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Electrical autonomous Brownian gyrator
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We study experimentally and theoretically the steady-state dynamics of a simple stochastic electronic system
featuring two resistor-capacitor circuits coupled by a third capacitor. The resistors are subject to thermal noises at
real temperatures. The voltage fluctuation across each resistor can be compared to a one-dimensional Brownian
motion. However, the collective dynamical behavior, when the resistors are subject to distinct thermal baths, is
identical to that of a Brownian gyrator, as first proposed by Filliger and Reimann [Phys. Rev. Lett. 99, 230602
(2007)]. The average gyrating dynamics is originated from the absence of detailed balance due to unequal thermal
baths. We look into the details of this stochastic gyrating dynamics, its dependences on the temperature difference
and coupling strength, and the mechanism of heat transfer through this simple electronic circuit. Our work affirms
the general principle and the possibility of a Brownian ratchet working near room temperature scale.
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I. INTRODUCTION

Richard Feynman explored whether one can extract work
simply from the stochastic motions agitated by a surrounding
heat reservoir in his famous discussion of the Brownian
ratchet [1]. He pointed out that in order to extract work
autonomously, it is necessary to have the system in contact with
an additional cooling reservoir. Therefore the second law of
thermodynamics is demonstrated even under the consideration
of microscopic stochastic dynamics.

Inspired by Feynman’s discussion, and thanks to the recent
advances in the manipulations on small-scale systems [2],
enormous interest is emerging in the development of miniature
thermal engines [3–10]. In these systems with few degrees of
freedom, one expects to extract work from the microscopic
Brownian movements, and in contrast to bulk systems, their
dynamics exhibits a prominent stochastic nature. Among
these studies, autonomous gyrators are more reminiscent of
Feynman’s original work. For example, Filliger and Reimann
[11] introduced a Brownian gyrator, in which a structureless
particle is simultaneously exposed to two heat reservoirs, each
imposing on one of its motional degrees of freedom. An
average gyrating motion can be observed in the nonequilibrium
steady state (NESS) [12,13] if the two reservoirs are of distinct
temperatures, and hence this two-dimensional (2D) Brownian
gyrator can serve as a “minimal” version of autonomous heat
engines. In Ref. [11], the authors listed two more criterions for
the generation of a Brownian gyrator: (1) the landscape for the
confining potential is not rotationally symmetric, and (2) the
directions along which the two random forces are imposed do
not coincide with the principal axes of the potential landscape.

Despite the simple requirements in the Brownian gyrator or
similar autonomous heat engines, it is technically challenging
to expose a minuscule to two heat baths simultaneously,
each upon an independent direction [14]. Experimentally,
mechanical and electrical realizations of these autonomous
engines are crafted with artificial thermal noises and are
often featured by nonlinear interactions [15–18]. Meanwhile,
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mesoscopic conductors with asymmetric and nonlinear cou-
plings to multiple charge heat baths were proposed to generate
unidirectional charge current [19–21]. Net electrical currents
have been observed experimentally in those mesoscopic
ratchets [22,23], demonstrating their capability of rectifying
heat to work.

In the current work, we report our studies on the stochastic
dynamics of a capacitively coupled resistor-capacitor (RC)
circuit [13,24] as illustrated in Fig. 1(a), where the resistors
are agitated by real thermal noises of two real heat baths. We
demonstrate that this simple linear system can be compared
exactly to the Brownian gyrator as depicted in Ref. [11].
In contrast to the existing studies on this circuit system
concerning its entropy fluctuation and the applicability of
fluctuation theorems [24,25], we turn our attention to its anal-
ogous gyrating behavior, which is concealed in its fluctuating
dynamics over the configuration space. While the voltage for
each of the electrical element fluctuates due to thermal noises,
an average heat is conducted from the hot to the cold reservoir
via the circuit. Along with the average unidirectional gyrating
motion, they both are representations of the second law of
thermodynamics.

The rest of the paper is organized as follows. The ex-
perimental setup and its corresponding stochastic dynamical
equation are given in Sec. II. The main results concerning
the gyrating dynamics over the configuration space, featuring
its steady-state probability and flux distributions, are reported
in Sec. III A. In Sec. III B we provide more theoretical
details for gyrating dynamics of the NESS, and we also
demonstrate the dependence between the gyrating direction
and the temperature gradient. In Sec. IV the dependence of
energy flow and closed-cycle gyration is discussed with the aid
of semiadiabatic processes. The dependencies of the rotating
speed on the coupling strength and the temperature gradient
are studied in Sec. V.

II. EXPERIMENTAL SYSTEM

Figure 1(a) shows the schematic of our study system. Two
RC circuits (R1,C1) and (R2,C2) are connected through a
coupling capacitor Cc [24]. The two resistors R1 and R2 are
individually thermalized by the heat baths of temperature T1
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FIG. 1. Electrical autonomous Brownian gyrator. (a) Schematics
of the experimental system, featuring a capacitively coupled RC
circuit agitated by two heat baths. (b) A snapshot of concurrent V1(t)
and V2(t) over 30 ms with Cc = 1.0 nF and T1 = 120 K. (c) A virtual
particle evolving in the 2D phase space formed by V1 and V2. A small
segment of its trajectory [corresponding to the data in (b)] is shown by
the orange line. The dashed lines indicate the q1 and q2 axes; see text.
The virtual particle is influenced by two heat baths and experiences
two random noises ξ1 and ξ2 from directions parallel to q1 and q2

axes, respectively, as noises are depicted by two sets of wavy arrows.
The tilt ellipses designate potential contours with a minimum in the
origin.

and T2, respectively. In our system of interest, the effects of
electromagnetic induction are negligible, and the dynamics of
the voltages across the resistors, V1(t) and V2(t), is governed
by the coupled Langevin equation [24]

R̂Ĉ �̇V = − �V + �ξ , (1)

where �V ≡ (
V1
V2

)
, �ξ ≡ (

ξ1
ξ2

)
, R̂ ≡ (

R1 0
0 R2

)
, and Ĉ ≡(

C1 + Cc −Cc

−Cc C2 + Cc

)
. The thermal (Johnson-Nyquist) noises

ξ1 and ξ2 are Gaussian white and uncorrelated, namely,
〈ξi(t)ξj (t ′)〉 = 2kBTiRiδij δ(t − t ′), where kB is the Boltzmann
constant. Owing to a nonzero Cc, the dynamics of each voltage
signal Vi is influenced explicitly by both thermal noises.

The measured RC circuits in metal shielding boxes are
placed in a Faraday cage on an optical table. The resistor
R1 in a metal shielding box is cooled in a semiclosed liquid
nitrogen dewar by liquid nitrogen vapor to create the NESS.
We use voltage amplifiers with gain of 104 to magnify the
thermal voltages of V1 and V2 before sampling. The amplified
signals are filtered by a 160 kHz antialiasing filter, digitized
at 262.1 kHz, and averaged over 128 digitized points for a

sample to achieve a sampling rate of 2048 Hz. Typically 106

pairs of (V1,V2) are recorded during each run. The circuit
parameters C1 = 488 pF, R1 = 9.01M�, C2 = 420 pF, and
R2 = 9.51 M� are determined from the measured noise power
spectrums of V1 and V2 at Cc = 0 when both circuits are at
room temperature (see Ref. [25] for more experimental details
and characterization). The coupling capacitance Cc varies from
100 pF to 10 nF. Its value is independently obtained by a LCR
meter. The second reservoir is kept at room temperature (T2 =
296 K), and T1 varies from 120 to 296 K. The value of T1 below
room temperature is measured by a K-type thermocouple and
can be reaffirmed by the variance of statistics in V1 with the
knowledge of other circuit parameters. Figure 1(b) shows a
snapshot of the concurrent voltage time traces V1(t) and V2(t)
with Cc = 1.0 nF and T1 = 120 K. V1(t) and V2(t) resemble
each other owing to the large Cc.

One can compare the electric circuit system to a Brownian
particle in two dimensions, as depicted in Fig. 1(c). The vector
�V (t) can serve as the position of this virtual Brownian particle
at time t . A small segment of its trajectory corresponding to
the voltage time traces in Fig. 1(b) is shown by the orange
line. In the thermally equilibriated case, T1 = T2, the virtual
particle does not exhibit any net movement besides thermal
fluctuations; when T1 �= T2, the particle is unequally agitated
by the two heat baths, causing a persistent, unidirectional
movement on average. In the latter case, we set T1 to be the
colder heat bath throughout our study.

To compare our system to the Brownian gyrator described
in Ref. [11], we introduce the linear transformation

�q ≡
(

q1

q2

)
= Ĉ �V , (2)

where q1 and q2 represent the total capacitor charges in the
neighbors of nodes 1 and 2, respectively. The potential energy
of the system [depicted by equipotential elliptical contours
in Fig. 1(c)], as stored in the capacitors, is U = 1

2C1V
2

1 +
1
2C2V

2
2 + 1

2Cc(V1 − V2)2 = 1
2

�V T Ĉ �V = 1
2 �q T Ĉ−1 �q. With this

transformation of variables, the coupled Langevin equation (1)
now reads

R̂ �̇q = −Ĉ−1 �q + �ξ = −∇qU + �ξ , (3)

which is identical to the overdamped Langevin equation (2)
in Ref. [11]. Therefore, one can apply the framework of a
Brownian particle confined in a 2D potential in Ref. [11] to the
coupled RC circuit discussed in this work. Note that the virtual
particle simultaneously experiences two thermal noises ξ1 and
ξ2 from directions parallel to the q1 and q2 axes, respectively,
as noises are depicted by the wavy arrows in Fig. 1(c). In this
work, however, most results are presented on the V1-V2 plane
(the physically observed variables), and the dynamics of each
Vi is influenced explicitly by both thermal noises.

III. BEHAVIOR IN NONEQUILIBRIUM STEADY STATE:
PROBABILITY FLUX CIRCULATION

A. Experimental results

The main results of this work are visualized in Fig. 2. First,
we present the equipotential lines of U as white concentric
elliptical contours in Fig. 2. Due to the presence of a nonzero
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FIG. 2. Behavior of Brownian gyrator. The figures present the main results of this work. The value of Cc = 1.0 nF is used here. White
contour: the equipotential contours of the coupled RC circuit. Color map: the steady-state distribution Pss( �V ). Vector field: the probability flux,
�Jss( �V ). The inset color map shows the curl of the probability flux, ∇× �Jss. The experimental results are listed in (a) and (b). (a) Equilibrium

case (T1 = T2 = 296 K). The contour lines in Pss and U mutually agree, and �Jss hardly exhibits any flowing trend as the detailed balance is
valid. (b) NESS case (T1 = 120 K). Contour lines of Pss are tilted with respect to those in U , and �Jss reveals a circulating trend about the origin.
(c) Theoretical counterparts of (b).

Cc, the potential possesses no rotational symmetry, and the
principal axes of the contours are tilted in the V1-V2 frame
and do not coincide with q1-q2 axes, where ξ1 and ξ2

act on. Therefore, this setup meets the two aforementioned
requirements and can serve as an electrical version of a
Brownian gyrator [11].

Our measured steady-state distribution Pss( �V ) is presented
as a color-map plot in Figs. 2(a) and 2(b). At thermal equilib-
rium (T1 = T2 ≡ T ), Pss follows the Boltzmann distribution.
Thus Pss is constant on equipotential contours, as shown in
Fig. 2(a). The system falls into a NESS when T1 < T2 with
a nonzero heat flow on average going from the T2 heat bath
to the T1 heat bath through the circuit [24]. A NESS case of
T1 = 120 K is demonstrated in Fig. 2(b). While Pss in Fig. 2(b)
still has an elliptic shape, it does not stay in accordance with the
potential landscape. Its principal axes rotate counterclockwise
slightly when compared with those in Fig. 2(a). This behavior
is attributed to the narrower distribution in V1 in the NESS
case due to the lower T1.

A major difference between thermal equilibrium and
NESS lies in time reversibility. Theoretically, the former is
achieved through the detailed balance condition, which is
itself a signature of time reversibility. On the other hand,
the detailed balance condition can fail in a nonequilib-
rium process, leading to persistent probability flows even
in its steady state. Here we evaluate the probability flux
�Jss( �V ) ≡ Pss( �V )�vflow( �V ) from the experimental trajectory of

the virtual particle, where �vflow( �V ) represents the steady-
state flow velocity at �V [14]. We use the operational def-
inition �vflow( �V ) ≡ [〈 �V (t + �t) − �V (t)| �V (t) = �V 〉 − 〈 �V (t) −
�V (t − �t)| �V (t) = �V 〉]/2�t , where �t = 0.488 ms is the
sampling interval (corresponding to the sampling rate of
2048 Hz), and the phase space is divided into grids with reso-
lution �V = 0.67μV in order to accumulate decent statistics.
The experimental results of �Jss are presented as vector fields
in Figs. 2(a) and 2(b). There is clearly a circulating probability
flux field in the NESS case [Fig. 2(b)], while no significant flow
occurs in the thermal equilibrium case [Fig. 2(a)]. Therefore,
in a NESS, the motion of the virtual particle can be depicted

by Brownian dynamics with an average counterclockwise
circulation, i.e., it manifests as a Brownian gyrator in an
electrical system. See also the supplemental videos [26]
for the real-time evolutions of the virtual particle in the
phase space.

The circulation of probability flux in the NESS results
from the unbalanced competition between the conservative
and diffusive driving forces. Naïvely speaking, on the V1-V2

plane, the conservative force pulls the virtual particle inward.
Meanwhile, the diffusive force from the gradient of Pss tends
to push the virtual particle outward. At thermal equilibrium
[see Fig. 2(a)], the two sets of contour lines have identical
shape, and their representative drives cancel out exactly. Thus
the net flux is zero everywhere, a signature of the detailed
balance. In the NESS case, however, due to the temperature
difference, the principal axes for the contours of Pss and U are
different, and the two driving forces are mostly not balanced.
As a result, the net force contributes to a nonvanishing flux.
Circulating motion therefore emerges naturally since the flux at
the steady state must be divergence-free (the curl of a nonzero
field must exist somewhere for the divergence-free case).

Moreover, owing to the conservation of probability,

dPss

dt
= ∇Pss · �vflow + ∂Pss

∂t
= 0 (4)

holds along the steady-state circulation trajectories. Since
∂Pss
∂t

= 0, �vflow and thus �Jss must be perpendicular to
∇Pss [27].

The results for the curl of the steady-state flux, ∇× �Jss,
are shown in the insets of Fig. 2, where ∇× �Jss points out
of the V1-V2 plane. In the NESS case, the large positive
curling trend near the origin causes the virtual particle to
gyrate counterclockwise on average. Note that away from the
origin, small regions with a negative curling direction (shown
as dark blue) can be observed from both our experimental
and theoretical analysis. Negative curl exists in regions of
approximately parallel field lines whose magnitude decreases
as the virtual particle marches outward. Note that even in
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the negative curl regions, the flux field lines still follow the
counterclockwise gyrating trend with respect to the origin.

B. Theoretical analysis

We first consider the corresponding Fokker-Planck equation
of this stochastic system:

∂P ( �V ,t)

∂t
= ∇ · [M̂−1 �V P ( �V ,t)]

+ 1

2
∇ · [M̂−1�̂(M̂−1)T ∇P ( �V ,t)] , (5)

where M̂ ≡ R̂Ĉ, �̂ ≡ (
�1 0
0 �2

) = R̂T̂ and T̂ ≡ (2kBT1 0
0 2kBT2

)
.

It has a Gaussian steady-state distribution in

Pss( �V ) =
√

det(M̂T X̂M̂)

π2
exp(− �V T M̂T X̂M̂ �V ) , (6)

where

X̂ ≡
(M̂−1)T �̂

−1
M̂−1 + �̂

−1

det(M̂)

Tr(M̂)
det(M̂)

{
1 + 1

det(�̂)

[
�1M21−�2M12

Tr(M̂)

]2
} (7)

is a 2×2 symmetric matrix, and {Mij } represent the elements
of the matrix M̂. With a little algebra one can show that

X̂M̂ = Tr(M̂)

B
(A�̂

−1 − εŶ) , (8)

where A≡Tr(M̂) det(�̂), Ŷ≡( 0 1
−1 0

)
, B ≡det(A�̂

−1−εŶ)=
A2/ det(�̂) + ε2, and ε ≡ �1M21 − �2M12 = 2kBR1R2Cc

(T2 − T1).
Equation (8) can be rewritten as

X̂M̂ = A′�̂
−1 − ε′Ŷ

A′(1 + ε′2)
, (9)

where A′ ≡
√

det �̂, and ε′ ≡ ε/[A′ · Tr(M̂)] gives a dimen-
sionless measure for the deviation from thermal equilibrium.
Thus one has

M̂T X̂M̂ =
(

Ĉ

1 + ε′2

)(
T̂−1 − ε′

A′ R̂Ŷ
)

. (10)

Note that ε′ = 0 when thermal equilibrium between the
two resistors is reached (T1 = T2). In this case, the matrix
M̂T X̂M̂ = ĈT̂−1, while the matrix T̂ reduces to a multiple
of the identity matrix. Therefore, Pss exhibits a Boltzmann
distribution and follows the shape of the equipotential contour.

The probability flux of the system is

�J = −M̂−1 �V P − 1
2 M̂−1�̂(M̂−1)T ∇P ( �V ,t) , (11)

in which the first term results from the restoring force towards
the origin, while the second term can be attributed to the
diffusive driving force. At the steady state, one has

�Jss = −M̂−1[ �V − �̂X̂M̂ �V ]Pss ≡ �̂ �V Pss . (12)

In the case of thermal equilibrium, T1 = T2, Eq. (9) reduces

to X̂M̂ = �̂
−1

. As a result, �Jss = �0, which is a signature of the
detailed balance. On the other hand, in a NESS case, the two
representative forces in Eq. (11) do not cancel out, causing a
persistent net flux in a NESS. The steady-state flux described
by Eq. (12) is plotted as a vector field in Fig. 2(c).

The gyrating direction of the virtual particle can be
identified by comparing the directions of �Jss and ∇Pss×�z,
where �z is the unit vector point out of the V1-V2 plane. The
virtual particle is gyrating counterclockwise if both vectors are
parallel and clockwise if they are antiparallel. Note that

�Jss · (∇Pss × �z) = −∇Pss · Ŷ �Jss

= − 2ε

Tr(M̂)
(X̂M̂ �V )T (M̂ŶM̂−1Ŷ)(X̂M̂ �V )P 2

ss .

(13)

One can show that the matrix M̂ŶM̂−1Ŷ is symmetric,
while Tr(M̂ŶM̂−1Ŷ) < 0 and det(M̂ŶM̂−1Ŷ) = 1. As a result,
M̂ŶM̂−1Ŷ is negative-definite, and on average, the virtual
particle is gyrating counterclockwise if ε > 0, i.e., T2 > T1,
and vice versa. As the direction of gyration coincides with that
of heat transport from the hot towards the cold heat bath (see
next section), we have therefore shown that for this coupled
RC circuit, on average, heat is transferred from the high-
to low-temperature thermal baths. Hence the second law of
thermodynamics is recapitulated here through the discussion
of gyrating dynamics.

IV. ENERGY FLOW IN A CLOSED TRAJECTORY

The above observation reveals that on average, the virtual
particle rotates about the origin in the V1-V2 phase space, while
its Brownian-motion signature is revealed within short-time
intervals. The average circulating behavior shows periodic
oscillations in V1 and V2 with an identical frequency and a
constant phase difference. The system therefore acts like a
mini electricity generator powered solely by the temperature
difference and thus can be compared to a Brownian ratchet or
a mini heat engine. The ac voltage could be conceivably used
to power up devices or rectified to store electric energy.

How does energy transfer from the hot heat reservoir to
the cold one in a directed cycle? First, we note that if the
virtual particle circulates along some closed loop on the V1-V2

diagram, the amount of energy flowing into the circuit through
resistor Ri (the same as the amount of heat flowing out
of the heat bath coupled to Ri) during one cycle is Qi =∮

ViiR,i dt = ∮
Vi dqi , where iR,i is the current through Ri .

One can find Q1 = −Cc

∮
V1 dV2 and Q2 = −Cc

∮
V2 dV1 =

Cc

∮
V1 dV2 = −Q1, and their magnitude is proportional to the

loop area | ∮ V2 dV1| on the V1-V2 diagram. Thus over each
counterclockwise cycle Q2 = −Q1 > 0, and a net energy is
flowing from the hot reservoir towards the cold one.

The energy transfer can be better understood using Fig. 3(a)
as a schematic example. The cyclic diagram is constituted by
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FIG. 3. Energy flow in a semiadiabatic cycle. (a) A closed cycle in the phase space formed by four chosen semiadiabatic paths (I, II, III,
IV) about the origin. The red (blue) arrows indicate the processes adiabatic to T1 (T2), while the system is subject to energy exchanges with the
T2 (T1) heat bath only. (b) Major current flows (black solid arrows) and energy flows (gray dashed arrows) in the circuit for the four processes.
(c) An illustrated example of paving a closed cycle by semiadiabatic processes.

four simple paths (I, II, III, IV), which form a parallelogram
with endpoints A, B, C, and D. The four paths are chosen such
that q1 stays fixed during I and III while q2 stays fixed during II
and IV. As a consequence, for processes I and III, no currents
are flowing through R1, and the system can be considered
adiabatic to the cold reservoir T1, while it can exchange energy
with the hot reservoir T2. Similarly, for processes II and IV,
iR,2 = 0, and the system can be considered adiabatic to the T2

bath, while it can exchange energy with the T1 reservoir.
One can show that during processes I and III, the resistor

R2 is exerting positive work on capacitors C1 and C2, while the
bridging capacitor Cc is discharging and also releasing energy
into the other capacitors. And during processes II and IV, the
capacitors C1 and C2 are discharging and releasing energy
into R1 and Cc. The directions of net energy flows and electric
currents are shown in Fig. 3(b). Other than the reversed polarity
in charges and currents, the processes III and IV simply repeat
I and II, respectively. After a full cycle, the system resumes
its original state, and a net energy is transferred from the T2 to
the T1 heat bath through the circuit elements. The amount of
transferred energy can be characterized via the enclosed area
of the cycle, as larger cycles and faster gyrating rates signify
higher heat conduction rates.

Note that for a parallelogram of the aforementioned
semiadiabatic processes without centering at the origin, the
magnitude and even the sign of transported energy to and
from the capacitors for each individual process may vary. Yet
the total amount of energy transported in the two processes
I and III remains unchanged (and so on for II and IV). As
a result, the energy transfer can be characterized in terms
of area on the V1-V2 plot, i.e., | ∮ V2 dV1|. Furthermore, one
can dissect any closed cycle (e.g., the elliptical contour in our
experimental observation in a NESS) into infinite pavements of
parallelograms [see Fig. 3(c) for an illustrated example]. Thus
any closed cycle can be treated as a composite of semiadiabatic
processes.

The linear coupled circuit described here does not convert
any heat into work. Therefore, although the gyrating behavior
is observed in our system, currently it remains meaningless to
discuss its efficiency and output power. Nonetheless, we can
briefly remark on the possibility of extracting work from the
system. For all our discussed cases, the average entropy of this
stochastic system (up to addition by some constant owing to

Pss is not a dimensionless quantity) is

〈S〉/kB = −
∫

Pss( �V ) ln Pss( �V ) d �V = 〈 �V T (M̂T X̂M̂) �V 〉

+ 1

2
ln

π2

det(M̂T X̂M̂)
= 1 + ln(2kBπ ) − 1

2
ln det(Ĉ)

+ 1

2
ln

{
T1T2 + C2

c R1R2(T2 − T1)2

[Tr(R̂Ĉ)]2

}
. (14)

Furthermore, the average internal energy is 〈U 〉 =
1
2kB(T1 + T2). Therefore, for the NESS case we consider,
where the circuit is thermalized by two different heat baths at
T1 and T2, its average energy is identical with that in thermal
equilibrium with the mean temperature T = (T1 + T2)/2. On
the other hand, one can easily show that the NESS average
entropy is less than the equilibrium result at the average
temperature, suggesting that the circuit in a NESS is more
ordered. Since in thermal equilibrium, entropy is a monotonic
function of energy, thus in principle, the circuit in a NESS
should be capable of providing work via some relaxation
process towards the equilibrium where the system entropy
is preserved. Note that with proper external driving, this linear
system can function as a heat engine or a refrigerator [28].

V. ROTATION SPEED OF THE GYRATOR

The gyrating motion of the virtual Brownian particle can
also be well visualized through the dynamics of φ(t) ≡
tan−1 [V2(t)

V1(t) ] [29], the angle of the particle position vector �V (t)
relative to the V1 axis in the configuration space. Figure 4(a)
presents the gross behavior of φ(t) for various T1, while the
stochastic behavior is magnified in the inset. In the NESS cases
(T1 < T2), the overall trend exhibits a linear growth in time,
while such a feature is absent in the thermal-equilibrium case
(T1 = T2 = 296 K).

The dependence of average gyrating rate, 〈φ̇〉, on the
temperature difference, �T ≡ T2 − T1, is shown in Fig. 4(b).
Note that experimentally we obtain 〈φ̇〉 via two methods: The
first method is finding the slopes of the fitted straight lines
in Fig. 4(a) (solid square), while the second is evaluating
the average rotating speed from the probability flux: 〈φ̇〉 =∫ �V ×�vflow

V 2 Pss d �V (open circle). Both experimental evaluations
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FIG. 4. Rotation speed of gyrator. (a) The measured time evolu-
tion in the angle of the virtual Brownian particle position φ(t) for
various T1 (Cc = 1.0 nF being used). The inset provides a zoom-in
detail for fluctuating motions. (b) 〈φ̇〉 vs �T evaluated from the
average slope of φ(t) (solid square) and the average rotating speed
derived from �vflow (open circle) (Cc = 1.0 nF being used). Theoretical
result is provided as the dashed curve. (c) 〈φ̇〉 vs Cc for T1 = 120 K.
Symbols show the results from measurement while the dashed curve
gives the theoretical prediction. (d) The averaged leading angle 〈α〉,
defined by the advanced phase of oscillation in V1 over that in V2,
for a virtual particle circulating along the flux field [T1 = 120 K; the
same symbols as in (c)].

agree well and indicate an approximately proportional relation
between 〈φ̇〉 and �T .

The temperature dependence on the gyrating flux is also
studied analytically. By defining �̂M̂ ≡ �̂X̂M̂ − Î, where Î is
the 2×2 identity matrix, one can show that

�̂M̂ = −ε2Î − εTr(M̂)�̂Ŷ
B

= −εŶX̂M̂

Tr(M̂)
. (15)

Therefore, �̂ = M̂−1�̂M̂ [refer to Eq. (12)], and �̂, �Jss and
thus 〈φ̇〉 are approximately proportional to ε and hence �T

when the temperature difference is small. The theoretical
prediction of this linear behavior is shown by the dashed line
in Fig. 4(b), as observed experimentally.

We further study the dependence of rotating speed on the
coupling, Cc, as is shown in Fig. 4(c). Remarkably, 〈φ̇〉 does not
increase monotonically with Cc. Our theoretical result [dashed
curve in Fig. 4(c)] predicts a broad peak near Cc ≈ 700 pF,
while the peak circulating speed is about 5 rev/s. And the
evaluation of 〈φ̇〉 from the experimental data (open circles)
follow well with the theoretical curve, proving the existence
of an optimal coupling for gyrating.

To investigate how the rotational speed of the virtual particle
relates to the coupling, we first find from the average heat
transfer rate [24]

〈Q̇〉 = C2
c kB(T2 − T1)

det(Ĉ) · Tr(R̂Ĉ)
(16)

that 〈Q̇〉 increases monotonically over Cc, as 〈Q̇〉 ∼ O(C2
c ) in

the weak-coupling regime (when Cc is small) and 〈Q̇〉 ∼ O(1)

in the strong coupling regime (large Cc). Furthermore, the
average heat transferred from T2 to T1 reservoir during one
gyrating cycle, Qcycle, is equal to the product of Cc and the
average area of gyration on the V1-V2 diagram. Therefore,
Qcycle is proportional to Ccπ/

√
det(M̂T X̂M̂). One can show

that Qcycle is also increasing monotonically over Cc, as
Qcycle ∼ O(

√
Cc) for large Cc and Qcycle ∼ O(Cc) for small

Cc. As a result, 〈φ̇〉 ≈ 2π · 〈Q̇〉/Qcycle leads to 〈φ̇〉 ∼ O(Cc)
for small Cc and 〈φ̇〉 ∼ O(C−1/2

c ) for large Cc. Hence 〈φ̇〉 is
not increasing monotonically; instead it reaches a peak, as
evidenced in Fig. 4(c). The decreasing trend of 〈φ̇〉 can also be
understood by recognizing that at large Cc it takes a long time
for the system to charge and discharge.

In Fig. 4(d) we present the average phase difference 〈α〉
between V1 and V2 along the elliptical contours of constant
Pss( �V ) (positive if V1 leads V2). The leading angle 〈α〉 is
experimentally evaluated by the average of the instantaneous
angle difference α = tan−1

(−V̇1
ωV1

) − tan−1
(−V̇2

ωV2

)
, where ω =∣∣ �V × �̇V

V 2

∣∣ is the instantaneous angular velocity of the virtual
particle in the V1-V2 phase space. For the special case that
Cc vanishes, the elliptical contours are nontilted, and thus 〈α〉
is equal to 90◦. As Cc increases, the ellipses start to tilt due to
the coupling between the signals V1 and V2, and as a result 〈α〉
decreases. Again the experimental results are well confirmed
by theoretical analysis.

VI. CONCLUSION

We demonstrate in this work that the linear, coupled RC
circuit system, under the agitation of two different thermal
baths near room temperature scale, can serve as a nonme-
chanical realization of the autonomous Brownian gyrator. The
incomplete cancellation between the diffusive drive and the
potential-gradient dragging accounts for the net circulating
flux in the steady state. For such an arrangement, the system
acts like a mini electricity generator, while the possibility for
the usage of this generated power is still being explored.

The observation that heat is conducted from the hot to
the cold reservoir is simply consistent with the second law of
thermodynamics. Yet the heat-transfer mechanism through the
gyration in the configuration space is plausible, noting that the
conducting element possesses two thermal degrees of freedom
only. The direction of heat flow, the gyrating dynamics, and the
total entropy production, are all representations of the second
law, which speaks of time irreversibility in a nonequilibrium
steady state. Our study helps reaffirm the general principle
and the possible realization of a Brownian ratchet under real
thermal baths.
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