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Recurrence relations in one-dimensional Ising models
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The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found
through an approach using algebra operators. Specifically, in this paper we show that the partition function can be
computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix
form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the
simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important
property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models.
Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic
susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
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I. INTRODUCTION

In the phase transition context, cooperative phenomena are
not dependent on details of the intermolecular forces that
define microscopic dynamics of the system itself but rather
depend on the way the mechanism of propagation of the
long-range order occurs. Thus, the Ising model is presented
as an important simple model that captures the essence of
several cooperative phenomena, thus establishing itself as a
tool to understand various aspects of the emergent properties
that are shared by numerous macroscopic phenomena to
undergo phase transitions. Although Ising model in two
and three dimensions are most relevant for describing real
systems, the one-dimensional model with random bond might
be a first attempt to understand the magnetic properties
in quasi-one-dimensional (1D) behavior of some materials
[1–4].

It is noteworthy that no magnetic phase transition at
finite temperature is possible for the simplest spin 1/2 chain
with nearest-neighbor exchange uniform interaction, i.e., the
homogeneous 1D Ising model. This claim follows from
Landau’s argument, but it also follows from Perron’s theorem
[5]. Meanwhile, much effort has been done to clarify phase
transition phenomena in magnetic systems. Among these
works the plane square lattice partition function and magnetic
properties were obtained using the standard transfer matrix
method. From these works there are results that shows a phase
transition in the thermodynamic limit at a well-defined finite
temperature [6] for planar lattices with different geometry and
uniform exchange interaction.

The existence of linear recurrence relations of second
order for the one-dimensional Ising model seems not to have
been previously reported. There is an underlying polynomial
structure behind the finite-size homogeneous 1D Ising model,
obtained when we are looking for a recursive formula for the
system’s partition function. It is worth noting that the use of
a recursion method with a vanishing external magnetic field
is not a new idea, since the 1D nonhomogeneous Ising model
can be treated with a linear first-order recurrence relation [5].
We show in this paper the existence of a polynomial closed-

form solution for the homogeneous model with nonvanishing
magnetic field. This solution can be expressed in terms of
a polynomial series called generalized Lucas polynomials in
the mathematics literature, obtained from the Lucas sequence,
which resembles the Fibonacci one [7,8]. We show also
how to obtain a recurrence relation for the nonhomogeneous
model with nonvanishing magnetic field in matrix form
which can be used in order to obtain the thermal magnetic
response.

Perfect crystals and uniform magnetic materials usually
have spatial symmetries that simplify the theoretical analysis.
However, for all real systems that have a certain degree of
impurities, the existing symmetries are destroyed, leading
to emergence of new symmetries or a complete lack of it
at the microscopic level [9]. The quenched average is the
proper way to treat systems of this kind, and it consists of
an average over all nonhomogeneous parameters in the free
energy, i.e., in the logarithm of the partition function [9,10].
Therefore one first needs to perform the thermal average
and find the partition function of a non-homogeneous system
and then perform another average over the configurational
space, which in the nonhomogeneous Ising model involves
unequal exchange couplings. There are some works where
the replica trick is employed [11,12]. There are some results
[13,14] for the one-dimensional random bond Ising model
with nearest-neighbor interaction where the authors obtained
the energy, entropy, and magnetization in the low-temperature
limit with nonvanishing field. Remarkably, they also obtain the
magnetic susceptibility for the ground state [13].

The exact quenched average of the magnetic susceptibility
is computed in this paper from the quenched averaged free
energy for a specific probability distribution in the exchange
coupling. We remark that the quenched disorder can introduce
a nontrivial behavior of the magnetic susceptibility in a
one-dimensional Ising model with short-range interactions.
This unusual response is not due to temperature changes but
arises from changes in ferromagnetic or antiferromagnetic
probability of each bond, with this probability being the control
parameter.
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Initially, we consider the system and the spin algebra
approach in Sec. II, and we show how to obtain recurrence
relations for the nonhomogeneous and homogeneous Ising
model in Sec. III. Then we analyze a spin chain with quenched
disorder in Sec. IV, with some remarks to conclude this paper
in Sec. V.

II. THE SPIN OPERATOR ALGEBRA APPROACH

We study a 1D spin-1/2 chain with nearest-neighbor Ising
bonds in the presence of an externally applied magnetic field
described by the Hamiltonian

ĤN = −
N−1∑
n=0

Jnσ̂
z
n σ̂ z

n+1 − h

N−1∑
n=0

σ̂ z
n ,

where σ̂ z
n is the z component of the spin operator at site n

of the chain and periodic boundary conditions are assumed,
i.e., σ̂ z

N = σ̂ z
0 . Note that we have used a compact notation

σ̂n σ̂n+1 ≡ · · · 1̂n−1 ⊗ σ̂n ⊗ σ̂n+1 ⊗ 1̂n+2 · · · in a Hilbert space
of size 2N since each operator acts in distinct Hilbert subspaces
(we also adopt σ̂n ≡ · · · 1̂n−1 ⊗ σ̂n ⊗ 1̂n+1 · · · ). In nonhomo-
geneous magnetic systems, different exchange interactions
must be considered: spin-spin coupling can be ferromagnetic
(antiferromagnetic) between sites n and n + 1 for Jn > 0
(Jn < 0) with 2|Jn| representing the energy cost to break a spin
pair bond. In the first case, an aligned spin pair is more likely
to occur because in this configuration the energy is minimized,
and in the second case an antiparallel pair is favored for the
same reason. The external magnetic field h breaks up-down
symmetry since each spin also tends to align itself with the
field direction, where the spin-field bond energy equals 2h.

The method is based on spin-1/2 operators algebra that uses
as main ingredients the following: (i) all the spin operators
commute with each other, [σ̂ z

n ,σ̂ z
m] = 0 (0 � n,m < N − 1);

(ii) all of them are idempotent, [σ̂ z
n ]2 = 1̂n (0 � n < N − 1);

(iii) all of these operators have null trace, Tr σ̂n = 0 (0 � n <

N − 1); and (iv) all traces of any tensor product which contains
at least one odd power of a spin operator have null trace because
the trace can be calculated in each Hilbert subspace separately.
For instance, with this last property we mean Tr[σ̂n ⊗ σ̂m] =
(Tr σ̂n)(Tr σ̂m) = 0 (0 � n,m < N − 1).

The partition function will be calculated through the formal
operatorial expansion of the exponential appearing in the
canonical ensemble:

ZN ({Kn},B) = Tr

[
N−1∏
n=0

eKnσ̂
z
n σ̂ z

n+1eBσ̂ z
n

]
, (1)

where we have defined the dimensionless parameters Kn =
βJn and B = βh. The property (i) states that all spin operators
at different sites commute, which allows us to break the
exponential in a product of exponentials indexed by the site
location n. From the previous property (ii) it is straightforward
to verify that every exponential eKnσ̂

z
n σ̂ z

n+1 and eBσ̂ z
n on the

right-hand side in the above equation (1) can be rewritten
as a linear combination with two operators

eKnσ̂
z
n σ̂ z

n+1 = cosh Kn 1̂n1̂n+1 + sinh Kn σ̂ z
n σ̂ z

n+1, (2)

eBσ̂ z
n = cosh B 1̂n1̂n+1 + sinh B σ̂ z

n 1̂n+1, (3)

where 1̂n1̂n+1 = · · · 1̂n−1 ⊗ 1̂n ⊗ 1̂n+1 ⊗ 1̂n+2 · · · stands for
the identity operator in the full Hilbert space. In this way
the result can be obtained if we calculate the trace in Eq. (1):

ZN ({Kn},B) = Tr

[
N−1∏
n=0

(
cosh Kn 1̂n1̂n+1 + sinh Kn σ̂ z

n σ̂ z
n+1

)

× (
cosh B 1̂n1̂n+1 + sinh B σ̂ z

n 1̂n+1
)]

. (4)

It is not an easy task to perform the algebric calculation
explicitly for an arbitrary large chain size N . However, it
suffices to do only the smaller sizes (N = 2, 3, 4, 5). We
show in Appendix A expressions for the nonhomogeneous
Ising model partition function up to N = 4 using the previous
properties (iii) and (iv) in Eq. (4). These results can be
generalized, as will be show in the next section, and can be
verified by direct and detailed inspection.

III. RECURRENCE RELATIONS

A. The nonhomogeneous Ising model

The partition function for the nonhomogeneous Ising model
can be extracted from a compact expression and generalized
for any spins system of arbitrary size N . Introducing a suitable
rank 2 matrix,

An({Kn},B) = 2

(
α an ω bn

ω an α bn

)
, (5)

where we have defined an = cosh Kn, bn = sinh Kn, α =
cosh B, and ω = sinh B, the exact expression for the partition
function for the 1D nonhomogeneous Ising model is given by

ZN = 1

2
TrWN, WN =

N−1∏
n=0

An +
N−1∏
n=0

Ān, (6)

where we have used another matrix obtained by a magnetic
field sign change Ān({Kn},B) = An({Kn}, − B).

It is possible to establish an alternative approach based in
recurrence relation for the matrixWN , so that this 2 × 2 matrix
depends only on the previous matrices WN−1 and WN−2. The
mathematical structure is a nonobvious one because it is a
second-order recurrence relation with nonconstant coefficients
in matrix form. To show this claim, let us make the following
definitions:

WN = XN + YN, (7)

where

XN =
N−1∏
n=0

An and YN =
N−1∏
n=0

Ān.

Using Eq. (6), we obtain

WN+1 = XNAN + YN ĀN (8)

and

WN+2 = XNANAN+1 + YN ĀN ĀN+1. (9)
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In order to establish a recurrence relation, let us assume a
solution of the type

WN+2 = WN+1PN+1 + WNQN (N � 0). (10)

Once such procedure is employed, it is sufficient to find the
values for PN+1 and QN . This results in two matrix equations

ANAN+1 = ANPN+1 + QN, (11)

ĀN ĀN+1 = ĀNPN+1 + QN, (12)

with the following solution:

PN+1 = 2α
(aN + bN )

aNbN

(
bNaN+1 0

0 aNbN+1

)
(13)

and

QN = −4

(
bNaN+1 0

0 aNbN+1

)
. (14)

In order to obtain the partition function, it is necessary to
choose the suitable initial matrices:

W0 = 2

(
1 0
0 1

)
and W1 = 4α

(
a0 0
0 b0

)
,

obtained on inspection of Eq. (6) and also using the size-
dependent coefficient matrices (13) and (14).

In fact, the recursive matrix Eq. (10) represents two
independent recurrence relation, since the initial matrices W0

and W1 have only nonvanishing elements on the principal
diagonal, as well as the coefficient matrices PN and QN . Thus
the exact solution for the nonhomogeneous 1D Ising model
is given by the trace ZN = (1/2) TrWN in Eq. (6) that is the
solution for the matrix recurrence relation (10).

B. The homogeneous Ising model

A scalar recursive formula with constant coefficients for
the finite-size partition function is obtained from the trace
of recurrence matrix relation (10) when the homogeneous
Ising model is considered, i.e., Kn = K (0 � n < N). Thus
ZN (K,B) is obtained from ZN−1(K,B) and ZN−2(K,B) only.
Most surprising is that the recurrence relation is exactly the
one obeyed by the generalized Lucas polynomials [7,8] that
are closely related to the generalized Fibonacci polynomials.

The generalized Fibonacci polynomials (GFP) in real
variables p and q are defined by a second-order linear
homogeneous recurrence equation FN (p,q) = pFN−1(p,q) +
qFN−2(p,q) ,N � 2 with initial conditions F0(p,q) = 0 and
F1(p,q) = 1. This relation, along with the first two polyno-
mials F0 and F1, allows the GFP to be generated recursively,
whose series expansion is given by [8]:

FN (p,q) =
�(N−1)/2�∑

k=0

(
N − k − 1

k

)
pN−2k−1qk.

For each term in this polynomial sequence, the higher power in
variable p is obtained as N − 1, i.e., one power lower than the
polynomial order. If we start with the same recurrence equation
above but choose different initial conditions, then we get
another polynomial sequence. In particular, we are interested
in the generalized Lucas polynomials (GLP) LN (p,q) =

p LN−1(p,q) + q LN−2(p,q) ,N � 2, where the proper initial
conditions are L0(p,q) = 2 and L1(p,q) = p, and the series
expansion is [8]

LN (p,q) =
�N/2�∑
k=0

N

N − k

(
N − k

k

)
pN−2kqk .

A GLP of order N has exactly N as its higher power in variable
p.

From the two roots λ±(p,q) = (p ±
√

p2 + 4q)/2 of the
solution of Fibonacci and Lucas generalized polynomials
recurrence relations, it is possible to achieve the general
solutions for the linear recurrence relations [8]:

LN (p,q) = λN
+ + λN

− , FN (p,q) = λN
+ − λN

−
λ+ − λ−

. (15)

These are Binet form for the GFP recurrence relation and
the GLP recurrence relation, respectively, from which many
identities can be deduced. Among other important properties
of a GLP, one that is shared with the Lucas sequence, is a
nonlinear recurrence equation L2N (p,q) = [LN (p,q)]2 − qN .
Identities involving higher powers than this one can also be
easily deduced.

On appropriate choice of parameters p = 2α(a + b) and
q = −4ab as proved in Eq. (A3), we obtained through the
trace of the recurrence relation in matrix form (10) a recursive
formula for the partition function:

ZN (p,q) = p ZN−1(p,q) + q ZN−2(p,q), N � 2. (16)

For this iteration, we can set the first two terms Z0(p,q) = 2
and Z1(p,q) = p, in order to establish the GLP of order N with
parameters p = p(K,B) and q = q(K,B). Hence, we can use
p and q to write explicitly the Binet form (15) and recover the
well-known finite-size solution of the homogeneous 1D Ising
model partition function:

ZN (p,q) ≡ LN (p,q) = λN
+ + λN

− . (17)

It is important to stress out that the partition function (17)
shares all the properties of a GLP (15). Here the discussion
reveals an interconnection between the simple homogeneous
1D Ising model and the generalized Fibonacci and Lucas
polynomials.

The finite-size Helmholtz free energy is given by
FN (p,q) = −kBT ln[LN (p,q)] such that the finite-size mag-
netization per spin equals MN/N = 2 eβJ sinh(βh)FN (p,q)/
LN (p,q) and vanishes for zero field and finite N for all
temperatures. For instance, in the case of the ferromag-
netic coupling (J > 0), in the thermodynamic limit this
order parameter implies a spontaneous (h → 0±) ferromag-
netic phase transition at T = 0 due to a nonanalyticity of
limN→∞ FN (p,q)/LN (p,q) at this critical point. The finite-
size (parallel and isothermal) susceptibility for zero magnetic
field is χN (T ) = β(1 + v)(1 − vN )/[(1 + vN )(1 − v)], where
v = tanh(K), whose in the thermodynamic limit becomes
χ (T ) = β(1 + v)/(1 − v) as described elsewhere [15]. Near
criticality the system attains ferromagnetic long-range order
revealed by divergent correlation length and magnetic suscep-
tibility. For high temperatures the well-known Curie-Weiss
Law is recovered: χHT(T ) = C/(T − θ ).
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The first-principles calculation that implies Eq. (16) un-
cover why a numerical investigation [16] has encountered
and exploited a nonlinear recurrence identity Z2N (p,q) =
[ZN (p,q)]2 − qN for the 2D Ising model partition function,
even without realizing this underlying polynomial structure.
Next we begin discussing the magnetic properties of the
random bond 1D Ising model.

IV. THE QUENCHED ISING MODEL

Due to impurities randomly distributed in the samples, the
free energy of the system must be averaged over an ensemble
of samples. This is the proper procedure for systems whose ob-
served relaxation time of disorder is very slow. Here we
consider that impurities implies unequal exchange couplings
at differents spin pairs.

The quenched average of the free energy for the 1D Ising
model with nearest-neighbor random interaction can be cal-
culated with a probability distribution P ({Jn}) = ∏

n P (Jn),
where for each bond

P (Jn) = x δ(Jn − J ) + (1 − x) δ(Jn + J ). (18)

Interaction between spins n and n + 1 has probability x

for ferromagnetic interaction and 1 − x for antiferromag-
netic interaction. Therefore the quenched average [FN ]av =
−β−1[ln ZN ]av must be extracted from

[FN ]av = −β−1
∫ ∏

n

dJn P ({Jn}) ln ZN ({Jn}). (19)

Throughout the paper [· · · ]av denotes average over an ensem-
ble of samples. The quenched average [ln ZN ]av is needed
to deal with disorder fluctuations between different samples,
while the thermal average was performed to deal with thermal
fluctuations of some sample through Eq. (6).

The quenched averaged free energy [FN ]av is obtained
by expanding Eq. (19) in powers of x and y = 1 − x (see
Appendix B). Ordinarily the quenched averaged magnetic
susceptibility per spin is given by derivatives of the quenched
averaged free energy with respect to the field

[χN ]av = − β

N

∂2

∂B2
[FN ]av

∣∣∣∣
h=0

. (20)

The magnetic field only appears as powers of α, as in Eq. (B1),
for example. Derivatives of the quenched averaged free energy
therefore demands derivatives of powers of α inside the
argument of logarithms. In the zero-field limit the quenched
averaged susceptibility simplifies by induction into a helpful
expression (Appendix B):

[χN ]av = β

{
1 + (2uv)(1 − v2)

(1 − v2N )
[1 + uv + v2]N−2

}
. (21)

Here we defined proper parameters v = tanh(βJ ) and u =
2x − 1, and a suitably binomial-like expansion

[r + t]N =
N∑

k=0

rN−k tk (22)

for any real numbers r and t . This defines a modified binomial
expansion since the binomial coefficient is absent. A finite
series expansion can be found using this expansion for the

brackets in the quenched averaged susceptibility given by
Eq. (21),

[1 + uv + v2]N−2 =
N−2∑
k=0

v2k

k∑
j=0

(u

v

)j

, (23)

whose closed-form solution can be written from the result of
partial sum of geometric sequences:

[1 + uv + v2]N−2 =
v

1 − (v2)N−1

1 − v2
− u

1 − (uv)N−1

1 − uv

v − u

(v < 1 and v �= u). (24)

The following result for the the finite-size quenched averaged
susceptibility (21) is obtained after substituting the closed-
form expansion (24):

[χN ]av = β

{
v + u

v − u
− 2u

v − u

(1 − v2)

(1 − v2N )

[1 − (uv)N ]

(1 − uv)

}
(v < 1 and v �= u). (25)

Note, for probabilities x = 1 (x = 0), we obtain the magnetic
susceptibility of strictly ferromagnetic (antiferromagnetic)
interacting spins.

The thermodynamic limit of the quenched susceptibility
can be obtained for finite temperature from Eq. (25) with little
effort, and it is an analytic function of x and J :

[χ ]av = β
(1 + uv)

(1 − uv)
(v < 1). (26)

A few remarks on the asymptotic regime follows: the
quenched susceptibility goes as [χLT]av ∼ βx/(1 − x) for
low temperatures (LT), whereas for the antiferromagnetic
system (x = 0) it vanishes. On the other hand, a Curie-Weiss
term [χHT]av ∼ C/[T − θ (x)] with a well-defined temperature
shift θ (x) = 2[J ]av/kB for the high-temperature (HT) limit is
found. On average, the energy of a spin pair bond is 2[J ]av,
which sets an energy scale to the model.

As the probability x varies between 0 and 1, the average
exchange coupling varies in the range −J � [J ]av � J .
This temperature θ (x) should therefore range in the interval
±2[J ]av/kB , which consequently defines the interactions
between spins as predominant ferromagnetic ([J ]av,θ > 0)
or antiferromagnetic ([J ]av,θ < 0), respectively, as shown in
Fig. 1. The demarcation line where one prevailing interaction
type stops and the other begins is set when x = 1/2, and
the system has microscopically interacting spins although
it behaves macroscopically like spins solely sensitive to an
externally applied magnetic field.

Figure 2 shows a broad maximum in [χ ]av for low probabil-
ity values x, which is a characteristic of low-dimensional spin
systems. This broad peak only emerges below some definite
threshold value xth and shifts to higher temperatures with
decreasing probability of ferromagnetic bonds. Furthermore, it
also shows the magnetic response upturn effect due to impurity
in the low-temperature limit.
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FIG. 1. Temperature dependence of the inverse magnetic sus-
ceptibility (solid curves) and its high-temperature assymptotic limit
(dashed curves) for several probability values x.

The emergence of minimum and maximum of [χ ]av is
revealed by the roots of η = d[χ ]av/dT . Differentiating
Equation (26) with respect to T and looking for the roots, it is
found that maximum and minimum temperatures are localized
along the dashed curve in Fig. 2 given by

η(T ) = − v/J

1 − v2
+

√(
v/J

1 − v2

)2

+ β2. (27)

The maximum of this curve occurs at a threshold
value when the condition βthJ = coth(2βthJ ) is satis-
fied. The numerical solution of this transcendental equa-
tion is such that βthJ ≈ 1.033, where χth ≈ 0.2577 and
xth ≈ 0.1125.

A sharp behavior near the threshold value can be identified
in Fig. 2 (inset) which shows the maximum and minimum

 0
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χ 
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kBT/J
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η 
(x
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x

FIG. 2. Temperature dependence of the magnetic susceptibility
(solid curve) from lowest x = 0 (bottom) to highest x ≈ 0.31 (top)
ferromagnetic probability. Localization of maximum and minimum
temperatures (dashed curve) determined by η in Eq. (27). Note the
appearance of a threshold temperature whose reduced value is slightly
below unity. Inset shows minimum and maximum given by η as a
function of the probability x.

of the magnetic susceptibility for x values above 0. This
indicates a very unusual magnetic behavior. In addition,
it has a discontinuous derivative with respect to x at
x ≈ 0.1125.

V. CONCLUDING REMARKS

We study the 1D Ising model with nearest-neighbor interac-
tion in the presence of an external magnetic field. Considering
nonhomogeneous interaction, we showed how to compute
the partition function from an algebraic method whose main
feature encompass recurrence relations. In particular, for the
homogenous 1D Ising model, we describe a direct connection
between the generalized Lucas polynomials and the partition
function. It automatically establishes a recurrence relation for
the partition function.

The presented analytical method is able to introduce
recursive formulas for the homogeneous and nonhomogeneous
1D Ising model, which is a nonobvious result if one is restricted
to the standard transfer matrix method. In a numerical approach
[16] a nonlinear recurrence relation was investigated for the
finite-size homogeneous 2D Ising model without external
magnetic field, identical to the one obeyed by the generalized
Lucas polynomials Z2N (p,q) = [ZN (p,q)]2 − qN . The ana-
lytical results presented in this paper for the 1D Ising model
gives a mathematical background approach to the physical
problem, and we assert that future research can clarify if the
finite-size partition function of a 2D Ising model also obeys a
linear recurrence equation.

Furthermore, in order to study the presence of impurities in
magnetic samples, we consider the quenched disorder to deal
with systems whose relaxation time of exchange couplings
is very slow. We perform the quenched average of the free
energy and obtained the magnetic properties of this disordered
systems and found a nontrivial behavior for the magnetic
susceptibility for certain values of probabilities x or 1 − x

of a ferromagnetic or antiferromagnetic interaction between
nearest-neighbor spins. We compute the threshold value xth ≈
0.1125 along with the threshold temperature and the threshold
magnetic susceptibility solving a transcendental equation. We
emphasize that singularities due to thermal fluctuations in
homogeneous systems are completely different from non-
trivial behavior due to samples fluctuations in disordered
systems.

Finally, we stress that our result for the quenched average
of the magnetic susceptibility (26) is not defined for the
ground state of the system. It was obtained for a specific
order of limits, i.e., first we take the zero field limit,
and then we take the thermodynamic limit. In a different
approach [13], the asymptotic limit near zero temperature
was taken first, and then the other limits were performed,
where the authors found a finite magnetic susceptibility at zero
temperature. Therefore our results complement the quenched
averaged magnetic susceptibility for finite temperatures not yet
reported.
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APPENDIX A: PARTITION FUNCTIONS

Using Eq. (4) and tensor properties mentioned in Sec. II, we
obtained the following expressions for the partition functions
for low N values:

Z2 = 22[(a0a1 + b0b1)α2 + (a0b1 + b0a1)ω2]

Z3 = 23[a0a1a2 + b0b1b2]α3

+ 23[a0a1b2 + b0b1a2]αω2

+ 23[a0b1a2 + b0a1b2]αω2

+ 23[a0b1b2 + b0a1a2]αω2

Z4 = 24[a0a1a2a3 + b0b1b2b3]α4

+ 24[a0a1a2b3 + b0b1b2a3]α2ω2

+ 24[a0a1b2a3 + b0b1a2b3]α2ω2

+ 24[a0a1b2b3 + b0b1a2a3]α2ω2

+ 24[a0b1a2a3 + b0a1b2b3]α2ω2

+ 24[a0b1b2a3 + b0a1a2b3]α2ω2

+ 24[a0b1b2b3 + b0a1a2a3]α2ω2

+ 24[a0b1a2b3 + b0a1b2a3]ω4.

All these partition functions are summarized in the general
formula (6). These partitions functions could be obtained from
the recurrence relation in matrix form (10). Considering the
homogeneous case, the coefficients matrices (13) and (14)
simplifies each in a product of a scalar with the identity matrix

PN+1 = 2α(a + b)

(
1 0
0 1

)
(A1)

and

QN = −4ab

(
1 0
0 1

)
. (A2)

These scalars are p = 2α(a + b) and q = −4ab. Thus the
recurrence relation for the partition function of a homogeneous
system are given by

ZN+2(p,q) = p ZN+1(p,q) + q ZN (p,q) , N � 0. (A3)

APPENDIX B: QUENCHED AVERAGES

The quenched average of ln ZN was calculated using the
thermal average (6) and the probability distribution (18) and

(19) for low N values:

[ln Z2]av = x2 ln[α2(a + b)2 − 2ab]

+ 2xy ln[α2(a + b)(a − b)]

+ y2 ln[α2(a − b)2 + 2ab]

[ln Z3]av = x3 ln[α(a + b)(α2(a + b)2 − 3ab)]

+ 3x2y ln[α(a − b)(α2(a + b)2 − ab)]

+ 3xy2 ln[α(a + b)(α2(a − b)2 + ab)]

+ y3 ln[α(a − b)(α2(a − b)2 + 3ab)]

[ln Z4] = x4 ln[α4(a + b)4 − 4 abα2(a + b)2 + 2 a2b2]

+ 4x3y ln[α2(a2 − b2)(α2(a + b)2 − 2ab)]

+ 4x2y2 ln[α4(a+b)2(a−b)2+4a2b2α2−2a2b2]

+ 2x2y2 ln[α4(a + b)2(a − b)2 + 2a2b2]

+ 4xy3 ln[α2(a2 − b2) (α2(a − b)2 + 2ab)]

+ y4 ln[α4(a − b)4 + 4 abα2(a − b)2 + 2 a2b2].

We defined parameters a = cosh(βJ ), b = sinh(βJ ), and α =
cosh(βh) and calculated this average up to N = 5.

The quenched average of the magnetic susceptibility with
vanishing field

[χN ]av = β

{
1 + 2

N
SN

}
(B1)

was found from the following polynomials in parameters u

and v:

S2 = 2uv

1 + v2
, (B2)

S3 = 3uv [1 + uv + v2]

1 + v2 + v4
, (B3)

S4 = 4uv [1 + uv + v2 + uv3 + u2v2 + v4]

1 + v2 + v4 + v6
. (B4)

In the numerators all brackets follows a simple rule with
increasing N , a certain powerlike expansion of 1 + uv + v2

with binomials coefficients suppressed given by Eq. (22). In
all denominators a finite series with a common ratio v2 whose
a summation index ranges from 0 to N − 1 has appeared. Thus
it induced the result

SN = Nuv
(1 − v2)

(1 − v2N )
[1 + uv + v2]N−2 . (B5)

The induction procedure described in this appendix allows one
to obtain Eq. (21).
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