβ). (A10)

By definition the term Q,α is linear in δ �p. For the RHS
we use a general property of the Bregman divergence,
DB

S ( �p − δ �p, �p) = O(δ �p2). This holds since DB
S ( �p, �p) = 0 and

DB
S ( �p − δ �p, �p) > 0 when δ �p 
= 0. If there was a linear term,

then by taking δ �p → −δ �p the divergence would have become
negative when δ �p is very small. Figure 5(a) offers another

032128-12



ADDITIONAL ENERGY-INFORMATION RELATIONS IN . . . PHYSICAL REVIEW E 96, 032128 (2017)

way of understanding this property. The Bregman divergence
is obtained from the function S by subtracting its linear
extrapolator, and therefore it no longer has a linear term. Due
to this property we find that for the first stair in this staircase

δS (1)
α = βαδQ(1)

,α + O(δ �p2). (A11)

Repeating this for the l stair and summing we find∑
l

δS (l)
α = βαδQ(l)

,α +
∑

l

O(δ �p2). (A12)

Since δQ(l)
,α = O(δ �p) then δS (l)

α must also be O(δ �p) to balance
the equation. The term O(δ �p2) becomes negligible in the limit
δ �p → 0 and we get �Sα = βαQα .

APPENDIX B: REVERSIBLE STATE PREPARATION

In this Appendix we derive (19). Since we are interested
now in reversible state preparation we can choose any re-
versible protocol that achieves the transformation { �pi,Hi} →
{ �pf ,Hf }. Figure 6 shows the protocol we chose for the
derivation. Stage A implements the transformation { �pi,Hi} →
{ �pβ,i = e−β(Hi−Fi ),Hi}. Stage B is an isotherm { �pβ,i,Hi} →
{ �pβ,f = e−β(Hf −Ff ),Hf }, and in stage C { �pβ,f ,Hf } →
{ �pf ,Hf } is carried out. Starting with stage A we use (A1)
and (10) to write

T α�Sα,A − �Hα,A = T αDB
S ( �pf ,p �β,f ). (B1)

Using QR
α,A = T α�Sα,A and the first law QR

α − �Hα,A =
−Wα,A, the reversible work extracted in the transformation
{ �pi,Hi} → { �pβ,i,Hi} is

Wα,A = −T αDB
S ( �pi,p �β,i). (B2)

FIG. 6. A three-stage reversible state-preparation protocol
{ �pi,Hi} → { �pf ,Hf }. Stage A changes the populations but the end
point Hamiltonian is the same as the initial Hamiltonian. Stage B is
an isotherm in which Hi is changed to Hf . Finally, stage C changes
the thermal state to the desired final state. This protocol is identical
to state preparation with α = 1 but we monitor other quantities in the
process (Wα and Qα). In this protocol the AEIR’s become equalities
and they give the exact amount of extracted Wα and Qα .

Similarly, in stroke C (just the inverse of protocol used in A)
the reversible work in p �β,f to �pf is

Wα,C = +T αDB
S ( �pf ,p �β,f ). (B3)

The last bit we need is the work in stage B. This is a
pure isotherm so Qα,B = T α�Sα,B and Wα,B = [Hα(p �β,f ) −
Hα(p �β,i)] − T α[Sα(p �β,f ) − Sα(p �β,f )]. Therefore

Wα,B = Fα( �pβ,f ) − Fα( �pβ,i) = �Fα, (B4)

Fα = Hα( �pβ) − T αSα( �pβ), (B5)

where Fα is the equilibrium α free energy (no relation to the
“α free energy” in thermodynamic resource theory). Adding
the work contribution from all stages, we obtain that the total
reversible work is given by (19).

APPENDIX C: α ORDER HEAT EXCHANGE
WITH THE BATH

Our definition of heat and work can be considered as
axioms. We define some observables of the system and put
some thermodynamic constraints on how they can change
in the spirit of the standard second law. Yet, in α = 1
thermodynamics the heat absorbed by the system is taken
from the bath. To be more accurate, this is not always true
since there might be some additional energy (work) needed to
couple the system to the bath. In weak coupling this energy
can be ignored but also in certain strong coupling cases [52].

Nevertheless, regardless of where the energy goes, energy
conservation implies that any energy change in the system
is associated with an opposite change in the energy of the
surroundings. Unfortunately, there is no general conservation
law for Hα , so what can we learn on the change in the
surroundings from the changes of Hα in the system? We first
focus on heat and in particular on isochores, and later discuss
a specific yet important scenario of α work extraction.

1. System-bath α heat flow

In our bath setup the bath consists of particles that can
interact with the system and/or with each other [Fig. 7(a)]. The
Hamiltonian of the internal degrees of freedom of a particle k

in the bath is Hb,k . We make the following assumption:

Hb,k = Hs +
∑
m

em|m〉〈m|. (C1)

FIG. 7. (a) Various system-bath configurations, and the interac-
tion between elements (b). Resonant interaction: each energy quanta
taken from the bath particles is given to the system and vice versa.
This type of interaction enables to easily relate changes in energy
moments of the system, to changes in the bath.
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That is, the bath particle has the same energy levels of the
system plus (or minus) possibly additional levels |m〉 [see
Fig. 7(b)]. This is a reasonable assumption when the system
resonantly interacts with the bath or when the bath particles and
the system particle are of the same species. The setup studied
here can describe various models. Several examples are shown
in Fig. 7(a): a collision bath model, a linear chain with nearest
neighbor coupling, and all to all coupling geometry. For the
interaction of the system with the bath particles, and of the bath
particle between themselves, we assume a resonant “flip-flop”
interaction term [Fig. 7(b)]

Hint =
∑
j,k,l

cjk,lσ
−
j,lσ

+
k,l + H.c., (C2)

where σ+
k,l = |i + ωl〉〈i| is the creation operator of energy

gap ωl in particle k, and σ−
k,l = (σ+

k,l)
† is the corresponding

annihilation operator. For simplicity, it is assumed that the
gaps are nondegenerate so specifying ωl specifies the state |i〉
as well. This two-particle interaction conserves the total bare
energy 〈Htot〉 = 〈Hs〉 + ∑

k 〈Hb,k〉, and it is very common
in ion traps and in superconducting circuits (after making
a justified rotating wave approximation). Furthermore, from
[Htot,Hint] = 0 that leads to energy conservation it also follows
that H

(α)
tot is conserved where

〈
H

(α)
tot

〉 .= 〈
Hα

s

〉 + 〈
H

(α)
b

〉 .= 〈
Hα

s

〉 + ∑
k

〈
Hα

b,k

〉 = const. (C3)

Note that H
(α)
b is equal to Hα

b ⊗ I ⊗ · · · + I ⊗ Hα
b ⊗ · · · +

· · · and not to (Hb ⊗ I ⊗ · · · + I ⊗ Hb ⊗ · · · )α . Interaction of
the form (C2) can only redistribute energy (or 〈H (α)〉) between
system and bath. Hence, no extra work (or Wα work) is needed
to couple the system and the bath.

When the bath and system particles are of the same
species Fsys = Fbath and it follows from (C3) that �〈H(α)

b 〉 =
−�〈Hα

sys〉 or alternatively stated

Qα,b = −Qα,sys. (C4)

What happens when Fs 
= Fbath? We go back to the motivation
of defining of Hα

sys as (H − F )αsys. This followed from the
Bregman divergence definition and from the fact that the Gibbs
state is a fixed point of any thermalization map created by the
bath. For the bath, these considerations are irrelevant. We can
defineH(α)

k of the k particle in the bath with any shift of interest.
In particular, we can choose

Hα
b,k = (Hb,k − Fsys)

α. (C5)

With this choice we get �〈H(α)
b 〉 = −�〈Hα

sys〉. For other
observables such as 〈e−(α̃−1)β(H−F )〉 associated with the α

impurity (see Sec. III) the relation is more straightforward.
For any choice of Fb we can use Qα̃ = 〈e−(α̃−1)β(H−F )〉 =
e(α̃−1)βF 〈e−(α̃−1)βH 〉 and (C3) and get

Qbath
α̃ = −e−(α̃−1)β(Fsys−Fb)Qsys

α̃ . (C6)

The relation (C6) holds for isochores. If the levels change in
time, a time integration over δQ with Fsys(t) has to be carried
out.

In the bath models above, the flip-flop interactions lead to
multiple conservation laws. Consequently if some energy is
exchanged with the bath it is not in equilibrium anymore.
Moreover, due to the conservation laws the bath will not
equilibriate on its own once disconnected from the system.
This is exactly the reason why it is important to keep track
of higher order heat flow. They quantify the degradation of
the bath. By assuming the bath is in a thermal state with
unknown β any knowledge of 〈H(α)

b 〉 can be used to get the
correct β. However if the distribution is nonthermal different α
will produce different prediction for β. The β mismatch is an
indication for deviation of the bath from a thermal distribution.

2. α Work

We now consider the case of applying a transient unitary
on the system by driving it with Hs(t). At the end of the pulse
the Hamiltonian returns to its original value. In such scenarios
the change in energy or in Hα is only due to work (Wα). The
problem is that in general it is not clear how a change of Wα

in the system is related to changes in the work repository. To
simplify things we look at systems where specific two levels
resonantly interact with a work repository. In the semiclassical
limit the work repository is a harmonic oscillator in a highly
excited coherent state. This scenario is very useful in quantum
heat machines [5,50,51]. The Wα is

Wα =
∑

j={k,l}
(Ej − F )αdpj

= [(El − F )α − (Ek − F )α]dpl. (C7)

Since the regular work is W = W1 = (El − Ek)dpl we get a
simple relation between work and α order work:

W = (El − Ek)

[(El − F )α − (Ek − F )α]
Wα. (C8)

In particular, in high temperature where |F | � |El|,|Ek| we
get W = (−F )1−α

α
Wα . Surely, relation (C8) does not provide

a sufficient understanding of the operational effect of Wα on
the work repository, and further study on this topic is needed.
Nevertheless, (C8) is already sufficient to relate standard work
to higher order heat flows Qα in certain classes of machines
mentioned above.

Finally, we point out that there are thermodynamic scenar-
ios like in absorption refrigerators where energy flows only in
the form of heat, and there is no work at all.

APPENDIX D: RESOURCE THEORY MONOTONES

Like the AEIR, thermodynamic resource theory (TRT)
[23–25,53,54] also puts further restrictions on the interaction
of a system with a thermal bath. Yet, as explained next,
the similarities to the present framework seem to end there
(note that the α index used in TRT has a completely different
meaning). Both frameworks have their merits and deficiencies.
In our view, both of them provide different tools for studying
thermodynamic transformations at the microscopic scale.

Resource theory is the study of possible transformations
from one state to the other, by using “free states” and
possibly nonfree states that are considered as a resource

032128-14



ADDITIONAL ENERGY-INFORMATION RELATIONS IN . . . PHYSICAL REVIEW E 96, 032128 (2017)

[23,25,54]. The free states in TRT are the thermal states. TRT
is presently limited to scenarios with a single thermal bath
(single temperature). In standard thermodynamics for a single
bath, the CI can be replaced by the nonequilibrium free energy
inequality

�F̃ � 0, (D1)

F̃ = F + T D(p,pβ). (D2)

That is, F̃ is a monotone under certain thermodynamic
transformations. Thermodynamic resource theory states that
under “thermal operations” [23,54] the free energy is only one
member of a whole monotone family [53]:

F̃ᾰ = F + T Dᾰ( �p, �pβ), (D3)

Dᾰ( �p,�q) = sgn(ᾰ)

ᾰ − 1
ln

∑
i

pᾰ
j q1−ᾰ

j , (D4)

where ᾰ is a real number and Dᾰ( �p,�q) is the Rényi divergence
[not to be confused with the Rényi entropy in (27), or with
the Bregman divergence DB

ᾱ related to the Rényi entropy].
If the initial state has coherences in the energy basis, then
there are additional constraints [26]. What is remarkable about
these thermodynamic monotones (D3) is that they provide
necessary and sufficient conditions for the existence of a
thermal operation. That is, if all the monotones decrease in the
transformation of two energy diagonal density matrices ρ →
σ , then a thermal operation that generates the transformation
ρ → σ exists.

These thermodynamic monotones are sometimes referred
to in the literature as “second laws.” The reasons that support
this terminology are (1) they have to decrease under thermal
operation, and (2) the reduction of (D3) to the standard
(nonequilibrium) free energy (D2) in the limit ᾰ → 1. How-
ever, in our view the second law is more than a thermodynamic
monotone. Consider the Clausius equality for isochores (9).
The RHS is the monotone part of the equality, and it is positive
in the regime of validity described in Sec. II C. In traditional
thermodynamics, it is the LHS that gives thermodynamics its
strength. The LHS deals with thermodynamic quantities. In
particular it has an energy-information structure.

In contrast, in TRT F̃ᾰ generally involves a noninteger
power of probabilities, and therefore cannot be directly related
to observables. Presently, to the best of our knowledge, an
operational thermodynamic meaning to Fᾰ for ᾰ 
= 1 (with
the exclusion of F̃∞ and F̃0) is still lacking (there is an
informational state discrimination interpretation). In [55] the
Fᾰ are used to obtain an interesting ᾰ independent result
on the work fluctuation-dissipation “tradeoff” with a single
bath (“information engine” scenario—not a multiple bath heat
engine scenario). See also [56,57] for different interesting
directions of applying TRT.

More importantly, the TRT constraints (D2) do not have an
energy-information structure. The Rényi divergence Dᾰ( �p, �pβ)
is a measure of distinguishability of a state �p from the thermal
state �pβ . However it is not a measure of the information content
in the distribution �p. For example it is not even invariant to
permutations in �p.

In summary, it seems that there is very little similarity
between the AEIR and TRT. Despite the differences, we
hope that the TRT framework and the AEIR framework can
benefit from each other on the road to a deeper understanding
of thermodynamics of small systems. As an example for
exchange of ideas between the two formalisms, it is interesting
to investigate the following question: we are given the trans-
formation �p → �q and we find that DB

α ( �p, �pβ) � DB
α (�q, �pβ) for

any α, i.e., all the αEIR are satisfied. In analogy to thermal
operation in TRT, does it imply that �p → �q can always be
implemented with the allowed set of operations? The same
question can be posed for other families of AEIR’s such as the
ones studied in Sec. III.

APPENDIX E: ON THE PHYSICALITY OF Sα

The goal of this section is not to enter the somewhat
philosophical discussion on the physicality of information. It
is clear that the Shannon entropy is a useful tool in stochastic
thermodynamics, and in thermodynamics of small systems
[10]. However, the Shannon entropy (or the von Neumann
entropy) is not directly measurable. There is no Hermitian
operator that corresponds to the entropy. In fact, the entropy is
not even linear in the probabilities. This implies that in order
to measure it, the probability distribution has to be measured
via tomography.

Fortunately, in thermodynamics the standard CI provides a
priceless connection between heat and entropy. For reversible,
single-bath processes, the change in the entropy is given by
�Ssys = Q/T . Moreover, for irreversible isochores in the
weak system bath coupling it holds that �Sbath = −Q/Tbath

even when �Ssys � Q/Tbath. In the αEIR the exact same
thing holds. We can learn about the changes in �Sα from
Qα/T α . The reason why entropy is important is primarily
because it can be related to heat, and secondly because we
have some intuitive understanding of what are high and low
entropy states. This however is true for any α, not just α = 1.
We conclude that in the context of the present paper Sα is just
as useful (or “physical”) as the regular Shannon entropy used
in thermodynamics of small systems.

APPENDIX F: AN EXAMPLE OF USING COHERENCE
TO EXTRACT HIGHER ORDER HEAT FROM A BATH

We start this Appendix with a description of an irreversible
protocol for extracting heat from a single bath using coherence
erasure (the protocol in [47] is reversible).

In step A of the protocol a pulse (unitary operation) is
applied to bring the system into a passive state (no coherence
and no population inversion in the energy basis). The new
probabilities in the energy basis are p′

i . In step B we change
the energy level Ei without interacting with the bath to Ei =
−T lnpi . In step C a full isochoric thermalization take place so
the density matrix is equal to ρ�. Finally, in step D the bath is
disconnected and the levels are adiabatically restored to their
original value Ei .

In this protocol Qα < T αDB
α (ρ,ρ�). Since the thermal

interaction in this protocol is an isochore, it is easy to relate
it to changes in the bath moments (see Appendix C). As a
concrete example we consider a qutrit system that is initially
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in a state

ρs,0 =

⎛
⎜⎝

1/6 1/400 0
1/400 1/3 1/20

0 1/20 1/2

⎞
⎟⎠.

The reason for choosing small coherence values is that we
want to start close to thermal equilibrium in order to show that
the higher order bound (38) can produce a reasonably tight
bound. The diagonals correspond to thermal distribution with
temperature of 1 and a Hamiltonian H = diag[{ln 3, ln 3

2 ,0}].
Since the populations are already in thermal form (Gibbs state)
the irreversible protocol described above has only two stages:
a unitary rotation pulse (stage A), and an isochore (stage C).

For stage A we apply an interaction Hamiltonian (in the
interaction picture)

Hint =
⎛
⎝ 0 +i 0

−i 0 −i

0 +i 0

⎞
⎠,

and find that at some point in time (tf � 0.204), 〈H 〉tf =
〈H 〉t0 . At time tf we start stage C (an isochore). As a result,
there is no heat exchange with the bath. Since the Q1 = 0, Q2

expresses the change in energy variance. In this example Q2 �
0 which implies, under the condition in Appendix C, that the
energy variance of the particles in the bath is decreasing.

The bound (38) on the change in variance yields a value
that is 1.92 times larger than the actual change in the energy
variance.

APPENDIX G: LOW TEMPERATURE LIMIT

The goal of this Appendix is to explain and show ana-
lytically why the AEIR prediction for cold temperature and
α → 0 converges to the exact efficiency of the Otto machine
[Sec. V C and dashed curve in Fig. 3(b)]. For a hot isochore of
the Otto machine the AEIR reads

�Sh
α − βα

hQh
α � 0. (G1)

Let us write the initial state as

�pc = �ph − d �p.

In full thermalization isochores, there are different scenarios in
which d �p can be small. For example, close to the crossover to
refrigerator Tc/Th = �Ec/�Eh where the machine becomes
reversible, d �p is very small (at the crossover the Otto
machine satisfies d �p = 0 and it produces zero work per
cycle, e.g., see [48]). Another scenario takes place when
Tc � �Ec,Th � �Eh. Most of the population is in the
ground state and �pc and �ph differ by a very small number
exp(−βc�Ec) − exp(−βh�Eh). However, Tc and Th are very
different from each other (not linear response) and very

different from the refrigerator crossover point Tc/Th 
=
�Ec/�Eh. Since the Carnot bound also converges to the
actual efficiency near the refrigerator crossover (first scenario),
we are interested here only in the second scenario where both
temperatures are low but still very different from each other or
from the refrigerator crossover ratio. Expanding both terms in
(G1) in powers of α and d �p yields

�Sh
α = α

∑
j

dpj ln [− ln[ph,j ]] + O
(
dp2

j ,α
2), (G2)

βα
hQh

α = α
∑

j

dpj ln [− ln[ph,j ]] + O
(
dp2

j ,α
2). (G3)

The higher order terms O(dp2
j ,α

2) in (G2) and (G3) differ
from each other. From (G2) and (G3) we conclude that when
both dpj and α are small, the two terms in (G1) cancel each
other in the lowest order of α and d �p. Thus, the αEIR holds as
an equality in the limit d �p � 1,α � 1. This explains why the
αEIR prediction (dashed-blue line in Fig. 3) converges to the
actual efficiency although irreversible processes (isochores)
are involved. We point out that on top of low temperatures
α � 1 is also required for (G1) to become an equality. For
large α the O(α2) terms become important and the αEIR is no
longer tight.

APPENDIX H: CHOICE OF PARAMETERS
FOR A HALF-ZERO HEAT MACHINE

In this Appendix we describe how to choose the energy
levels of the machine in Fig. 4 in order to achieve Q1,c = 0.
The cold levels can be chosen freely and we set them to be
Ec = {0,1,2}. For simplicity, it is assumed that the baths are
connected for a period which exceeds several thermalization
times. Hence, at the end of stroke I the populations are
pc,j = e−βc(Ec,j −Fc). The cold and hot bath temperatures
are {Tc,Th} = {0.5,1}. To determine the hot levels, we first
choose the distribution �ph we want the hot bath to gen-
erate. To achieve Q1,c = ( �ph − �pc) · �Ec = 0 we set �ph =
�pc + {−1,2, − 1}δp where δp is taken to be δp = pc(3)/20.
Consequently, the hot energy levels are �Eh = �Eh − Fh =
−Th ln �ph. Choosing one of the levels will fix Fh and the
values of all the hot levels. By setting Eh,1 = 0 we get
Eh � {0,1.986,4.05}. Nevertheless, for calculating heat (of
any order) only �Eh is needed.

To obtain a full zero machine with Qc = Qh = 0 we choose
two states �pA, �pB that have the same Shannon entropy (at
least three levels are needed—see Fig. 2 for an example). A
reversible state preparation is used to prepare �pB from �pA

using a bath in temperature Tc, and another reversible state
preparation is used to create �pA from �pB using a bath in
temperature Th.
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