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There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity
of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic
sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum
entropy principle). Even though these notions represent fundamentally different concepts, the functional form
of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for
independent sampling processes in statistical systems, is degenerate, H (p) = −∑

i pi log pi . For many complex
systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here
we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which
we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP

for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most
likely observable distribution functions of a system. We explicitly compute these three entropy functionals for
three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-
reducing (SSR) processes, which are simple history dependent processes that are associated with power-law
statistics, and finally for multinomial mixture processes.
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I. INTRODUCTION

Historically, the notion of entropy emerged in conceptually
distinct contexts. In physics, thermodynamic entropy S was
introduced by Clausius as an extensive quantity that links
temperature with heat [1,2]. Boltzmann could relate this
thermodynamic entropy to the number of microstates W in
a system,

SB = kB ln W, (1)

assuming that in equilibrium all microstates are equally
probable [3]. A microstate is a particular configuration of the
components of a system. For example, a microstate for the ideal
gas describes the positions and momenta of the gas particles in
the volume of interest. Suppose a system has W microstates.
In the case of equilibrium, the probabilities pi of sampling
microstates i ∈ (1, . . . ,W ) do not depend on time. Random
processes that are independently repeating the same random
experiment are called Bernoulli processes.1 They follow a
multinomial statistics. Equilibrium processes therefore can be
thought of as sequences of tossing a biased die with W faces,
where each face i represents a microstate with weight pi . In
that case, the entropy functional reads

H (p) = −kB

W∑
i=1

pi log pi, (2)

which is often referred to as the Gibbs formula. We set
kB = 1 in the following. For example, a system consisting

1We also call processes Bernoulli processes if they have a finite
number W > 1 of discrete states and not only 2, as is often assumed.

of N independent spins has W = 2N microstates, and the
probability to find a particular configuration i is pi = 1/W . As
a consequence, H (p) ∼ log W = N log 2 scales extensively,
i.e., it grows linearly with the number of degrees of freedom N .
Obviously, for systems composed of independent components
(or weak and local interactions), Eq. (2) scales extensively.

Since Boltzmann, we identify this extensive functional with
thermodynamic entropy, SEXT = H .2 This notion gave way to
the success story of statistical mechanics.

Independently from physics, in the context of information
theory (IT), a functionally identical notion of entropy appears
[4–6]. In IT, H quantifies how efficiently a particular stream
of information can be coded if the information source is an
ergodic finite state machine with W states. The information
production rate SIT = H determines if information can be
coded, transmitted through a noisy channel, and decoded in
an error-free way.

In the attempt to formulate statistical physics in a way
that is independent of the physics of particles or spins, the
maximum entropy principle (MEP) was developed [7]. It is
a way to address statistical inference problems that are not

2We do not claim that SEXT is the thermodynamic entropy of
history-dependent processes in the same way as H corresponds
to the thermodynamic entropy of equilibrium processes, which is
given by H in its maximum configuration p∗. For SEXT we merely
select extensivity as a defining property. Since for history-dependent
processes the entropy concepts are no longer degenerate in general,
distinct entropy notions will characterize distinct interrelations
between macrostate variables and describe different aspects of the
actual thermodynamics of history-dependent processes.
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confined to physics. Again the same functional H appears,
SMEP = H . The MEP approach is explicitly grounded in the
statistics of multinomial Bernoulli processes. It can be used
to infer the so-called maximum configuration from particular
data, i.e., the distribution pi of states i that is the most likely
to be observed and that dominates the overall behavior of a
system.

What these three very different approaches have in common
is that physical equilibrium processes, information production
of ergodic sources, and multinomial statistics are all essentially
Bernoulli processes. As we will show below, the particular
functional form of H from Eq. (2) is a generic consequence
of this fact. For this reason, the different entropy concepts
appear degenerate in the sense that SEXT, SIT, and SMEP

all are expressed by the identical functional H , which for
obvious reasons may be referred to as the Boltzmann-
Gibbs-Shannon (BGS) entropy. Processes that are nonergodic,
history-dependent, or that have long-term memory explicitly
break this degeneracy, which demonstrates that H (p) is by
no means a universal functional that fits all purposes. We will
show in detail that the three mentioned entropy concepts lead
to distinct entropy functionals that have to be determined for
every family of processes individually.

We introduce some notation. For physical systems one
typically uses the configuration, for IT, the process picture.
They are equivalent. We will use both. By X we denote
a class of systems or of processes. A configuration in a
physical system corresponds to a path that a process can
take; paths are the microstates in the process picture. A class
is parametrized by a set of parameters θ , which we write
as X(θ ). For example, the class X of Bernoulli processes
is given by the prior probabilities qi , and θ = (q1, . . . ,qW ).
Sample space is denoted by � = {1,2, . . . ,W }. W = W (X(θ ))
is the number of distinct elements in �. Sequences x(N ) =
(x1, . . . ,xN ) ∈ �N are either paths sampled by a process of
length N , X(N,θ ) = (X1,X2, . . . ,XN ), or configurations of
a system with N elements, X(N,θ ) with W (X(N,θ )) = WN .
We can distinguish WN different paths that a process X(N )
can take, or WN distinct configurations of a system X(N ).3

The histogram of a sequence k(x(N )) = (k1, . . . ,kW ) keeps
track of how often state i is visited in the sequence x(N ).
pi = ki/N are the relative frequencies and p = (p1, . . . ,pW )
is the distribution of relative frequencies. The phase-space
volume is the number of configurations in which a system at a
given resolution can be.

Section I A introduces the three entropy concepts in
their respective contexts. Section II shows that entropies
are degenerate for Bernoulli processes, and Sec. III deals
with Pólya urn processes and derives their corresponding
IT, thermodynamic (extensive), and MEP entropies. Sections
IV and V do the same for sample-space-reducing processes

3For Bernoulli processes this equivalence is trivial. It is equivalent
to tossing N independent dice at once, or to tossing one die N

times in a sequence. Both result in N i.i.d. random variables Xn,
n ∈ 1, . . . ,N . The process and the system picture only differ in terms
of how variables Xn may depend on other variables Xm. For processes
there may exist a time ordering, where Xn depends on variables Xm

that appeared earlier in time, m < n.

and multinomial mixture models, respectively. Section VI
concludes.

A. The three concepts of entropy

In the following, we discuss how the three notions of
entropy arise in the contexts of information theory, thermo-
dynamics, and the maximum entropy principle.

1. Information-theoretic entropy and entropy rate

Shannon’s approach to information theory deals with the
question of how many bits per letter are needed on average
to transmit messages of a certain type through information
channels and what happens if these channels are noisy. Con-
sider an information source process X(θ ). The sample space
� in this context is called an alphabet of letters (or a lexicon
of words) i ∈ {1, . . . W }. X(N,θ ) generates messages, i.e.,
realizations or samples x(N ) = (x1,x2, . . . ,xN ). To transmit
the message through an information channel, one has to
translate messages into a code that has b symbols in the code
alphabet (typically the code is binary, b = 2) such that the
average number of bits per letter becomes minimal. Intuitively
this means that frequently observed letters are assigned short
binary codewords while infrequent letters are assigned longer
codewords.

Shannon identified four properties of a functional H—
the four Shannon-Khinchin (SK) axioms—that measure the
average amount of information (in bits) that is required to
encode messages that generate letters i with probabilities
pi . Three of these properties are of a technical nature. SK
axiom 1: H is a continuous function that depends on p

only and no other variables; SK axiom 2: H (p1, . . . ,pW ) is
maximal for the uniform distribution pi = 1/W ; SK axiom
3: H (p1, . . . ,pW ,0) = H (p1, . . . ,pW ). The fourth property,
the so-called composition axiom (SK axiom 4), states that H

measures information independent of the way the W states
get sampled with the probabilities pi . It states that a system
composed of two systems A and B that are statistically
dependent on the entropy of the composed system S(AB) =
S(A) + S(B|A) is the entropy of system A alone plus the
entropy of system B, conditional on A. Details on conditional
entropy follow below. SK axioms 1–4 determine H uniquely
up to a multiplicative constant. H is the functional given in
Eq. (2).

Two theorems, one by Kraft [5] and one by McMillan
[6], assure us that there exists a practical family of uniquely
decodable codes (the prefix codes) if and only if

∑
i∈� b−�i �

1, where �i is the length of the codeword for letter i, and b is the
size of the code alphabet. For a binary code b = 2 this means
that if the source variables Xn(θ ) are identically independently
distributed (i.i.d.), or equivalently if letters i appear with
fixed probabilities pi for all n, one can find codewords of
length � such that 1 − log2(pi) � �i � − log2(pi). Such a
code requires the fewest bits for transmitting messages. Using
log2(pi) = log(pi)/ log 2 we have

1 + H (p)/ log 2 � 〈�〉 � H (p)/ log 2. (3)

This means that H (p) establishes the lower bound for the
so-called information rate or source information rate of i.i.d.
processes in bits per letter for prefix codes.

032124-2



THREE FACES OF ENTROPY FOR COMPLEX SYSTEMS: . . . PHYSICAL REVIEW E 96, 032124 (2017)

What if we are not encoding letters but entire parts of
messages x(N ) that are sampled from �N with respective
probabilities p(x(N ))? The information rate of x(N ) is
generally defined as [8]

SIT(x(N )) = − 1

N
log p(xN,xN−1, . . . ,x2,x1), (4)

where the joint distribution appears. For processes in which
each Xn may depend on earlier events, we can rewrite
Eq. (4). Using the notions for the empty sequence x(0) = ∅
and for the initial distribution p(i|∅), we write p(x(N )) =∏N

n=1 p(xn|x(n − 1)), and we obtain

SIT(x(N )) = −
N∑

n=1

log p(xn|x(n − 1)). (5)

The Shannon-McMillan-Breiman (SMB) theorem [4,9,10]
states that for Markov chains with transition probabilities
p(i|j ) and stationary distributions pj , the asymptotic infor-
mation rate is given by the conditional entropy H (Xn+1|Xn),
i.e.,

lim
N→∞

SIT(x(N )) = −
W∑

j=1

pj

W∑
i=1

p(i|j ) log p(i|j ). (6)

For Bernoulli processes, where p(i|j ) = pi , obviously
limN→∞ SIT(x(N )) = H (p). Note that for history-dependent
process classes X, the law of large numbers that plays a crucial
role in the SMB theorem does not necessarily apply, and
the situation needs to be analyzed carefully for each specific
path-dependent process.

The SMB theorem states that for Markov chains one can
transmit messages at lower bit rates, H (Xn+1|Xn) � H (p),
by using optimal code lengths �i(j ) ∼ − log2 p(i|j ) that
are conditioned on the most recent event j of a message,
〈�〉 ∼ H (Xn+1|Xn)/ log 2. Also history-dependent processes
can in principle be coded more efficiently. However, this
does not mean that the transmission of information becomes
more efficient since the key (decoding table) to the constantly
updated coding schemes must be transmitted in addition to the
source information. The effective information rate measures
the total amount of information the sender has to transmit to
the receiver.

2. Thermodynamics and extensive entropy

Traditionally thermodynamics deals with “homogeneous”
matter, such as ideal gases or solid bodies in thermal equilib-
rium, and it characterizes systems independent of size, shape,
and scale in terms of so-called intensive variables, such as
temperature and pressure. Conjugate variables, such as volume
and entropy, relate the intensive variables to the number
of system components, or more precisely to the number of
degrees of freedom. If extensive variables do not scale linearly
with the degrees of freedom, no reasonable thermodynamic
equations will exist.

If two initially separated systems A and B (that are at
the same temperature and pressure, with volumes VA and VB

and thermodynamic entropies S(A) and S(B), respectively)
are combined, this implies that VAB = VA + VB and S(AB) =
S(A) + S(B). The extensivity of the thermodynamic entropy

results from particles being indistinguishable, meaning that
permutations of indistinguishable particles do not change the
microstate. This effectively resolves the Gibbs paradox by
constraining particles to their independent share of the volume
V/N ; see, for example, [11].

Assume that W = W̄ (Xn) is the number of states the nth
particle can be in, say discrete positions in a container. Then,
if NA and NB are the numbers of identical particles in the two
containers, respectively, one finds that the effective number
of configurations Ŵ in the combined container is given by
Ŵ (AB) = WNA+NB = WNAWNA = Ŵ (A)Ŵ (B). Boltzmann
entropy SB = log Ŵ = N log W is extensive in N . When
the states that each particle can be in are sampled from a
given distribution q—which may not be uniform—one can
still estimate the effective number of states as Ŵ ∼ eNH (q),
where H (q) is the Gibbs formula Eq. (2) for distribution q.
As a consequence, eH (q) measures the effective amount of
states per particle,4 and Boltzmann entropy remains extensive,
log Ŵ = NH (q).

This is generally valid for systems or processes X(N ) =
(X1, . . . ,XN ) described by i.i.d. variables Xt . Systems or
processes with strong constraints, strong interactions, with
nonstationary prior probabilities for states qi(t), strong internal
correlations, or with history-dependent dynamics, typically
populate subspaces of the entire phase space, and H (Gibbs
formula) is no longer extensive. For examples, see, e.g.,
[12–14]. In the more general case, one can estimate Ŵ (N )
by

Ŵ (N ) ≡
N∏

t=1

W̄ (Xt ), (7)

where, again, we measure W̄ (Xt ) ∼ eH (q(t)). Such systems
or processes are called nonextensive, and the SK axiom
4 (composition axiom) is violated. In this case, H lost
the extensive property. However, one can find a functional
expression for an entropy that remains extensive—even though
the underlying system or process is nonextensive. We call such
a functional the extensive entropy, SEXT. Since from Eq. (7)
it follows that Ŵ (N ) is monotonically increasing in N , an
inverse function LX exists such that LX(Ŵ (N )) = N , and
a unique extensive trace-form functional can be found (see
Appendix A),

SEXT(p) =
∑
x∈�N

s(p(x)) = Ns0. (8)

Here p(x) is the probability to sample path x, and s0 is a
constant.

For classes X, which are compatible with the first three
SK axioms 1–3, but violate SK axiom 4 (often nonergodic
processes), all extensive entropies SEXT can be classified by

4Alternatively, one can measure the first moment of the rank r(i|q)
of states i with respect to the distribution function q. The rank r(i|q)
is a permutation on �, such that r(i|q) > r(j |q) if qi > qj . For a
reference process being concentrated uniformly on W̄ states, one
finds 〈r〉n ≡ ∑W

i=1 qi(n)r(i|q(n)) = (W̄ + 1)/2. Conversely, one may
define W̄ (Xn) ≡ 2〈r〉n − 1.
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(c,d) entropies, [15]. These, in a convenient representation,
take the form

S(c,d)(p) =
e
c

∑W
i=1 �(1 + d,1 − c log(pi)) − 1

1 − c + cd
. (9)

S(c,d) is parametrized by two scaling exponents c and d that
characterize the asymptotic scaling behavior of the entropy of
the nonextensive system or process. The exponents are one-to-
one related with the phase space of the system [12], and they
can be computed using

1

1 − c
= lim

N→∞
N

d

dN
log Ŵ (N ),

d = lim
N→∞

log Ŵ (N )

(
c − 1 + 1

N d
dN

log Ŵ (N )

)
. (10)

(c,d) entropies are extensive quantities for nonextensive
system classes.

Extensive systems correspond to the special case c = 1
and d = 1, and one finds 1

e
S(1,1)(ep) = −∑

i pi log pi (e
is the Euler constant). The special case of d = 0 corre-
sponds to power laws and recovers Tsallis entropy [16],
1
η
S(c,0)(ηp) = (1 − ∑

i p
c
i )/(c − 1), where η = c1/(c−1) (note

that limc→1 η = e). For c < 1, (c,d) entropies describe the
phase-space growth of so-called winner-take-all processes
(WTA), where probabilities pi of sampling states i ∈ �

concentrate over time in one single element j ∈ �, the winner,
and limn→∞ W̄ (Xn) = 1. WTA processes also violate SK
axiom 3.

3. The entropy of the maximum entropy principle

The MEP is closely related to the question of finding the
most likely observable macroscopic property (macrostate) of
a system or a process. The distribution function p, or the
histogram k, of events xn that occurred along the path x of
a process X(N,θ ) is such a macrostate. In other words, how
do we find the most likely distribution function of a given
process or a system? Denoting the probability of finding the
histogram by P (k|θ ), the most likely histogram k∗ is obtained
by maximizing P (k|θ ) with respect to k under the constraint∑

i ki = N . k∗ is the best predictor for observing a macrostate
that is generated by the process X(N,θ ). If P becomes sharply
peaked as N becomes large, predictions will become very
accurate.

The MEP of the process X(N,θ ) is obtained by factorizing
P into two terms, P (k|θ ) = M(k)G(k|θ ). M can sometimes
be identified with the multiplicity of the macrostate k, i.e.,
the number of microstates that lead to the macrostate. This
is certainly true for Bernoulli processes, see Sec. II C, and
for SSR processes, see Sec. IV. For Bernoulli processes,
M(k) is equivalent to the multinomial factor (Nk ), while
for SSR processes M(k) is a different type of multiplicity
factor. Similarly, G(k|θ ) can sometimes be identified with the
probability of a microstate belonging to k. In other cases (e.g.,
for Pólya urn processes, see Sec. III) such a factorization
P = MG exists, but neither M nor G has an immediate
interpretation as a multiplicity or as the probability to observe

a particular microstate. However, if such a factorization can
be defined in a meaningful way, not only a minimum relative
entropy principle, but also a corresponding maximum entropy
principle exists.

Taking logarithms log P = log M + log G does not change
the location k∗ = k of the maximum of P (k|θ ), and

1

f
log P (k|θ )︸ ︷︷ ︸

−Srel

= 1

f
log M(k)︸ ︷︷ ︸

SMEP

+ 1

f
log G(k|θ )︸ ︷︷ ︸

−Scross

. (11)

Here f is an appropriate scaling factor, which corresponds to
the degrees of freedom of microstates; see [13].

Srel is the (generalized) relative entropy or information
divergence. Note that for Bernoulli processes, where θ

is given by the prior probabilities q, and P (k|θ ) is the
multinomial distribution function, Srel is identical to the
Kullback-Leibler divergence [17], Hrel(p|q) ≡ DKL(p||q) =∑

i pi(log pi − log qi).
SMEP = 1

f
log M(k) is the (generalized) entropy that ap-

pears in the MEP, which we call MEP entropy. It is sometimes
called the reduced Boltzmann entropy,5 which is defined
as sB = SB/f . This name is justified whenever M can be
interpreted as a multiplicity factor.

Scross(p|θ ) = − 1
f

log G(k|θ ) is the (generalized) cross-
entropy, which represents sets of constraints imposed by the
parametrization θ . Again, for Bernoulli processes with prior
probabilities q, the cross entropy takes the well-known form

Hcross(p|q) = −
W∑
i=1

pi log qi. (12)

Note that within a maximum configuration approach, not
only the notion of entropy but also the notions of cross-
entropy and relative entropy, i.e., information divergence,
can be naturally generalized. For Bernoulli processes, these
notions correspond to H , Hrel, and Hcross. Moreover, the
relation Srel = Scross − SMEP is also valid in the generalized
form.

II. BERNOULLI PROCESSES

We compute the three entropies SIT, SEXT, and SMEP for
Bernoulli processes and show that they are identical with
H from Eq. (2). Bernoulli processes have no memory, and
states i = 1, . . . ,W are sampled independently from the prior
probability distribution q = (q1, . . . ,qW ). Bernoulli processes
of length N , X(N,θ ) are parametrized by θ ≡ q.

Consider the histograms k with
∑W

i=1 ki = N as the
macrostates of the Bernoulli process, and sequences x(N ) as
their microstates. Then the probability to sample a particular
sequence x(N ) with histogram k is given by G(k|q) =∏W

i=1 q
ki

i . The multiplicity M(k) is given by the multinomial

factor M(k) = (Nk ), and the probability to sample histogram k

is P (k|q) = M(k)G(k|q). The number of degrees of freedom
of a sequence of length N is f = N .

5Boltzmann’s principle as formulated by Planck [18] identifies
entropy SB with the logarithm of multiplicity, SB = kB log M .
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A. The information rate of Bernoulli processes

Since Bernoulli processes have no memory, the transition
probabilities p(i|x,θ ) = qi do not depend on path x. The
information rate from Eq. (5) is

SIT(x) = − 1

N

N∑
n=1

log p(xn| x(n − 1),θ )

= − 1

N

W∑
i=1

ki log qi

= −
W∑
i=1

pi log qi = Hcross(p|q). (13)

Since limN→∞ p = q, for a typical sequence x one finds

lim
N→∞

SIT(x) = Hcross(p|q) = H (p). (14)

The entropy SIT = H (p) measures the typical information rate
for optimally coded Bernoulli processes.

B. The extensive entropy of Bernoulli processes

There are three ways to see what the extensive entropy for
the Bernoulli process X(N,θ ) is.

(i) Since Bernoulli processes fulfill all four Shannon
Khinchin axioms, a well-known theorem by Shannon [4]
(Appendix B) states that SEXT(p) = H (p).

(ii) The effective number of configurations Ŵ (N ) =
W̄ (X(N )) of a Bernoulli process X(N ) grows exponentially,
Ŵ (N ) = W̄N . This is because X(N ) is composed of N i.i.d.
Bernoulli trials Xn. Using Eq. (A5) and setting Ŵ (N ) =
W̄N , we see that LX(y) = log y/ log W̄ . As a consequence,
s0 = log W̄ and s(y) = −y log y, meaning that SEXT(p) =∑

i s(pi) = H (p).
(iii) Using Eq. (10) and the exponential phase-space growth,

Ŵ (N ) = W̄N , of Bernoulli processes, one verifies that c = 1
and d = 1. To obtain c, one computes

1

1 − c
= lim

N→∞
N

d

dN
N log W̄ = ∞. (15)

As a consequence, c = 1. Similarly one obtains d = 1. Since
S(1,1) = H , we conclude that SEXT = H .

C. The MEP entropy of Bernoulli processes

Since for Bernoulli processes the degrees of freedom are
simply given by the number of samples f = N , using Stirling’s
approximation N ! ∼ NNe−N it is easy to see that

SMEP = 1

N
log

(
N

k

)
,

(Stirling) ∼ 1

N
log

NN∏W
i=1 k

ki

i

= − 1

N
log

W∏
i=1

p
ki

i

= −
W∑
i=1

pi log pi = H (p). (16)

The maximum entropy SMEP of Bernoulli processes is again
equivalent to H (p).

FIG. 1. Schematic illustration of a Pólya urn process. When a
ball of a certain color is drawn, it is then replaced by 1 + δ balls of
the same color (here δ = 2). The process is repeated N times. This
reinforcement process creates a history-dependent dynamics. After
[19].

The relative entropy Srel = − 1
f

log P is given by the
Kullback-Leibler divergence DKL,

Srel(p|θ ) =
W∑
i=1

pi(log pi − log qi) ≡ DKL(p||q). (17)

The cross-entropy Scross = − 1
N

log G is given by
−∑

i pi log qi and imposes a linear first moment constraint
on p in the MEP. This can be seen by reparametrizing qi

by exp(−α − βεi), which yields Srel ∼ H (p) − α
∑W

i=1 pi −
β

∑W
i=1 piεi . α and β play the role of Lagrangian multipliers

in the maximization problem. For Bernoulli processes, the
maximum configuration asymptotically predicts p∗ = q.

III. THE THREE ENTROPIES OF PÓLYA URN PROCESSES

A. Pólya urn processes

Multistate Pólya urn processes [20,21] are an abstract
representation of path-dependent, self-reinforcing processes
with memory. A Pólya urn is initially filled with ai balls of
color i = 1, . . . ,W . One draws the first ball of color x1 = i

with probability qi = ai/A, where A = ∑W
i=1 ai is the total

number of balls initially in the urn. If we draw a ball of color i,
we do not only replace it, as we would do in a Bernoulli process
(drawing with replacement), but we add another δ balls of the
same color and thus reinforce the probability to draw color i in
subsequent trials; see Fig. 1. As a consequence, the probability
to draw another state (color) i after N samples drawn is given
by

p(i|k,θ ) = ai + kiδ

A + Nδ
= qi + kiγ

1 + Nγ
, (18)

where γ = δ/A is the reinforcement parameter, qi = ai/A,
and θ = (q,γ ) is the set of parameters characterizing the
process. If γ = 0, the Pólya urn process is just “drawing
with replacement” and it is the same as a Bernoulli process.
If γ > 0, the probability to draw color i in the (N + 1)th
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sample depends on the history of samples x in terms of the
histograms k.

Pólya urn processes and nonlinear versions of it exhibit a
crossover between dynamics that is asymptotically a Bernoulli
processes (weak reinforcement) and dynamics that is referred
to as “winner take all” (WTA) dynamics (strong reinforce-
ment). For intermediate reinforcement strengths γ , the details
of random events that happen early on will determine whether
the system behaves one way or the other. How sequences
x = (x1, . . . ,xN ) behave for large N depends on the samples
xn that are drawn at times n much smaller than N .

Pólya processes operate at the edge of Bernoulli and WTA
dynamics. If we measure the histogram k(N1) of the process
after N1 steps, we may continue the process by thinking
of starting a different Pólya urn with an initial condition
k(N1). For this we consider the histogram k′ = k − k(N1) of
N ′ = N − N1 samples and define ai(N1) = ai + ki(N1)δ and
A(N1) = A + δN1. It is easy to see that one again is looking
at a Pólya urn process. However, the parameters have been
modified from θ = (q,γ ) to θ ′ = (q ′,γ ′), where

q ′ = qi + γ ki(N1)

1 + γN1
γ, γ ′ = γ

1 + N1γ
. (19)

As a consequence, the effective reinforcement γ ′ < γ , and
γ ′(N1) → 0 as N1 → ∞. The distribution q ′ gets modified
by the history of the process x(N1), and the effective
reinforcement parameter γ ′ decreases over time. Whether a
particular realization of a process defined by θ enters the
WTA dynamics therefore depends on whether the modified
Pólya urn with parameters θ ′ enters WTA dynamics or not.
This depends on which path x(N1) the urn process took within
the first N1 steps. If in those first steps one of the elements
i acquires most of the weight, the process can enter WTA
dynamics, meaning that i eventually gets sampled almost all
of the time. Nonlinear Pólya processes, where the effective
reinforcement decays more slowly as time progresses, almost
certainly enter WTA dynamics. We can now discuss the three
entropies of Pólya processes.

B. The information rate of Pólya urn processes

In WTA scenarios, the relative frequency pj to observe the
winner j approaches 1, meaning that p concentrates on the
winner state j , which essentially becomes the only state that
is sampled,

pj (N ) ∼ 1 − 1 − qj

1 + γN
. (20)

Without knowing the exact distribution of the “loser” states
i �= j , we assume that all those states have equal probabilities,

pi(N ) = 1 − pj (N )

W − 1
= 1 − qj

(W − 1)(1 + γN )
. (21)

Following Eq. (20), the information rate of a WTA process can
be estimated,

NSIT(x) = −
N∑

n=1

log p(xn|x(n − 1))

∼ 1 − qi

γ
log N + const. (22)

The information rate of a Pólya process in the WTA mode
asymptotically approaches zero. The total information pro-
duction, i.e., the number of bits required to encode the entire
sequence, grows logarithmically, NSIT(x(N )) ∝ log N . If the
Pólya process does not enter WTA dynamics, it behaves
like a Bernoulli process sampling from the limit distribution
p(∞) = limN→∞ p(N ) with an information rate, H (p(∞)).

C. The extensive entropy of Pólya urn processes

The effective number W̄ of a typical sequence x of length
N , with j the winner in the WTA process, can be estimated by
inserting q from Eqs. (20) and (21) into W̄ (n) ∼ exp(H (q(n))),
or alternatively by using this q to compute the first-rank
moment 〈r〉 and W̄ (n) ∼ 2〈r〉 − 1. One uses Eq. (7) to
compute

ŴPólya(N ) ∝ (1 + γN)
1−qj

γ . (23)

From Eq. (10) it follows that 1/(1 − c) = (1 − qj )/γ . There-
fore, the (c,d) class of Pólya urn processes is

c = 1 − γ

1 − qj

and d = 0. (24)

Note that c is negative for γ sufficiently large, which means
that the SK axiom 3 is violated by Pólya processes in WTA
dynamics. As a consequence, (10) might no longer hold, since
it was derived under the assumption that SK axioms 1–3 do
hold. However, one can still safely compute the extensive
entropy using Eq. (A5) with Eq. (23) to find

SEXT(q) = 1

1 − qj

W∑
i=1

qi logc qi = S(c,0), (25)

where logc(x) = (x1−c − 1)/(1 − c) and c = 1 − γ /(1 − qj ).
This is exactly the result that we get from Eq. (10).

D. The MEP of Pólya urn processes

For Pólya urn processes, the probability to observe a
sequence x is the same as the probability to observe any
other sequences x ′ with the same histogram k. Therefore,
P (k|θ ) = M(k)G(k|θ ) factorizes into the multiplicity M(k),
which is given by the multinomial factor and the sequence
probability, G(k|θ ). One might conclude that the number of
degrees of freedom scales like f = N . In this case, the Pólya
MEP is H plus cross-entropy terms. If γ is sufficiently small,
this is indeed true and the Pólya processes essentially behave
like Bernoulli processes. If γ is sufficiently large, however, the
Pólya process is likely to enter the WTA dynamics if one state
gets sampled repeatedly in the very beginning of the process.
How often on average do we expect state i to be sampled in a
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row at the beginning of a Pólya process? The answer is

〈n〉(qi) =
∞∑

n=0

n

(
1 − qi + γ n

1 + γ n

) n−1∏
m=0

qi + γ n

1 + γ n
. (26)

To first order in γ , one can estimate that

〈n〉(qi) ∼ qi

1 − qi − κ(qi)γ
, (27)

where κ(qi) > 1 − qi . As γ → (1 − qi)/κ(qi) from below,
〈n〉(qi) → ∞. This means that if states j violate the condition
γ < (1 − qj )/κ(qj ) � 1, it becomes likely that the Pólya
process enters the WTA dynamics. Practically this means that
usually WTA behavior can be observed if a state i gets sampled
repeatedly within the first few steps of the Pólya process.
Otherwise, the effective reinforcement γ ′ becomes too small
for the process to enter the WTA dynamics, and the sampling
distribution q(N ) approaches that of a Bernoulli process.

For sufficiently large γ , one finds the situation in which
G(k|θ ) can be written as G(k|θ ) = M̃(k)G̃(k|θ )/M(k), so that
MG = M̃G̃ [19]. This means that the probability for the his-
togram P = M̃G̃ no longer depends on the multinomial factor
M at all. One observes that for γ > 0, the expression log M̃

scales very differently than multinomial multiplicities. With
f = 1 the MEP entropy SMEP ≡ 1

f
log M̃ becomes a well-

defined generalized relative entropy, and Scross = − 1
f

log G̃ is
a generalized cross-entropy functional. In [19] we have shown
in detail that

SMEP(p|N ) ∼ −
W∑
i=1

log(pi + 1/N),

Scross(p|q,γ,N ) ∼ − 1

γ

W∑
i=1

qi log(pi + 1/N). (28)

The numerical values for the WTA dynamics (one winner and
W − 1 losers) are

SMEP ∼ (W − 1) log N + const,

Scross ∼ 1 − qj

γ
log N + const. (29)

The generalized relative entropy Srel can also be viewed as
the information divergence of Pólya processes,

Srel = DPólya(p|θ ) =
W∑
i=1

(
qi

γ
− 1

)
log(pi + 1/N ). (30)

DPólya is convex in pi only if γ < qi . The processes becomes
unstable if the reinforcement parameter γ is sufficiently large.

This intrinsic instability of self-reinforcing processes makes
MEP predictions of the distribution function p = (p1, . . . ,pW )
unreliable since large deviations from the maximum configu-
ration p∗ remain probable, even for large N . In other words,
no well-defined typical sets of paths x form with respect to
the distribution of states i ∈ �. However, quite remarkably,
ensembles of Pólya urns show stable frequency and rank
distributions. If we want to predict the relative frequencies
of states ordered according to their rank, the largest frequency
having rank r = 1, the second largest frequency rank r = 2,
etc., then this rank distribution p̃ = (p̃1, . . . ,p̃W ) can still be
predicted with high accuracy [19]. Pólya urn paths produce
typical sets with respect to the most likely observed rank
distribution.

E. Summary Pólya urn processes

Pólya urn processes either enter WTA dynamics or behave
as a Bernoulli process. For WTA scenarios, one finds that SIT ∼
1
N

log N , the extensive entropy is SEXT = Sc,0, where c < 0,
and SMEP ∼ (W − 1) log N (see Table I). The corresponding
numerical values of the different entropies yield similar results,
i.e., Pólya urns,

NSIT ∼ Scross ∼ 1 − qj

(W − 1)γ
SMEP. (31)

Again, Scross is a measure of information production. However,
instead of measuring the information rate, which becomes
zero, it measures the total information production. This
matches the intuition that the most likely “winner” is a state
that happens to be “in the lead” at the very beginning of the
process. With some nonvanishing probability, another state
can take over the lead within the first few steps. However,
if this happens it becomes very unlikely that the Pólya urn
process can still enter the WTA dynamics because of the
decreasing effective reinforcement parameter γ ′. The process
then asymptotically approaches a Bernoulli process, where the
three entropies are degenerate, SIT ∼ SEXT ∼ SMEP ∼ H .

IV. THE THREE ENTROPIES OF
SAMPLE-SPACE-REDUCING PROCESSES

A. Sample-space-reducing processes

Sample-space-reducing (SSR) processes are processes
whose sample space reduces as they evolve over time. They
provide a way to explain the origin and ubiquity of power
laws in complex systems, and Zipf’s law in particular [22,23].
SSR processes are typically irreversible, dissipative processes
that are driven between sources and sinks. Complicated

TABLE I. Extensive entropy, information theoretic entropy rate, and maximum entropy for Pólya, sample-space-reducing, and multinomial
mixture processes. H (p) is defined in Eq. (2) and f (q) is the mixing kernel. Expressions are generally valid for large N and W .

Pólya process (WTA) SSR process Multinomial mixture process

SEXT S1− γ
1−qj

,0 S1,1 = H (p) (ensemble) S1,1 = H (p)

SIT
1−qj

γ

1
N

log N 1 + 1
2 log W

∫ 1
0 dq f (q) H (q)

SMEP −∑
i log pi −∑W

i=2 [pi log ( pi

p1
) + (p1 − pi) log (1 − pi

p1
)] depends on mixing kernal

f (q) = μ(q)γ (q|θ ) ⇒ SMEP = log(μ(q))
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driven dissipative processes such as sandpile dynamics [24],
can often be decomposed into simpler SSR processes. Ex-
amples of sample-space-reducing processes include frag-
mentation processes, sentence formation [23], diffusion and
search processes on networks [25], and cascading processes
[26].

SSR processes can be viewed as processes in which the
currently occupied state determines the sample space for the
next. If the system is in state i, it can sample states from a
sample space �i . Often sample spaces are nested along the
process, meaning that �i ⊂ �j ⇔ i > j . In such cases, as
the process evolves, the sample space successively becomes
smaller. Eventually, a SSR process ends in a sink state,
i = 1 (�1 is the empty set). The dynamics of such systems is
irreversible and nonergodic. To keep the dynamics going, SSR
processes have to be restarted, which can lead to a stationary,
driven, and irreversible process that is effectively ergodic.

A simple way to depict a SSR process is a ball bouncing
downward random distances on a staircase. It never jumps
upward. Each stair represents a state i. State i = 1 corresponds
to the bottom, while state i = W corresponds to the top of
the staircase; see Fig. 2(a). Obviously, successive sample
spaces are nested. A ball on step i can sample from all steps
below itself j < i with equal or prior probabilities q. If the
steps carry prior probabilities q = (q1, . . . ,qW ) [which can be
intuitively interpreted as the widths of the steps, Fig. 2(b)],
the process will visit state j < i with probability qj/Qi−1,
where Qi = ∑i

s=1 qs is the cumulative distribution of q up to
i. Regardless of q (exceptions are discussed in [25]), the SSR
processes still follows Zipf’s law in the visiting distributions,
pi = i−1. By restarting the process, one forces the process to
become quasiergodic, meaning that a stationary distribution p

exists, despite the process being irreversible. By allowing the
process to jump to any position with a given frequency 1 − λ,
the visiting distributions remain exact power laws, pi = i−λ

[22,25]. In the following, we discuss the three entropies of the
“staircase process.”

B. The information rate of SSR processes

Note that SSR processes are Markov processes, and the
probability of sampling xn only depends on the previous
sample xn−1. Considering ensembles of “staircases” (restarting
the SSR process every time it stops) allows us to treat the
process as if it were ergodic, and well-defined asymptotic
distributions p = (p1, . . . ,pW ) exist. The entropy production
of typical sequences therefore yields

SIT(x) = − 1

N

N∑
n=1

log p(xn|xn−1)

∼ −
W∑

i,j=1

p(j |i)pi log p(j |i) =
W∑
i=1

piHi. (32)

The entropy production of the SSR process is given by
the conditional entropy. For uniform priors qi = 1/W

one computes the numerical value of the SSR entropy

production,

SIT = p1 log W + p1

W∑
i=2

1

i
log i

∼ 1 + 1

2
log W + O(1/ log(W )). (33)

Here we replaced sums
∑b

i=a f (i) by integrals
∫ b+1/2
a−1/2 dx f (x).

Note that the 1 in Eq. (33) arises from the restarting procedure.

C. The extensive entropy of SSR processes

We quantify how the phase space of a SSR process grows
by the number of decisions (where the ball jumps next) the
process takes along its path. A Bernoulli process on W states
chooses between W possible successor states at every time

1 2 3 4 5

(b)

1 2 3 4 5 6 7 8 9

(a)

(c)

=

=
FIG. 2. (a) Pictorial view of a SSR process. A ball bounces

downward only, with random step sizes. After several iterations of the
process, the visiting probabilities of states i approach pi = i−1 (Zipf’s
law). (b) SSR with nonuniform prior probabilities. For a wide class
of prior probabilities, the visiting distributions still follow Zipf’s law.
(c) Combining two staircase processes through a “Cartesian product.”
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step. After N samples, the process selects one specific path
among the WN possible.

The effective number of decisions in a SSR process is
computed using Eq. (7). Note that by restarting the SSR
process it becomes quasiergodic, and that each state is visited
with probability pi = p1/i, with 1/p1 = ∑W

i=1 1/i. At state
i > 1, the process can sample from Wi = i − 1 states, and
restarting the process once it hits state i = 1 means W1 = W

(it can jump anywhere). With this we compute the typical size
of the phase space,

Ŵ (N ) ≡
N∏

n=1

Wxn
∼

W∏
i=1

W
piN

i = W̄N . (34)

Consequently, W̄ = Wp1
∏W

i=2(i − 1)pi , and the average num-
ber of choices per step involved in sampling a typical SSR
sequence x is given by the numerical value

log W̄ = 1
2 log W + 1 + O(1/ log W ). (35)

The contribution of the constant 1 comes from restarting the
process. This implies that W̄ ∼ e

√
W > 1.

The definition of extensivity is closely related to the way
systems are composed. Staircase A with W (A) states can be
combined with staircase B with W (B) steps, and to a staircase
AB by substituting each step of staircase A with a copy of
staircase B; see Fig. 2(c). We get

W̄ (AB) = e
√

W (A)W (B) = 1

e
W̄ (A)W̄ (B). (36)

If we compose staircase A N times with itself, we get
W̄ (A(N )) = e(W̄ (A)/e)N . In other words, the quasiergodic
SSR has an exponentially growing phase space, and the
extensive entropy is given by SEXT = H .

D. The MEP of SSR processes

To arrive at the MEP for SSR processes XSSR with
histogram k = (k1, . . . ,kW ) as the macrostate, we need to
determine the probability P (k|q) = M(k)G(k|q) after N

observations of the process and determine the maximum
configuration k∗ that maximizes P (k|q). To compute M ,
we first decompose any sampled sequence x = (x1, . . . ,xN )
into shorter sequences xr , such that x = x1x2 · · · xR is a
concatenation of such shorter sequences. Any sequence xr

is a sample of executing X until X stops. We refer to xr as
one “run” of X. This means that any run xr = xr

1x
r
2 · · · xr

Nr

is a monotonously decreasing sequence of states, xr
n > xr

n+1,
ending in xr

Nr
= 1, where X stops and needs to be restarted.

Note that
∑R

r=1 Nr = N . Since every run ends in state 1, the
number of runs equals the number of times state 1 is sampled,
R = k1. Arranging x in a table with W columns and k1 rows,
and denoting a stair that gets visited by ∗ and a stair that does
not get visited within a run by −, allows us to determine the

probability G and the multiplicity M of a sequence x,

r × i W W − 1 W − 2 · · · 2 1

1 ∗ − − · · · ∗ ∗
2 − ∗ ∗ · · · − ∗
3 ∗ − ∗ · · · − ∗
...

...
...

...
...

...

R − 2 − ∗ ∗ · · · − ∗
R − 1 − ∗ − · · · ∗ ∗

R − − ∗ · · · − ∗
kW kW−1 kW−2 · · · k2 k1

(37)

We can directly assess the number M of sequences x that have
the same histogram k. Note that column i is k1 = R entries long
and contains ki items; ki � k1. Therefore, one can produce
all those sequences x by rearranging ki visits to state i in a
column of k1 possible positions. Each column i > 1 therefore
contributes to M with the binomial factor

(
k1

ki

) = k1!/ki!/(k1 −
ki)!. As a consequence, one finds M(k) = ∏W

i=2

(
k1

ki

)
, and the

reduced MEP entropy 1
N

log M is given by

SMEP = −
W∑
i=2

[
pi log

(
pi

p1

)
+ (p1 − pi) log

(
1 − pi

p1

)]
.

(38)

The numerical values are

SMEP = p1

W∑
i=2

(
1 − 1

i

)
log

(
1 − 1

i

)
+ p1

W∑
i=2

1

i
log i

∼ 1

2
log W + 1 + O(1/ log W ). (39)

Similarly, one can determine the probability of sampling a par-
ticular sequence x. Each visit to a state i > 1 in the sequence
x contributes to the probability of the next visit to a state
j < i with a factor 1/Qi−1, whatever j gets sampled. Only if
i = 1 do we not get such a renormalization factor, since the
process restarts and all states i are valid targets with probability
qi . It follows that G(k|q,N ) = ∏W

i=1 q
ki

i

∏W
j=2 Q

−ki

i−1, and the
cross-entropy is found to be

Scross(p|q) = −
W∑
i=1

pi log qi +
W∑
i=2

pi log Qi−1. (40)

Since terms in Scross do not cancel terms in SMEP, we can safely
identify SMEP with the reduced Boltzmann entropy, SMEP = sB .

The relative entropy of the staircase process is

Srel = Scross − SMEP. (41)

To get the maximum configuration, we have to minimize Srel

with respect to p under the constraint
∑W

i=1 pi = 1. The result
is derived in Appendix B and reads

pi = p1
qi

Qi

. (42)

For constant prior probabilities qi = 1/W , this yields Zipf’s
law pi = p1/i, with p1 a normalization constant.
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Note that the form of the MEP entropy of SSR processes,
SMEP(p) = ∑W

i=2 s(p1,pi), is not of trace form, since the state
i = 1 remains entangled with every other state j > 1. SSR
processes violate almost all the SK axioms. For perfectly
ordered states with distributions pi = δij that are concentrated
on a single state j , SMEP(δij ) = 0. For the uniform distribution
pi = 1/W , we get SMEP(p) = 0. This property has been
advocated by Gell-Mann and Lloyd for functionals measuring
a so-called effective complexity [27,28]. This property emerges
from the fact that for SSR processes, the uniform distribution
can only be obtained if the process evolves along the particular
sequence W → W − 1 → W − 2 → · · · → 2 → 1, which is
immensely unlikely.

E. Summary SSR processes

For sufficiently large W , the values for entropy production
SIT, of MEP entropy SMEP (reduced Boltzmann entropy sB),
and the generalized cross-entropy Scross, all yield the same
numerical values,

SIT ∼ SMEP ∼ Scross ∼ 1
2 log W + O(1 + 1/ log W ). (43)

Much of what is true for Markov processes remains true for
SSR processes, which become Markovian by restarting the
process once it stops in i = 1. The reduced Boltzmann entropy
again measures the typical information rate of the process
and determines the amount of information that is required to
optimally code typical SSR processes. Comparing Eq. (43)
with entropy production of Bernoulli processes log W , note
that typical SSR processes only need half the information for
encoding a message. It is remarkable that SSR processes, as
driven dissipative systems, show enhanced compressibility.

V. MULTINOMIAL MIXTURE PROCESSES

Multinomial mixture processes (MMPs) can be viewed as
two-step processes, where an urn is filled with dice with W

faces. Each die may have individual biases q = (q1, . . . ,qW ).
From this urn we draw a die, toss it, record the outcome, and put
it back into the urn. In other words, one draws dice with biases
q according to some fixed probability density function f (q)
that is called the mixing kernel. Assume f to be sufficiently
smooth and nonvanishing for all states i.

A. Entropy production and extensive entropy of multinomial
mixture processes

The MMP samples from the states i = 1, . . . ,W again and
again. The process is stationary, and if f is smooth, then
W̄ > 1. As a consequence, the extensive entropy of such
processes must be (c,d) = (1,1),

SEXT(p) = S(1,1)(p) = H (p), (44)

meaning that the extensive entropy is H .
MMPs are ergodic. Therefore, for each set of biases q in the

mixture, one gets a typical contribution H (q) to the entropy
production, and the entropy rate of a typical sequence is given
by the expectation value,

SIT(x) ∼
∫ 1

0
dq f (q)δ(1 − |q|1)H (q) ≡ 〈H 〉f , (45)

which is merely the conditional entropy to draw a die with
weights q, given that q is drawn with probability f . Note that
the expected frequencies are

pi =
∫ 1

0
dq f (q)δ(1 − |q|1)qi ≡ 〈qi〉f . (46)

It follows that in general H (〈q〉f ) > 〈H 〉f , meaning that
Shannon entropy of the stationary distribution overestimates
the information rate of the process.

B. The MEP of multinomial mixture processes

Assume a MMP with θ = q. The probability to sample
histogram k is

P (k) = M(k)
∫ 1

0
dq f (q)δ(|q|1 − 1)

W∏
j=1

q
kj

j , (47)

where M(k) is the multinomial factor, |q|1 = ∑W
i=1 qi , and f

is normalized, 1 = ∫ 1
0 dq f (q)δ(|q|1 − 1). Just as in the case

of the Pólya process, one might naively think that the MEP
functional is H plus cross-entropy terms. Again, this turns out
to be wrong. Consider the identity[

M(k)
(N + W − 1)!

N !

]−1

=
∫ 1

0
dq

W∏
i=1

q
ki

i δ(|q|1 − 1). (48)

Since for a distribution p with |p|1 = 1 the function
∏W

i=1 q
pi

i

is maximal for p = q, we see that for large N ,

W∏
i=1

δ

(
qi − ki

N

)
∼ M(k)

(N + W − 1)!

N !

W∏
i=1

q
ki

i δ(|y|1 − 1)

(49)

forms a so-called δ sequence. Inserting Eq. (49) into Eq. (47)
gives

P (k) ∼ N1−Wf

(
k

N

)
, (50)

and the relative entropy of MMPs with f (q|θ ) is

Srel(p|θ ) = − log f (p|θ ). (51)

If Srel can be decomposed into Srel = SMEP − S̃cross, it depends
on the mixing kernel f . If it factorizes f (q|θ ) = μ(q)γ (q|θ ),
then SMEP(q) ∼ log μ(q), Scross(q|θ ) ∼ − log γ (q|θ ), and

P (k|θ ) = M(k)
∫

dq δ(|q|1 − 1)
W∏

j=1

q
kj

j

1

Z
eSMEP−Scross , (52)

where Z is a normalization constant.

VI. CONCLUSIONS

For simple systems, the concepts of thermodynamic en-
tropy, information-theoretic entropy, and the entropy in the
maximum entropy principle all lead to the same entropy
functional H (p); it is degenerate. The essence behind simple
systems and processes rests in the fact that they are all
basically built on multinomial Bernoulli processes. We showed
that Bernoulli processes generically lead to H regardless
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of the entropy concept that is used. We showed in three
concrete examples that this degeneracy is broken for more
complex processes, and that the three entropy concepts lead to
completely distinct functional forms. The entropy concepts
now capture information about distinct properties of the
underlying system. The three processes studied were the
Pólya process as an example of a self-reinforcing process,
sample-space-reducing processes as an example of history-
dependent processes with power-law distribution functions,
and multinomial mixture processes, which serve as an example
of composed stochastic processes. The results are summarized
in Table I. The processes discussed here are relatively
simple when compared to stochastic processes that occur in
actual nonergodic complex adaptive systems, which often are
self-reinforcing, path-dependent, and composed of multiple
dynamics. The main contribution of our exercise here is that
it shows unambiguously that for any process that cannot be
based on, or be traced back to, Bernoulli processes, one needs
to exactly specify which concept of entropy one is talking about
before it makes sense to try to compute it. In general, the three
concepts have to be computed system class by system class.
The naive use of the expression H as a one-size-fits-all concept
will inevitably lead to confusion and nonsense. It remains to
be seen if systems and processes can be classified into families
that share the same three faces of entropy.
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APPENDIX A: EXISTENCE OF UNIQUE EXTENSIVE
ENTROPY FOR NONEXTENSIVE SYSTEMS

Assume that the effective phase-space volume is given by

Ŵ (N ) ≡
N∏

n=1

W̄ (Xn). (A1)

Since Ŵ (N ) is monotonically increasing in N , an inverse
function LX exists such that LX(Ŵ (N )) = N , and a unique

extensive trace-form functional can be found,

SEXT(p) =
∑
x∈�N

s(p(x)). (A2)

Here q(x) is the probability to sample path x, such that for
sequences x(N ) one obtains

SEXT(q(x(N ))) = Ns0, (A3)

with s0 = W̃ (1)s(1/W̃ (1)). If we look at a reference process,
where the path probabilities q(x) are uniformly concentrated
on Ŵ (N ) paths, it follows that∑

x∈�N

s(q(x)) ∼ Ŵ (N )s

(
1

Ŵ (N )

)
. (A4)

Clearly, Ŵ (N )s( 1
Ŵ (N)

) = Ns0 is exactly solved by

s(x) = s0 x LX

(
1

x

)
. (A5)

APPENDIX B: SOLVING THE MEP FOR SSR PROCESSES

To maximize the MEP of the staircase process, Eq. (41),
with respect to the probabilities p under the constraint∑W

i=1 pi = 1, where W is the number of possible states,
we may proceed as follows. The staircase MEP requires
us to solve δ(ψ(p|q,N ) − α(

∑W
i=1 pi − 1)) = 0, where ψ =

SMEP − Scross = −Srel of the SSR process and α is the
Lagrange multiplier guaranteeing the constraint. This means
that every derivative of the constrained functional with respect
to pi must be zero. For i > 1 one gets

pi = p1

1 + ζ
Qi−1

qi

, (B1)

where ζ = exp(α). Similarly, for i = 1 one finds

q1 = ζ exp

[
W∑
i=2

log

(
1 − pi

p1

)]
. (B2)

Solving these two equations self-consistently, one finds (at
least numerically) that ζ = 1, and the solution of the MEP is

pi = p1
qi

Qi

. (B3)
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